Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Preparation and Characterization of A Nanoliposomal Vaccine of pcLACK Candidate Against Cutaneous Leishmaniasis

Author(s): Hajar Ziaei Hezarjaribi, Masoud Soosaraei*, Mahdi Fakhar*, Javad Akhtari, Alireza Rafiei and Oghol Niaz Jorjani

Volume 21, Issue 4, 2021

Published on: 05 October, 2020

Page: [527 - 533] Pages: 7

DOI: 10.2174/1871526520666201005141159

Price: $65

conference banner
Abstract

Background: Leishmaniasis is a public health problem and endemic in countries of the tropics and subtropics. An ongoing project with naked LACK (Leishmania homolog of receptors for activated C-kinase) demonstrated that this case of the gene is entirely susceptible to immune response and it does enter the cells effectively. This study aimed at developing a procedure to prepare a type of lipid nanoparticles overloaded with plasmid LACK (pcLACK) for usage as Leishmania major (L. major) nanoliposomal vaccine.

Materials and Methods: The single-gene expression plasmid of pcLACK was encoded in the LACK antigen. Nanoparticles were set up by thin film procedure using cationic lipids 1, 2-Dioleoyl- 3-Trimethylammonium propane (DOTAP), 1, 2-Dioleoyl-snGlycero-3-Phosphoethanolamine (DOPE), and cholesterol in a molar proportion of 2:1:1 molar ratio. Using dynamic light scattering, the particle diameters of empty and loaded lipoplexes were measured in triplicate. The zeta-potential (ζ) was measured with the same instrument using the zeta potential mode as the average of 20 measurements by diluting the particles into a low salt buffer.

Results: The results of the sustainability studies of Liposome-pcLACK formulation showed that there were no significant physical changes up to the 30th day of stability study at the storage condition of 4°C. However, there were significant changes in the formulation content during storage at 25°C for 30 days (204.2±0.90 at Day 30 compared with 207.2±0.26 nm at Day 0). It was observed that the prepared nanoliposomal formulation had more stability under refrigeration.

Conclusion: Immunostimulatory cationic lipids bearing a pcLACK encapsulation could serve as an effective delivery system.

Keywords: Leishmania major, nanoliposomal, vaccine, immunity, pcLACK, encapsulation.

Graphical Abstract

[1]
de Almeida, L.; Terumi Fujimura, A.; Del Cistia, M.L.; Fonseca-Santos, B.; Braga Imamura, K.; Michels, P.A.M.; Chorilli, M.; Graminha, M.A.S. Nanotechnological Strategies for Treatment of Leishmaniasis--A Review. J. Biomed. Nanotechnol., 2017, 13(2), 117-133.
[http://dx.doi.org/10.1166/jbn.2017.2349] [PMID: 29376626]
[2]
Mutiso, J.M.; Macharia, J.C.; Kiio, M.N.; Ichagichu, J.M.; Rikoi, H.; Gicheru, M.M. Development of Leishmania vaccines: predicting the future from past and present experience. J. Biomed. Res., 2013, 27(2), 85-102.
[PMID: 23554800]
[3]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[4]
Murray, H.W.; Berman, J.D.; Davies, C.R.; Saravia, N.G. Advances in leishmaniasis. Lancet, 2005, 366(9496), 1561-1577.
[http://dx.doi.org/10.1016/S0140-6736(05)67629-5] [PMID: 16257344]
[5]
Peacock, C.S.; Seeger, K.; Harris, D.; Murphy, L.; Ruiz, J.C.; Quail, M.A.; Peters, N.; Adlem, E.; Tivey, A.; Aslett, M.; Kerhornou, A.; Ivens, A.; Fraser, A.; Rajandream, M.A.; Carver, T.; Norbertczak, H.; Chillingworth, T.; Hance, Z.; Jagels, K.; Moule, S.; Ormond, D.; Rutter, S.; Squares, R.; Whitehead, S.; Rabbinowitsch, E.; Arrowsmith, C.; White, B.; Thurston, S.; Bringaud, F.; Baldauf, S.L.; Faulconbridge, A.; Jeffares, D.; Depledge, D.P.; Oyola, S.O.; Hilley, J.D.; Brito, L.O.; Tosi, L.R.; Barrell, B.; Cruz, A.K.; Mottram, J.C.; Smith, D.F.; Berriman, M. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat. Genet., 2007, 39(7), 839-847.
[http://dx.doi.org/10.1038/ng2053] [PMID: 17572675]
[6]
Santos, D.O.; Coutinho, C.E.; Madeira, M.F.; Bottino, C.G.; Vieira, R.T.; Nascimento, S.B.; Bernardino, A.; Bourguignon, S.C.; Corte-Real, S.; Pinho, R.T.; Rodrigues, C.R.; Castro, H.C. Leishmaniasis treatment--a challenge that remains: a review. Parasitol. Res., 2008, 103(1), 1-10.
[http://dx.doi.org/10.1007/s00436-008-0943-2] [PMID: 18389282]
[7]
Croft, S.L.; Coombs, G.H. Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol., 2003, 19(11), 502-508.
[http://dx.doi.org/10.1016/j.pt.2003.09.008] [PMID: 14580961]
[8]
Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human leishmaniasis in Brazil: A general review. Rev Assoc Med Bras (1992), 2018, 64(3), 281-289.
[http://dx.doi.org/10.1590/1806-9282.64.03.281] [PMID: 29641786]
[9]
Hezarjaribi, H.Z.; Ghaffarifar, F.; Dalimi, A.; Sharifi, Z.; Jorjani, O. Effect of IL-22 on DNA vaccine encoding LACK gene of Leishmania major in BALB/c mice. Exp. Parasitol., 2013, 134(3), 341-348.
[http://dx.doi.org/10.1016/j.exppara.2013.03.012] [PMID: 23541883]
[10]
Jain, K.; Jain, N.K. Vaccines for visceral leishmaniasis: A review. J. Immunol. Methods, 2015, 422, 1-12.
[http://dx.doi.org/10.1016/j.jim.2015.03.017] [PMID: 25858230]
[11]
Courret, N.; Prina, E.; Mougneau, E.; Saraiva, E.M.; Sacks, D.L.; Glaichenhaus, N.; Antoine, J.C. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur. J. Immunol., 1999, 29(3), 762-773.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199903)29:03<762::AID-IMMU762>3.0.CO;2-4] [PMID: 10092078]
[12]
Schechtman, D.; Mochly-Rosen, D. Adaptor proteins in protein kinase C-mediated signal transduction. Oncogene, 2001, 20(44), 6339-6347.
[http://dx.doi.org/10.1038/sj.onc.1204778] [PMID: 11607837]
[13]
Plasmids for therapy and vaccination. Schleef, M; John Wiley & Sons, 2008.
[14]
Levine, M.M.; Sztein, M.B. Vaccine development strategies for improving immunization: the role of modern immunology. Nat. Immunol., 2004, 5(5), 460-464.
[http://dx.doi.org/10.1038/ni0504-460] [PMID: 15116108]
[15]
Li, L.; Saade, F.; Petrovsky, N. The future of human DNA vaccines. J. Biotechnol., 2012, 162(2-3), 171-182.
[http://dx.doi.org/10.1016/j.jbiotec.2012.08.012] [PMID: 22981627]
[16]
Liu, M.A. DNA vaccines: an historical perspective and view to the future. Immunol. Rev., 2011, 239(1), 62-84.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00980.x] [PMID: 21198665]
[17]
Shah, M.A.; He, N.; Li, Z.; Ali, Z.; Zhang, L. Nanoparticles for DNA vaccine delivery. J. Biomed. Nanotechnol., 2014, 10(9), 2332-2349.
[http://dx.doi.org/10.1166/jbn.2014.1981] [PMID: 25992460]
[18]
Abbink, P.; Larocca, R.A.; De La Barrera, R.A.; Bricault, C.A.; Moseley, E.T.; Boyd, M.; Kirilova, M.; Li, Z.; Ng’ang’a, D.; Nanayakkara, O.; Nityanandam, R.; Mercado, N.B.; Borducchi, E.N.; Agarwal, A.; Brinkman, A.L.; Cabral, C.; Chandrashekar, A.; Giglio, P.B.; Jetton, D.; Jimenez, J.; Lee, B.C.; Mojta, S.; Molloy, K.; Shetty, M.; Neubauer, G.H.; Stephenson, K.E.; Peron, J.P.; Zanotto, P.M.; Misamore, J.; Finneyfrock, B.; Lewis, M.G.; Alter, G.; Modjarrad, K.; Jarman, R.G.; Eckels, K.H.; Michael, N.L.; Thomas, S.J.; Barouch, D.H. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353(6304), 1129-1132.
[http://dx.doi.org/10.1126/science.aah6157] [PMID: 27492477]
[19]
Dhama, K.; Mahendran, M.; Gupta, P.K.; Rai, A. DNA vaccines and their applications in veterinary practice: current perspectives. Vet. Res. Commun., 2008, 32(5), 341-356.
[http://dx.doi.org/10.1007/s11259-008-9040-3] [PMID: 18425596]
[20]
Myhr, A.I. DNA vaccines: regulatory considerations and safety aspects. Curr. Issues Mol. Biol., 2017, 22, 79-88.
[http://dx.doi.org/10.21775/cimb.022.079] [PMID: 27705898]
[21]
Nakayama, Y.; Aruga, A. Comparison of current regulatory status for gene-based vaccines in the US, europe and japan. Vaccines (Basel), 2015, 3(1), 186-202.
[http://dx.doi.org/10.3390/vaccines3010186] [PMID: 26344953]
[22]
Gurram, I.; Kavitha, M.V.; Nagabhushnam, M.V.; Bonthagara, B.; Reddy, D.N. Overview of validation, basic concepts and analytical method process validation. Indo Am J Pharm Sci., 2017, 4(6), 1665-1680.
[23]
Kanuri, P. Science and risk based approach to the process validation. link from quality by design to process validation. Int. J. Pharm. Sci. Res., 2016, 7(3), 914-929.
[24]
Rathore, A.S.; Li, X.; Bartkowski, W.; Yeboah, S.; Sharma, A. Case study and application of process analytical technology (PAT) towards bioprocessing: Use of tryptophan DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microb. Technol., 2003, 33, 865-883.
[25]
Li, L; Petrovsky, N Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines., 2016, 15(3), 313-329.
[http://dx.doi.org/10.1586/14760584.2016.1124762]
[26]
Šimčíková, M.; Prather, K.L.; Prazeres, D.M.; Monteiro, G.A. Towards effective non-viral gene delivery vector. Biotechnol. Genet. Eng. Rev., 2015, 31(1-2), 82-107.
[http://dx.doi.org/10.1080/02648725.2016.1178011] [PMID: 27160661]
[27]
Nguyen, D.N.; Green, J.J.; Chan, J.M.; Longer, R.; Anderson, D.G. Polymeric materials for gene delivery and DNA vaccination. Adv. Mater., 2009, 21(8), 847-867.
[http://dx.doi.org/10.1002/adma.200801478] [PMID: 28413262]
[28]
Grunwald, T; Ulbert, S. Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases., 2015.
[http://dx.doi.org/10.7774/cevr.2015.4.1.1]
[29]
Choi, Y.S.; Lee, M.Y.; David, A.E.; Park, Y.S. Nanoparticles for gene delivery: therapeutic and toxic effects. Mol. Cell. Toxicol., 2014, 10(1), 1-8.
[http://dx.doi.org/10.1007/s13273-014-0001-3]
[30]
Inoh, Y.; Nagai, M.; Matsushita, K.; Nakanishi, M.; Furuno, T. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Eur. J. Pharm. Sci., 2017, 102, 230-236.
[http://dx.doi.org/10.1016/j.ejps.2017.03.023] [PMID: 28323115]
[31]
O’Hagan, D.T.; MacKichan, M.L.; Singh, M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng., 2001, 18(3), 69-85.
[http://dx.doi.org/10.1016/S1389-0344(01)00101-0] [PMID: 11566599]
[32]
Rasoulianboroujeni, M.; Kupgan, G.; Moghadam, F.; Tahriri, M.; Boughdachi, A.; Khoshkenar, P.; Ambrose, J.J.; Kiaie, N.; Vashaee, D.; Ramsey, J.D.; Tayebi, L. Development of a DNA-liposome complex for gene delivery applications. Mater. Sci. Eng. C, 2017, 75, 191-197.
[http://dx.doi.org/10.1016/j.msec.2017.02.012] [PMID: 28415454]
[33]
Henriksen-Lacey, M.; Bramwell, V.W.; Christensen, D.; Agger, E.M.; Andersen, P.; Perrie, Y. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Release, 2010, 142(2), 180-186.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.022] [PMID: 19874860]
[34]
Ureña-Búrquez, L.A.; García-Rendón, A.; Rochín-Wong, S.; Tejeda-Mansir, A. Preparation and characterization of a nanovaccine of pVAX1-NH36 for leishmaniasis. Fuel, 2019, 235, 1077-1082.
[http://dx.doi.org/10.1016/j.fuel.2018.08.070]
[35]
Lee, S.; Nguyen, M.T. Recent advances of vaccine adjuvants for infectious diseases. Immune Netw., 2015, 15(2), 51-57.
[http://dx.doi.org/10.4110/in.2015.15.2.51] [PMID: 25922593]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy