Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

An Overview of Recent Development in Visible Light-mediated Organic Synthesis over Heterogeneous Photo-nanocatalysts

Author(s): Yasser Mahmoud A. Mohamed*, Yasser A. Attia, Hossam A. El Nazer and Eirik Johansson Solum

Volume 18, Issue 1, 2021

Published on: 05 October, 2020

Page: [23 - 36] Pages: 14

DOI: 10.2174/1570179417666201005145103

Price: $65

Abstract

The implementation of heterogeneous photo-nanocatalysts in organic syntheses has been investigated greatly in the last decade as a result of the increasing demand to achieve the organic reactions via the use of green approaches and through the availability of visible light source. Herein, the presented results describe the basic concepts and state-of-the-art of fundamental insight into key features that influence the catalytic performance in organic reactions to investigate and optimize a broad range of catalyzed organic transformations, that benefit the researchers in academia and chemical industry fields.

Keywords: Photocatalysis, photo-nanocatalysts, organic synthesis, influence parameters, photocatalytic processes, green chemistry.

Graphical Abstract

[1]
Hermann, J-M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today, 1999, 53, 115.
[http://dx.doi.org/10.1016/S0920-5861(99)00107-8]
[2]
Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95, 69.
[http://dx.doi.org/10.1021/cr00033a004]
[3]
Wang, C.C.; Li, J.R.; Lv, X.L.; Zhang, Y.Q.; Guo, G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 2014, 7, 2831.
[http://dx.doi.org/10.1039/C4EE01299B]
[4]
Abdelsalam, E.M.; Mohamed, Y.M.A.; Abdelkhalik, S.; El Nazer, H.A.; Yasser, A.A. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag- and Pt-doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. Int., 2020, 27, 35828-35836.
[http://dx.doi.org/10.1007/s11356-020-09649-5] [PMID: 32601878]
[5]
Attia, Y.A.; Altalhi, T.A. Low-cost synthesis of titanium dioxide anatase nanoclusters as advanced materials for hydrogen photoproduction. Res. Chem. Intermed., 2017, 43, 4051.
[http://dx.doi.org/10.1007/s11164-017-2862-2]
[6]
O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737.
[http://dx.doi.org/10.1038/353737a0]
[7]
Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev., 2010, 110(11), 6595-6663.
[http://dx.doi.org/10.1021/cr900356p] [PMID: 20831177]
[8]
Yu, J.; Qi, L.; Jaroniec, M.J. Hydrogen production by photocatalytic water splitting over pt/tio2 nanosheets with exposed (001) facets. PhysChemComm, 2010, 114, 13118.
[9]
Chen, X.S. Shen; L. Guo; S.Mao, S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev., 2010, 110, 6503.
[http://dx.doi.org/10.1021/cr1001645] [PMID: 21062099]
[10]
Albonetti, S.; Mazzoni, R.; Cavani, F. Homogeneous, heterogeneous and nanocatalysis, in transition metal catalysis in aerobic alcohol oxidation, in Transition Metal Catalysis in Aerobic Alcohol Oxidation, 2014, 1-39.
[http://dx.doi.org/10.1039/9781782621652-00001]
[11]
Friedmann, D.; Hakki, A.; Kim, H.; Choi, W.; Bahnemann, D.W. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem., 2016, 18, 5391.
[http://dx.doi.org/10.1039/C6GC01582D]
[12]
Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358), 37-38.
[http://dx.doi.org/10.1038/238037a0] [PMID: 12635268]
[13]
Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature, 2006, 440(7082), 295.
[http://dx.doi.org/10.1038/440295a] [PMID: 16541063]
[14]
Fox, M.; Younathan, J. Radical cation intermediates in the formation of schiff bases on irradiated semiconductor powders. Tetrahedron, 1986, 42, 6285.
[http://dx.doi.org/10.1016/S0040-4020(01)88091-1]
[15]
Zhu, P.; Zhang, J.; Wang, J.; Kong, P.; Wang, Y.; Zheng, Z. Photocatalytic selective aerobic oxidation of amines to nitriles over Ru/γ-Al2O3: the role of the support surface and the strong imine intermediate adsorption. Catal. Sci. Technol., 2020, 10, 440.
[http://dx.doi.org/10.1039/C9CY01916B]
[16]
Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. Selective amine oxidation using Nb2O5 Photocatalyst and O2. ACS Catal., 2011, 1, 1150.
[http://dx.doi.org/10.1021/cs200318n]
[17]
Lang, X.; Ji, H.; Chen, C.; Ma, W.; Zhao, J. Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew. Chem. Int. Ed., 2011, 50, 3934.
[http://dx.doi.org/10.1002/anie.201007056]
[18]
Zhao, W.; Liu, C.; Cao, L.; Yin, X.; Xu, H.; Zhang, B. Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. RSC Advances, 2013, 3, 22944.
[19]
Veerakumar, P.; Balakumar, S.; Velayudham, M.; Lu, K-L.; Rajagopal, S. Ru/Al2O3 catalyzed N-oxidation of tertiary amines by using H2O2. Catal. Sci. Technol., 2012, 2, 1140.
[http://dx.doi.org/10.1039/c2cy20047c]
[20]
Yuan, B.; Chong, R.; Zhang, B.; Li, J.; Liu, Y.; Li, C. Photocatalytic aerobic oxidation of amines to imines on BiVO4 under visible light irradiation. Chem. Commun. (Camb.), 2014, 50(98), 15593-15596.
[http://dx.doi.org/10.1039/C4CC07097F] [PMID: 25360458]
[21]
Ye, L.; Li, Z. ZnIn2S4: A photocatalyst for the selective aerobic oxidation of amines to imines under visible light. ChemCatChem, 2014, 6, 2540.
[http://dx.doi.org/10.1002/cctc.201402360]
[22]
Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev., 2014, 114
[http://dx.doi.org/10.1021/cr5000738]]
[23]
Kou, J.; Lu, C.; Wang, J.; Chen, Y.; Xu, Z.; Varma, R.S. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev., 2017, 117(3), 1445-1514.
[http://dx.doi.org/10.1021/acs.chemrev.6b00396] [PMID: 28093903]
[24]
Banerjee, S.; Saha, A. Free-ZnO nanoparticles: A mild, efficient and reusable catalyst for the one-pot multicomponent synthesis of tetrahydrobenzo[b]pyran and dihydropyrimidone derivatives. New J. Chem., 2013, 37, 4170.
[http://dx.doi.org/10.1039/c3nj00723e]
[25]
Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc., 2005, 127(2), 530-531.
[http://dx.doi.org/10.1021/ja043688e] [PMID: 15643870]
[26]
Shiraishi, Y.; Hirai, T. Photocatalysts. Selective organic transformations on titanium oxide-based photocatalysts. J. Photochem. Photobiol. Chem., 2008, 9, 157.
[http://dx.doi.org/10.1016/j.jphotochemrev.2008.05.001]
[27]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Selective organic transformations on titanium oxide-based photocatalysts. Angew. Chem. Int. Ed., 2013, 52, 7372.
[http://dx.doi.org/10.1002/anie.201207199]
[28]
Mohamed, R.M.; Ibrahim, F.M. Visible light photocatalytic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite. J. Ind. Eng. Chem., 2015, 22, 28.
[http://dx.doi.org/10.1016/j.jiec.2014.06.021]
[29]
Mohamed, Y.M.A.; El Nazer, H.A.; Solum, E.J. Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. Chem. Pap., 2019, 73, 435.
[http://dx.doi.org/10.1007/s11696-018-0604-6]
[30]
Mohamed, Y.M.A.; Attia, Y.A. The influence of ultrasonic irradiation on catalytic performance of ZnO nanoparticles toward the synthesis of chiral 1‐substituted‐1H‐tetrazolederivatives from α‐amino acid ethyl esters. Appl. Organomet. Chem., 2020, 5758.
[http://dx.doi.org/10.1002/aoc.5758]
[31]
Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Photocatalysis for the formation of the C-C bond. Chem. Rev., 2007, 107(6), 2725-2756.
[http://dx.doi.org/10.1021/cr068352x] [PMID: 17530909]
[32]
Patel, S.; Mishra, B.K. Oxidation of alcohol by lipopathic Cr(VI): a mechanistic study. J. Org. Chem., 2006, 71(18), 6759-6766.
[http://dx.doi.org/10.1021/jo0608772] [PMID: 16930025]
[33]
Du, H.; Lo, P.K.; Hu, Z.; Liang, H.; Lau, K.C.; Wang, Y.N.; Lam, W.W.; Lau, T.C. Lewis acid-activated oxidation of alcohols by permanganate. Chem. Commun. (Camb.), 2011, 47(25), 7143-7145.
[http://dx.doi.org/10.1039/c1cc12024g] [PMID: 21614354]
[34]
Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51, 68.
[http://dx.doi.org/10.1002/anie.201101182]
[35]
Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 2014, 43(1), 473-486.
[http://dx.doi.org/10.1039/C3CS60188A] [PMID: 24162830]
[36]
Xiao, Q.; Jaatinen, E.; Zhu, H. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light. Chem. Asian J., 2014, 9(11), 3046-3064.
[http://dx.doi.org/10.1002/asia.201402310] [PMID: 25048419]
[37]
Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[38]
Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed., 2009, 48, 9785.
[http://dx.doi.org/10.1002/anie.200904056]
[39]
Herrmann, J-M.J. Fundamentals and misconceptions in photocatalysis Photochem. Photobiol. A, 2010, 216, 85.
[http://dx.doi.org/10.1016/j.jphotochem.2010.05.015]
[40]
Xu, Q.; Yu, J.; Zhang, J.; Zhang, J.; Liu, G. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity. Chem. Commun. (Camb.), 2015, 51(37), 7950-7953.
[http://dx.doi.org/10.1039/C5CC01087J] [PMID: 25864947]
[41]
Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev., 2016, 45(9), 2603-2636.
[http://dx.doi.org/10.1039/C5CS00838G] [PMID: 26963902]
[42]
Attia, Y.A.; Vázquez-Vázquez, C.; Blanco, M.C.; Buceta, D.; López-Quintela, M.A. Gold nanorod synthesis catalysed by Au clusters. Faraday Discuss., 2016, 191, 205-213.
[http://dx.doi.org/10.1039/C6FD00015K] [PMID: 27424869]
[43]
Sarina, S.; Waclawik, E.R.; Zhu, H. Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chem., 2013, 15, 1814.
[http://dx.doi.org/10.1039/c3gc40450a]
[44]
Yurdakal, S.; Augugliaro, V.; Loddo, V.; Palmisano, G.; Palmisano, L. Enhancing selectivity in photocatalytic formation of p-anisaldehyde in aqueous suspension under solar light irradiation via TiO2 N-doping. New J. Chem., 2012, 36, 1762.
[http://dx.doi.org/10.1039/c2nj40394c]
[45]
Yurdakal, S.; Yanar, Ş.Ö.; Çetinkaya, S.; Alagöz, O.; Yalçın, P.; Özcan, L. Green photocatalytic synthesis of vitamin B3 by Pt loaded TiO2 photocatalysts. Appl. Catal. B, 2017, 202, 500.
[http://dx.doi.org/10.1016/j.apcatb.2016.09.063]
[46]
Mao, J.; Ye, L.; Li, K.; Zhang, X.; Liu, J.; Peng, T.; Zan, L. Pt-loading reverses the photocatalytic activity order of anatase TiO2 0 0 1 and 0 1 0 facets for photoreduction of CO2 to CH4. Appl. Catal. B, 2014, 144, 855.
[http://dx.doi.org/10.1016/j.apcatb.2013.08.027]
[47]
Bellardita, M.; Di Paola, A.; García-López, E.; Loddo, V.; Marcì, G.; Palmisano, L. Photocatalytic CO2 reduction in gas-solid regime in the presence of bare, SiO2 supported or cu-loaded TiO2 samples. Curr. Org. Chem., 2013, 17, 2440.
[http://dx.doi.org/10.2174/13852728113179990057]
[48]
Augugliaro, V.; Kisch, H.; Loddo, V.; López-Munoz, M.J.; Marquez-Alvarez, C.; Palmisano, G.; Palmisano, L.; Parrino, F.; Yurdakal, S. Appl. Catal. A, 2008, 349, 182.
[http://dx.doi.org/10.1016/j.apcata.2008.07.032]
[49]
Goutham, R.; Gopinath, K.P.; Ramprasath, A.; Srikanth, B.; Badri Narayan, R. High-performance photocatalysts for organic reactions.Inamuddin, M. Ahamed, A. Asiri, E. Lichtfouse (eds) Nanophotocatalysis and environmental applications. Environmental chemistry for a sustainable world; Springer, Cham; , 2019, 31, pp. 219-270.
[http://dx.doi.org/10.1007/978-3-030-04949-2_9]
[50]
Chen, J.; Cen, J.; Xu, X.; Li, X. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol., 2016, 6, 349.
[http://dx.doi.org/10.1039/C5CY01289A]
[51]
Friedmann, D.; Hakki, A.; Kim, H.; Choic, W.; Bahnemann, D. Heterogeneous photocatalytic organic synthesis: State-of-the-art and future perspectives. Green Chem., 2016, 18, 5391.
[http://dx.doi.org/10.1039/C6GC01582D]
[52]
Parrino, F.; Bellardita, M.; García-López, E.I.; Marcì, G.; Loddo, V.; Palmisano, L. Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects. ACS Catal., 2018, 8(12), 11191-11225.
[http://dx.doi.org/10.1021/acscatal.8b03093]
[53]
Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev., 2014, 43(20), 7188-7216.
[http://dx.doi.org/10.1039/C4CS00145A] [PMID: 25017125]
[54]
Yamada, K.; Miyajima, K.; Mafun, F.J. Visible light enhanced oxidant free dehydrogenation of aromatic alcohols using Au–Pd alloy nanoparticle catalysts. PhysChemComm, 2007, 111, 11246.
[55]
Balamurugan, B.; Maruyama, T. Evidence of an enhanced interband absorption in Au nanoparticles: Size-dependent electronic structure and optical properties. Appl. Phys. Lett., 2005, 87143105
[http://dx.doi.org/10.1063/1.2077834]
[56]
Ke, X.; Sarina, S.; Zhao, J.; Zhang, X.; Chang, J.; Zhu, H. Tuning the reduction power of supported gold nanoparticle photocatalysts for selective reductions by manipulating the wavelength of visible light irradiation. Chem. Commun. (Camb.), 2012, 48(29), 3509-3511.
[http://dx.doi.org/10.1039/c2cc17977f] [PMID: 22382621]
[57]
Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12, 788.
[http://dx.doi.org/10.1021/la9502711]
[58]
Janz, A.; Köckritz, A.; Yao, L.; Martin, A. Fundamental calculations on the surface area determination of supported gold nanoparticles by alkanethiol adsorption. Langmuir, 2010, 26(9), 6783-6789.
[http://dx.doi.org/10.1021/la9041277] [PMID: 20088567]
[59]
Andrew, M.; Shuming, N.S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res., 2010, 43, 2, 190.
[60]
Li, X-B.; Li, Z-J.; Gao, Y-J.; Meng, Q-Y.; Yu, S.; Weiss, R.G.; Tung, C-H.; Wu, L. Angew. Chem., 2014, 126, 2117.
[http://dx.doi.org/10.1002/ange.201310249]
[61]
Caputo, J.A.; Frenette, L.C.; Zhao, N.; Sowers, K.L.; Krauss, T.D.; Weix, D.J.J. General and efficient c-c bond forming photoredox catalysis with semiconductor quantum dots. J. Am. Chem. Soc., 2017, 139(12), 4250-4253.
[http://dx.doi.org/10.1021/jacs.6b13379] [PMID: 28282120]
[62]
Zhao, J.; Nguyen, S.C.; Ye, R.; Ye, B.; Weller, H.; Somorjai, G.A.; Alivisatos, A.P.; Toste, F.D. A comparison of photocatalytic activities of gold nanoparticles following plasmonic and interband excitation and a strategy for harnessing interband hot carriers for solution phase photocatalysis. ACS Cent. Sci., 2017, 3(5), 482-488.
[http://dx.doi.org/10.1021/acscentsci.7b00122] [PMID: 28573211]
[63]
Canlas, C.P.; Lu, J.; Ray, N.A.; Grosso-Giordano, N.A.; Lee, S.; Elam, J.W.; Winans, R.E.; Van Duyne, R.P.; Stair, P.C.; Notestein, J.M. Shape-selective sieving layers on an oxide catalyst surface. Nat. Chem., 2012, 4(12), 1030-1036.
[http://dx.doi.org/10.1038/nchem.1477] [PMID: 23174984]
[64]
Ma, T.; Yang, W.; Liu, S.; Zhang, H.; Liang, F. A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catal., 2017, 7, 38.
[http://dx.doi.org/10.3390/catal7020038]
[65]
Attia, Y.A.; Abdel-Hafez, S.H. Reusable photoresponsive Ag/AgCl nanocube-catalyzed one-pot synthesis of seleno[2,3-b]pyridine derivatives. Res. Chem. Intermed., 2020, 46, 3165.
[http://dx.doi.org/10.1007/s11164-020-04143-6]
[66]
Eschemann, T.O.; Bitter, J.H.; de Jong, K.P. Effects of loading and synthesis method of titania-supported cobalt catalysts for Fischer–Tropsch synthesis. Catal. Today, 2014, 228, 89.
[http://dx.doi.org/10.1016/j.cattod.2013.10.041]
[67]
Bamwenda, G.R.; Tsubota, S.; Nakamura, T.; Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett., 1997, 44, 83.
[http://dx.doi.org/10.1023/A:1018925008633]
[68]
Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong interactions in supported-metal catalysts. Science, 1981, 211, 4487.
[http://dx.doi.org/10.1126/science.211.4487.1121]
[69]
Guo, Y-G.; Hu, Y-S.; Sigle, W. Maier. Superior electrode performance of nanostructured mesoporous tio2 (anatase) through efficient hierarchical mixed conducting networks J. Adv. Mater., 2007, 19, 2087.
[http://dx.doi.org/10.1002/adma.200602828]
[70]
Xu, J.; Li, K.; Shi, W.; Li, R.; Peng, T. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. J. Power Sources, 2014, 260, 233.
[http://dx.doi.org/10.1016/j.jpowsour.2014.02.092]
[71]
Chen, M-M.; Sun, X.; Qiao, Z-J.; Ma, Q-Q.; Wang, C-Y. Anatase-TiO2 nanocoating of Li4Ti5O12 nanorod anode for lithium-ion batteries. J. Alloys Compd., 2014, 601, 38-42.
[72]
Ohno, T.; Mitsui, T.; Matsumura, M. TiO2-photocatalyzed oxidation of adamantane in solutions containing oxygen or hydrogen peroxide. J. Photochem. Photobiol. Chem., 2003, 160, 3.
[http://dx.doi.org/10.1016/S1010-6030(03)00213-2]
[73]
Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2− and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A, 2007, 325, 105.
[http://dx.doi.org/10.1016/j.apcata.2007.03.015]
[74]
Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M-H. Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem., 2011, 21, 9079.
[http://dx.doi.org/10.1039/c1jm10983a]
[75]
Shiraishi, Y.; Saito, N.; Hirai, T. Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. J. Am. Chem. Soc., 2005, 127(37), 12820-12822.
[http://dx.doi.org/10.1021/ja053265s] [PMID: 16159274]
[76]
Zhang, G.; Yi, J.; Shim, J.; Lee, J.; Choi, W. Photocatalytic hydroxylation of benzene to phenol over titanium oxide entrapped into hydrophobically modified siliceous foam. Appl. Catal. B, 2011, 102, 132.
[http://dx.doi.org/10.1016/j.apcatb.2010.11.034]
[77]
Ide, Y.; Nakamura, N.; Hattori, H.; Ogino, R.; Ogawa, M.; Sadakane, M.; Sano, T. Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chem. Commun. (Camb.), 2011, 47(41), 11531-11533.
[http://dx.doi.org/10.1039/c1cc14662a] [PMID: 21952312]
[78]
Zhang, Z.; Yates, J.T. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C, 2012, 116, 25376.
[http://dx.doi.org/10.1021/jp308453d]
[79]
Bui, T.D.; Kimura, A.; Ikeda, S.; Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc., 2010, 132(24), 8453-8458.
[http://dx.doi.org/10.1021/ja102305e] [PMID: 20518463]
[80]
Liu, S.; Liu, C.; Wang, W.; Cheng, B.; Yu, J. Unique photocatalytic oxidation reactivity and selectivity of TiO2-graphene nanocomposites. Nanoscale, 2012, 4(10), 3193-3200.
[http://dx.doi.org/10.1039/c2nr30427a] [PMID: 22481610]
[81]
Li, R.; Kobayashi, H.; Guo, J.; Fan, J. Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline tio2: a self-adjustable photo-oxidation system with controllable hole-generation. J. Phys. Chem. C, 2011, 115, 23408.
[http://dx.doi.org/10.1021/jp207259u]
[82]
Tang, Z.R.; Yin, X.; Zhang, Y.; Xu, Y.J. One-pot, high-yield synthesis of one-dimensional ZnO nanorods with well-defined morphology as a highly selective photocatalyst. RSC Advances, 2013, 3, 5956.
[83]
Shiraishi, Y.; Hirai, T.; Jap, J. Titanium oxide-based photocatalysts for selective organic transformations. Petrol. Inst., 2012, 55, 287.
[http://dx.doi.org/10.1627/jpi.55.287]
[84]
Maldotti, A.; Molinari, A. Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions. Top. Curr. Chem., 2011, 303, 185-216.
[http://dx.doi.org/10.1007/128_2011_140] [PMID: 21516389]
[85]
Tang, J.; Grampp, G.; Liu, Y.; Wang, B.X.; Tao, F.F.; Wang, L.J.; Liang, X.Z.; Xiao, H.Q.; Shen, Y.M. Visible light mediated cyclization of tertiary anilines with maleimides using nickel(II) oxide surface-modified titanium dioxide catalyst. J. Org. Chem., 2015, 80(5), 2724-2732.
[http://dx.doi.org/10.1021/jo502901h] [PMID: 25642974]
[86]
Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater., 2013, 25(35), 4932-4937.
[http://dx.doi.org/10.1002/adma.201301870] [PMID: 23864555]
[87]
Guan, X.; Nai, J.; Zhang, Y.; Wang, P.; Yang, J.; Zheng, L.; Zhang, J.; Guo, L. CoO hollow cube/reduced graphene oxide composites with enhanced lithium storage capability. Chem. Mater., 2014, 26, 5958.
[http://dx.doi.org/10.1021/cm502690u]
[88]
Ma, B.; Wang, Y.; Tong, X.; Guo, X.; Zhenga, Z.; Guo, X. Graphene-supported CoS2 particles: an efficient photocatalyst for selective hydrogenation of nitroaromatics in visible light. Catal. Sci. Technol., 2017, 7, 2805.
[http://dx.doi.org/10.1039/C7CY00356K]
[89]
Mitkin, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch, H.; König, B. Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide. Org. Biomol. Chem., 2012, 10, 3556.
[http://dx.doi.org/10.1039/c2ob07053g] [PMID: 22447128]
[90]
Li, C-J.; Xu, G-R.; Zhang, B.; Gong, J.R. High selectivity in visible-light-driven partial photocatalytic oxidation of benzyl alcohol into benzaldehyde over single-crystalline rutile TiO2 nanorods. Appl. Catal. B, 2012, 115, 201.
[http://dx.doi.org/10.1016/j.apcatb.2011.12.003]
[91]
Li, X.; Shi, J-L.; Hao, H.; Lang, X. Visible light-induced selective oxidation of alcohols with air by dye-sensitized TiO2 photocatalysis. Appl. Catal. B, 2018, 232, 260.
[http://dx.doi.org/10.1016/j.apcatb.2018.03.043]
[92]
Higashimoto, S.; Shirai, R.; Osano, Y.; Azuma, M.; Ohue, H.; Sakata, Y.; Kobayashi, H. Influence of metal ions on the photocatalytic activity: Selective oxidation of benzyl alcohol on iron (III) ion-modified TiO2 using visible light. J. Catal., 2014, 311, 137.
[http://dx.doi.org/10.1016/j.jcat.2013.11.013]
[93]
Wang, H.; Yan, J.; Chang, W.; Zhang, Z. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2. Catal. Commun., 2009, 10, 989.
[http://dx.doi.org/10.1016/j.catcom.2008.12.045]
[94]
Kaur, J.; Pal, B. 100% selective yield of m-nitroaniline by rutile TiO2 and m-phenylenediamine by P25-TiO2 during m-dinitrobenzene photoreduction. Catal. Commun., 2014, 53, 25.
[http://dx.doi.org/10.1016/j.catcom.2014.04.019]
[95]
Kuenneth, R.; Feldmer, C.; Knoch, F.; Kisch, H. 100% selective yield of m-nitroaniline by rutile TiO2 and m-phenylenediamine by P25-TiO2 during m-dinitrobenzene photoreduction. Chemistry, 1995, 1, 441.
[http://dx.doi.org/10.1002/chem.19950010709]
[96]
Da Vià, L.; Recchi, C.; Gonzalez-Yañez, E.O.; Davies, T.E.; Lopez-Sanchez, J.A. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B, 2017, 202, 281.
[http://dx.doi.org/10.1016/j.apcatb.2016.08.035]
[97]
Palmisano, L.; Augugliaro, V.; Bellardita, M.; Di Paola, A.; García López, E.; Loddo, V.; Marcì, G.; Palmisano, G.; Yurdakal, S. Titania photocatalysts for selective oxidations in water. ChemSusChem, 2011, 4(10), 1431-1438.
[http://dx.doi.org/10.1002/cssc.201100196] [PMID: 21957017]
[98]
Bellardita, M.; García-López, E.I.; Marcì, G.; Krivtsov, I.; García, J.R.; Palmisano, L. Selective photocatalytic oxidation of aromatic alcohols in water by using P-doped g-C3N4. Appl. Catal. B, 2018, 220, 222.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.033]
[99]
Augugliaro, V.; Camera-Roda, G.; Loddo, V.; Palmisano, G.; Palmisano, L.; Parrino, F.; Puma, M.A. Synthesis of vanillin in water by TiO2 photocatalysis. Appl. Catal. B, 2012, 111-112, 555.
[http://dx.doi.org/10.1016/j.apcatb.2011.11.007]
[100]
Zhang, B.; Li, J.; Zhang, B.; Chong, R.R. Li; B. Yuan; S. -M. Lu; C. J. Li. Selective oxidation of sulfides on Pt/BiVO4 photocatalyst under visible light irradiation using water as the oxygen source and dioxygen as the electron acceptor. Catal., 2015, 332, 95.
[http://dx.doi.org/10.1016/j.jcat.2015.08.029]
[101]
Brezova, V.; Blazkova, A.; Surina, I.; Havlinova, B.J. Solvent effect on the photocatalytic reduction of 4-nitrophenol in titanium dioxide suspensions. Photochem. Photobiol. A, 1997, 107, 233.
[http://dx.doi.org/10.1016/S1010-6030(96)04577-7]
[102]
Teramura, K.; Tanak, T.; Kani, M.; Hosokaw, T.; Funabiki, T. Selective photo-oxidation of neat cyclohexane in the liquid phase over V2O5/Al2O3. J. Mol. Catal. Chem., 2004, 208(1-2), 299.
[http://dx.doi.org/10.1016/S1381-1169(03)00544-2]
[103]
Teramura, K.; Ohuchi, T.; Shishido, T.; Tanaka, T. Selective photo-oxidation of neat cyclohexane in the liquid phase over V2O5/Al2O3. J. Phys. Chem. C, 2009, 113, 17018.
[http://dx.doi.org/10.1021/jp902955b]
[104]
Zhang, P.; Wang, Y.; Yao, J.; Wang, C.; Yan, C.; Antonietti, M.; Li, H. Visible‐light‐induced metal‐free allylic oxidation utilizing a coupled photocatalytic system of g‐C3N4 and N‐hydroxy compounds. Adv. Synth. Catal., 2011, 353, 1447.
[http://dx.doi.org/10.1002/adsc.201100175]
[105]
Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Hirai, T. Visible light-induced partial oxidation of cyclohexane on WO3 loaded with Ptnanoparticles. Catal. Sci. Technol., 2012, 2, 400.
[http://dx.doi.org/10.1039/C1CY00331C]
[106]
Shiraishi, Y.; Shiota, S.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. ACS Catal., 2017, 7, 293.
[http://dx.doi.org/10.1021/acscatal.6b02611]
[107]
Yuan, R.; Fan, S.; Zhou, H.; Ding, Z.; Lin, S.; Li, Z.; Zhang, Z.; Xu, C.; Wu, L.; Wang, X.; Fu, X. Titanium dioxide/reduced graphene oxide hybrid photocatalysts for efficient and selective partial oxidation of cyclohexane. Angew. Chem. Int. Ed., 2013, 52, 1035.
[http://dx.doi.org/10.1002/anie.201207904]
[108]
Almquist, C.; Biswas, P. The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity. Appl. Catal. A, 2001, 214, 259.
[http://dx.doi.org/10.1016/S0926-860X(01)00495-1]
[109]
Zhang, X.; Ke, X.; Zhu, H. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. Chemistry, 2012, 18(26), 8048-8056.
[http://dx.doi.org/10.1002/chem.201200368] [PMID: 22674851]
[110]
Du, P.; Moulijn, J.A.; Mul, G. Selective photo(catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yield. J. Catal., 2006, 238, 342.
[http://dx.doi.org/10.1016/j.jcat.2005.12.011]
[111]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev., 2012, 41(9), 3464-3484.
[http://dx.doi.org/10.1039/c2cs15323h] [PMID: 22349590]
[112]
Ke, X.; Zhang, X.; Zhao, J.; Sarina, S.; Barry, J.; Zhu, H. Selective photo(catalytic)-oxidation of cyclohexane: Effect of wavelength and TiO2 structure on product yields. Green Chem., 2013, 15, 236.
[http://dx.doi.org/10.1039/C2GC36542A]
[113]
Yoshida, H.; Yuzawa, H.; Aoki, M.; Otake, K.; Itoh, H.; Hattori, T. Photocatalytic hydroxylation of aromatic ring by using water as an oxidant. Chem. Commun. (Camb.), 2008, (38), 4634-4636.
[http://dx.doi.org/10.1039/b811555a] [PMID: 18815708]
[114]
Yuzawa, H.; Aoki, M.; Otake, K.; Hattori, T.; Itoh, H.; Yoshida, H.J. Reaction mechanism of aromatic ring hydroxylation by water over platinum-loaded titanium oxide photocatalyst. J. Phys. Chem. C, 2012, 116, 25376.
[http://dx.doi.org/10.1021/jp308453d]
[115]
Shiraishi, Y.; Sakamoto, H.; Fujiwara, K.S. Ichikawa, T. Hirai. Selective photocatalytic oxidation of aniline to nitrosobenzene by pt nanoparticles supported on tio2 under visible light irradiation. J. Am. Chem., 2014, 4, 2418.
[116]
Karunakaran, C.; Senthilvelan, S.; Karuthapandian, S.J. TiO2-photocatalyzed oxidation of aniline. Photochem. Photobiol. A, 2005, 172, 207.
[http://dx.doi.org/10.1016/j.jphotochem.2004.12.010]
[117]
Attia, Y.A.; Vázquez, C.V.; Mohamed, Y.M.A. Facile production of vitamin B3 and other heterocyclic carboxylic acids using an efficient Ag/ZnO/graphene-Si hybrid nanocatalyst. Res. Chem. Intermed., 2017, 43, 203.
[http://dx.doi.org/10.1007/s11164-016-2615-7]
[118]
Attia, Y.A.; Mohamed, Y.M.A. Silicongrafted Ag/AgX/rGO nanomaterials (X = Cl or Br) as dipphotocatalysts for highly efficient pnitrophenol reduction and paracetamol production. Appl. Organomet. Chem., 2018.33e4757
[http://dx.doi.org/10.1002/aoc.4757]
[119]
Imamura, K.; Hashimoto, K.; Kominami, H. Chemoselective reduction of nitrobenzenes to aminobenzenes having reducible groups by a titanium(IV) oxide photocatalyst under gas- and metal-free conditions. Chem. Commun. (Camb.), 2012, 48(36), 4356-4358.
[http://dx.doi.org/10.1039/c2cc31524f] [PMID: 22451072]
[120]
Huang, H.; Zhou, J.; Liu, H.; Zhou, Y.; Feng, Y. Selective photoreduction of nitrobenzene to aniline on TiO2 nanoparticles modified with amino acid. J. Hazard. Mater., 2010, 178(1-3), 994-998.
[http://dx.doi.org/10.1016/j.jhazmat.2010.02.037] [PMID: 20227825]
[121]
Ahn, W-Y.; Sheeley, S.A.; Rajh, T.; Cropek, D.M. Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl. Catal. B, 2007, 74, 103.
[http://dx.doi.org/10.1016/j.apcatb.2007.01.016]
[122]
Chen, S.; Zhang, H.; Yu, X.; Liu, W. Photocatalytic reduction of nitro compounds using TiO2 photocatalyst by uv and vis dye‐sensitized systems. Chin. J. Chem., 2011, 29, 399.
[http://dx.doi.org/10.1002/cjoc.201190094]
[123]
Wang, Z.; Lang, X. Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Appl. Catal. B, 2018, 224, 404.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.002]
[124]
Tada, H.; Ishida, T.; Takao, A.; Ito, S.; Mukhopadhyay, S.; Akita, T.; Tanaka, K.; Kobayashi, H. Kinetic and DFT studies on the Ag/TiO2-photocatalyzed selective reduction of nitrobenzene to aniline. ChemPhysChem, 2005, 6(8), 1537-1543.
[http://dx.doi.org/10.1002/cphc.200500031] [PMID: 15999384]
[125]
Tada, H.; Takao, A.; Akita, T.; Tanaka, K. Surface properties and photocatalytic activity of Pt core/Ag shell nanoparticle-loaded TiO2. ChemPhysChem, 2006, 7(8), 1687-1691.
[http://dx.doi.org/10.1002/cphc.200600261] [PMID: 16847844]
[126]
Tanaka, A.; Sakaguchi, S.; Hashimoto, K.; Kominami, H. Photocatalytic reduction of nitro compounds using TiO2 photocatalyst by UV and Vis dye‐sensitized systems. ACS Catal., 2013, 3, 79.
[http://dx.doi.org/10.1021/cs3006499]
[127]
Sarina, S.; Zhu, H.; Jaatinen, E.; Xiao, Q.; Liu, H.; Jia, J.; Chen, C.; Zhao, J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc., 2013, 135(15), 5793-5801.
[http://dx.doi.org/10.1021/ja400527a] [PMID: 23566035]
[128]
Tanaka, A.; Hashimoto, K.; Kominami, H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J. Am. Chem. Soc., 2012, 134(35), 14526-14533.
[http://dx.doi.org/10.1021/ja305225s] [PMID: 22876761]
[129]
Zhao, L-M.; Meng, Q-Y.; Fan, X-B.; Ye, C.; Li, X-B.; Chen, B.; Ramamurthy, V.; Tung, C-H.; Wu, L-Z. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water. Angew. Chem. Int. Ed., 2017, 56, 3020.
[http://dx.doi.org/10.1002/anie.201700243]
[130]
Wang, Q.; Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Photocatalytic aerobic oxidation of alcohols on tio2: the acceleration effect of a brønsted acid. Angew. Chem. Int. Ed., 2010, 49, 7976.
[http://dx.doi.org/10.1002/anie.201001533]
[131]
Tsukamoto, D.; Ikeda, M.; Shiraishi, Y.; Hara, T.; Ichikuni, N.; Tanaka, S.; Hirai, T. Selective photocatalytic oxidation of alcohols to aldehydes in water by TiO2 partially coated with WO3. Chemistry, 2011, 17(35), 9816-9824.
[http://dx.doi.org/10.1002/chem.201100166] [PMID: 21735494]
[132]
Furukawa, S.; Shishido, T.; Teramura, K.; Tanaka, T. Photocatalytic oxidation of alcohols over TiO2 covered with Nb2O5. ACS Catal., 2012, 2, 175.
[http://dx.doi.org/10.1021/cs2005554]
[133]
Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal., 2009, 266, 279.
[http://dx.doi.org/10.1016/j.jcat.2009.06.018]
[134]
Higashimoto, S.; Suetsugu, N.; Azuma, M.; Ohue, H.; Sakata, Y. Efficient and selective oxidation of benzylic alcohol by O2 into corresponding aldehydes on a TiO2 photocatalyst under visible light irradiation: Effect of phenyl-ring substitution on the photocatalytic activity. J. Catal., 2010, 274, 76.
[http://dx.doi.org/10.1016/j.jcat.2010.06.006]
[135]
Bellardita, M.; Loddo, V.; Palmisano, G.; Pibiri, I.; Palmisano, L.; Augugliaro, V. Appl. Catal. B, 2014, 144, 607.
[http://dx.doi.org/10.1016/j.apcatb.2013.07.070]
[136]
Higashimoto, S.; Nakai, Y.; Azuma, M.; Takahashi, M.Y. Sakata. Photocatalytic oxidation of alcohols over TiO2 Covered with Nb2O5. RSC Advances, 2014, 4, 37662.
[http://dx.doi.org/10.1039/C4RA06231K]
[137]
Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc., 2012, 134(14), 6309-6315.
[http://dx.doi.org/10.1021/ja2120647] [PMID: 22440019]
[138]
Xu, H.; Shi, J-L.; Lyu, S.; Lang, X. Visible-light photocatalytic selective aerobic oxidation of thiols to disulfides on anatase TiO2. Chin. J. Catal., 2020, 41, 1468-1473.
[http://dx.doi.org/10.1016/S1872-2067(20)63640-3]
[139]
Lang, X.; Zhao, J.; Chen, X. Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides. Angew. Chem. Int. Ed., 2016, 55, 4697.
[http://dx.doi.org/10.1002/anie.201600405]
[140]
Hao, H.; Li, X.; Lang, X. Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides. Appl. Catal. B, 2019, 259118038
[http://dx.doi.org/10.1016/j.apcatb.2019.118038]
[141]
Shi, J-L.; Lang, X. Anthraquinones as photoredox active ligands of TiO2 for selective aerobic oxidation of organic sulfides. Chem. Eng. J., 2020.392123632
[http://dx.doi.org/10.1016/j.cej.2019.123632]
[142]
Sheng, W.; Shi, J-L.; Hao, H.; Li, X.; Lang, X. Selective aerobic oxidation of sulfides by cooperative polyimide-titanium dioxide photocatalysis and triethylamine catalysis. J. Colloid Interface Sci., 2020, 565, 614-622.
[http://dx.doi.org/10.1016/j.jcis.2020.01.046] [PMID: 32032853]
[143]
Ma, X.; Lang, X. Titanate nanotube confined merger of organic photocatalysis and TEMPO catalysis for highly selective aerobic oxidation of sulfides. Sustain. Energ. Fuel., 2020, 4, 1754.
[http://dx.doi.org/10.1039/C9SE01265F]
[144]
Lang, X.; Leow, W.R.; Zhao, J.; Chen, X. Synergistic photocatalytic aerobic oxidation of sulfides and amines on TiO2 under visible-light irradiation. Chem. Sci. (Camb.), 2015, 6, 1075.
[http://dx.doi.org/10.1039/C4SC02891K]
[145]
Tanaka, A.; Nishino, Y.; Sakaguchi, S.; Yoshikawa, T.; Imamura, K.; Hashimoto, K.; Kominami, H. Functionalization of a plasmonic Au/TiO2 photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aniline in 2-propanol suspensions under irradiation of visible light. Chem. Commun. (Camb.), 2013, 49(25), 2551-2553.
[http://dx.doi.org/10.1039/c3cc39096a] [PMID: 23422929]
[146]
Tanaka, A.; Fuku, K.; Nishi, T.; Hashimoto, K.; Kominami, H. Functionalization of Au/TiO2 plasmonic photocatalysts with pd by formation of a core–shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J. Phys. Chem. C, 2013, 117, 16983.
[http://dx.doi.org/10.1021/jp403855p]
[147]
Petroff, J.T.; Nguyen, A.H.; Porter, A.J.; Morales, F.D.; Kennedy, M.P.; Weinstein, D.; El Nazer, H.; McCulla, R.D. Enhanced photocatalytic dehalogenation of aryl halides by combined poly-p-phenylene (PPP) and TiO2 photocatalysts. J. Photochem. Photobiol. Chem., 2017, 335, 149.
[http://dx.doi.org/10.1016/j.jphotochem.2016.11.024]
[148]
Hakki, A.; Dillert, R.D.W. Bahnemann. Factors affecting the selectivity of the photocatalytic conversion of nitroaromatic compounds over TiO2 to valuable nitrogen-containing organic compounds. Phys. Chem. Chem. Phys., 2013, 5, 2992.
[http://dx.doi.org/10.1039/c2cp44153e] [PMID: 23340499]
[149]
Müller, T.E.; Hultzsch, K.C.; Yus, M.F. Foubelo; M. Tada. Hydroamination: Direct addition of amines to alkenes and alkynes. Chem. Rev., 2008, 108, 3795.
[PMID: 18729420]
[150]
Spino, C. Recent Developments in the catalytic asymmetric cyanation of ketimines. Angew. Chem. Int. Ed., 2004, 43, 1764.
[http://dx.doi.org/10.1002/anie.200301686]
[151]
Mohamed, Y.M.A.; Attia, Y.A.; Solum, E.J. Photoinduced one-pot synthesis of hydroxamic acids from aldehydes through in-situ generated silver nanoclusters. Res. Chem. Intermed., 2018, 44, 7173.
[http://dx.doi.org/10.1007/s11164-018-3549-z]
[152]
Sheng, W.; Shi, J-L.; Hao, H.; Li, X.; Lang, X. Polyimide-TiO2 hybrid photocatalysis: Visible light-promoted selective aerobic oxidation of amines. Chem. Eng. J., 2020.379122399
[http://dx.doi.org/10.1016/j.cej.2019.122399]
[153]
Li, X.; Lang, X. Cooperative smart TiO2 photocatalysis and TEMPO catalysis: Visible light-mediated selective aerobic oxidation of amines. J. Chem. Phys., 2020, 152(4)044705
[http://dx.doi.org/10.1063/1.5142512] [PMID: 32007064]
[154]
Su, F.; Mathew, S.C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed., 2011, 50, 657.
[http://dx.doi.org/10.1002/anie.201004365]
[155]
Li, X.; Xu, H.; Shi, J-L.; Hao, H.; Yuan, H.; Lang, X. Salicylic acid complexed with TiO2 for visible light-driven selective oxidation of amines into imines with air. Appl. Catal. B, 2019, 244, 758.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.090]
[156]
Xu, H.; Shi, J-L.; Hao, H.; Li, X.; Lang, X. Salicylic acid complexed with TiO2 for visible light-driven selective oxidation of amines into imines with air. Catal. Today, 2019, 335, 128-135.
[http://dx.doi.org/10.1016/j.cattod.2018.10.008]
[157]
Wang, Z.; Lang, X. Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Appl. Catal. B, 2018, 224, 404.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.002]
[158]
Lang, X.; Ma, W.; Zhao, Y.; Chen, C.; Ji, H.; Zhao, J. Visible-light-induced selective photocatalytic aerobic oxidation of amines into imines on TiO2. Chemistry, 2012, 18(9), 2624-2631.
[http://dx.doi.org/10.1002/chem.201102779] [PMID: 22271403]
[159]
Naya, S.I.; Kimura, K.; Tada, H. Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. ACS Catal., 2012, 3, 10.
[http://dx.doi.org/10.1021/cs300682d]
[160]
Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H. Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. Chem. Commun. (Camb.), 2013, 49(26), 2676-2678.
[http://dx.doi.org/10.1039/c3cc38985e] [PMID: 23435475]
[161]
Ma, B.; Xie, H.; Li, J.; Zhan, H.; Lin, K.; Liu, W. Bifunctional solid acid photocatalyst TiO2/AC/SO3H with high acid density for pure green photosynthesis of 2-quinoline carboxamide. J. Mol. Catal. A, 2016, 420, 290.
[http://dx.doi.org/10.1016/j.molcata.2016.04.031]
[162]
Vila, C.; Rueping, M. Visible-light mediated heterogeneous C–H functionalization: oxidative multi-component reactions using a recyclable titanium dioxide (TiO2) catalyst. Green Chem., 2013, 15, 2056.
[http://dx.doi.org/10.1039/c3gc40587g]
[163]
Attia, Y.A.; Mohamed, Y.M.A.; Awad, M.M.; Alexeree, S. Ag doped ZnO nanorods catalyzed photo-triggered synthesis of some novel (1H-tetrazol-5-yl)-coumarin hybrids. Organometal. J. Chem., 2020, 919121320
[164]
Gangishetty, M.K.; Fontes, A.M.; Malta, M.; Kelly, T.L.; Scott, R.W. Improving the rates of Pd-catalyzed reactions by exciting the surface plasmons of AuPd bimetallic nanotriangles. J. RSC Adv., 2017, 7, 40218.
[http://dx.doi.org/10.1039/C7RA07264C]
[165]
Wang, F.; Li, C.; Chen, H.; Jiang, R.; Sun, L-D.; Li, Q.; Wang, J.; Yu, J.C.; Yan, C-H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc., 2013, 135(15), 5588-5601.
[http://dx.doi.org/10.1021/ja310501y] [PMID: 23521598]
[166]
Zhang, S.; Chang, C.; Huang, Z.; Ma, Y.; Gao, W.; Li, J.; Qu, Y. Visible-light-activated suzuki–miyaura coupling reactions of aryl chlorides over the multifunctional Pd/Au/porous nanorods of CeO2 catalysts. ACS Catal., 2016, 5, 6481.
[http://dx.doi.org/10.1021/acscatal.5b01173]
[167]
Huang, X.; Li, Y.; Chen, Y.; Zhou, H.; Duan, X.; Huang, Y. Plasmonic and catalytic aupd nanowheels for the efficient conversion of light into chemical energy. Angew. Chem. Int. Ed., 2013, 52, 6063-6067.
[http://dx.doi.org/10.1002/anie.201301096]
[168]
Zhao, X.; Long, R.; Liu, D.; Luo, B.; Xiong, Y.J. Pd–Ag alloy nanocages: Integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. Mater. Chem. A, 2015, 3, 9390.
[http://dx.doi.org/10.1039/C5TA00777A]
[169]
Li, J.; Cushing, S.K.; Bright, J.; Meng, F.; Senty, T.R.; Zheng, P.; Bristow, A.D.; Wu, N. Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic Photocatalysts. ACS Catal., 2013, 3, 47.
[http://dx.doi.org/10.1021/cs300672f]
[170]
Liu, Z.; Huang, Y.; Xiao, Q.; Zhu, H. Selective reduction of nitroaromatics to azoxy compounds on supported Ag–Cu alloy nanoparticles through visible light irradiation. Green Chem., 2016, 18, 817.
[http://dx.doi.org/10.1039/C5GC01726B]
[171]
Zoller, J.; Fabry, D.C.; Rueping, M. Unexpected Dual Role of Titanium Dioxide in the Visible Light Heterogeneous Catalyzed C–H Arylation of Heteroarenes. ACS Catal., 2015, 5, 3900.
[http://dx.doi.org/10.1021/acscatal.5b00668]
[172]
González-Béjar, M.; Peters, K.; Hallett-Tapley, G.L.; Grenier, M.; Scaiano, J.C. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem. Commun. (Camb.), 2013, 49(17), 1732-1734.
[http://dx.doi.org/10.1039/c3cc38287g] [PMID: 23340772]
[173]
Hosseini-Sarvari, M.; Hosseinpour, Z.; Koohgard, M. Unexpected dual role of titanium dioxide in the visible light heterogeneous catalyzed C–H arylation of heteroarenes. New J. Chem., 2018, 42, 19237.
[http://dx.doi.org/10.1039/C8NJ03128B]
[174]
Parrino, F.; Ramakrishnan, A.; Kisch, H. Semiconductor‐photocatalyzed sulfoxidation of alkanes. Angew. Chem. Int. Ed., 2008, 47, 7107.
[http://dx.doi.org/10.1002/anie.200800326]
[175]
Parrino, F.; Ramakrishnan, A.; Damm, C.; Kisch, H. Visible‐Light‐induced sulfoxidation of alkanes in the presence of titania. ChemPlusChem, 2012, 77, 713.
[http://dx.doi.org/10.1002/cplu.201200097]
[176]
Rueping, M.; Zoller, J.; Fabry, D.C.; Poscharny, K.; Koenigs, R.M.; Weirich, T.E.; Mayer, J. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions. Chemistry, 2012, 18(12), 3478-3481.
[http://dx.doi.org/10.1002/chem.201103242] [PMID: 22314870]
[177]
Colmenares, J.; Ouyang, W.; Ojeda, M.; Kuna, E.; Chernyayeva, O.; Lisovytskiy, D.; De, S.; Luque, R.; Balu, A. Mild ultrasound-assisted synthesis of TiO2 supported on magnetic nanocomposites for selective photo-oxidation of benzyl alcohol. Appl. Catal. B, 2016, 183, 107.
[http://dx.doi.org/10.1016/j.apcatb.2015.10.034]
[178]
Pal, B.; Ikeda, S.; Kominami, H.; Kera, Y.; Ohtani, B. Partial oxidation of alcohols on visible-light-responsive WO3 photocatalysts loaded with palladium oxide cocatalyst. J. Catal., 2003, 217, 152.
[http://dx.doi.org/10.1021/acscatal.5b01850]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy