Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

Targeted Drug Delivery to Cancer Stem Cells through Nanotechnological Approaches

Author(s): Wenjiao Sun, Guoliang Chen*, Fangyu Du and Xiaohu Li

Volume 16, Issue 4, 2021

Published on: 01 October, 2020

Page: [367 - 384] Pages: 18

DOI: 10.2174/1574888X15999201001204727

Price: $65

Abstract

Cancer Stem Cells (CSCs) are responsible for tumor development, invasion and metastasis and resistance to chemotherapy and radiotherapy. Therefore, treatment strategies have turned to targeting CSCs, and utilizing nanotechnological approaches to target CSCs has become increasingly fascinating. Functionalized nanoparticles (NPs), such as metallic NPs, liposomes, polymeric NPs, albumin microspheres and nanomicelles, can easily cross the cytoplasmic membrane and accumulate at their targets to continuously release therapeutic agents in response to the characteristics of the tumor microenvironment. Different kinds of NPs possess different characteristics. Inducing immune responses might be the disadvantage they commonly owned through the summary and analysis of these NPs. For natural polymers, they have many attractive properties, but deficiencies also exist such as poor water-solubility, high viscosity, high permeability, etc. The drug-encapsulated NPs launched in the market and those in the clinical trials exhibit a bright prospect in cancer targeted therapy. In addition, the application of nanodiagnostic techniques, such as nanocantilever and DNA microarray technology and early cancer detection has become an indispensable component in clinical practice to improve in vivo detection and enhance targeting efficiency. This review mainly determines the species and usages of NPs in drug delivery and disease diagnosis, the delivery mechanisms of NPs, the main factors that affect nanomedicine efficiency and toxicity and the further trends in the development of targeted therapy. Nevertheless, more and deeper investigations are still needed to avert potential adverse effects and improve the delivery efficiency to achieve better therapeutic effects.

Keywords: Cancer stem cells, nanoparticles, nanotechnology, targeted drug delivery, cancer diagnosis, active drug targeting, passive drug targeting.

Next »
[1]
Lu B, Huang X, Mo J, Zhao W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol 2016; 7: 84.
[http://dx.doi.org/10.3389/fphar.2016.00084] [PMID: 27148051]
[2]
Dittmer J. Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol 2018; 53: 59-74.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.007] [PMID: 30059727]
[3]
Cao S, Wang Z, Gao X, et al. FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC. J Exp Clin Cancer Res 2018; 37(1): 220.
[http://dx.doi.org/10.1186/s13046-018-0894-0] [PMID: 30189871]
[4]
Zhang Y, Zhang Q, Sun J, Liu H, Li Q. The combination therapy of salinomycin and gefitinib using poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles for targeting both lung cancer stem cells and cancer cells. OncoTargets Ther 2017; 10: 5653-66.
[http://dx.doi.org/10.2147/OTT.S141083] [PMID: 29225473]
[5]
Yang Y, Meng Q, Wang C, et al. MicroRNA 675 cooperates PKM2 to aggravate progression of human liver cancer stem cells induced from embryonic stem cells. J Mol Med (Berl) 2018; 96(10): 1119-30.
[http://dx.doi.org/10.1007/s00109-018-1687-9] [PMID: 30140938]
[6]
Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A, Ostad SN. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother 2018; 106: 1527-36.
[http://dx.doi.org/10.1016/j.biopha.2018.07.055] [PMID: 30119228]
[7]
Krishnamurthy S, Ke X, Yang YY. Delivery of therapeutics using nanocarriers for targeting cancer cells and cancer stem cells. Nanomedicine (Lond) 2015; 10(1): 143-60.
[http://dx.doi.org/10.2217/nnm.14.154] [PMID: 25597774]
[8]
Abetov D, Mustapova Z, Saliev T, Bulanin D, Batyrbekov K, Gilman CP. Novel small molecule inhibitors of cancer stem cell signaling pathways. Stem Cell Rev Rep 2015; 11(6): 909-18.
[http://dx.doi.org/10.1007/s12015-015-9612-x] [PMID: 26210995]
[9]
Hong IS, Jang GB, Lee HY, Nam JS. Targeting cancer stem cells by using the nanoparticles. Int J Nanomedicine 2015; 10(Spec Iss): 251-60.
[PMID: 26425092]
[10]
Koren S, Bentires-Alj M. Breast tumor heterogeneity: Source of fitness, hurdle for therapy. Mol Cell 2015; 60(4): 537-46.
[http://dx.doi.org/10.1016/j.molcel.2015.10.031] [PMID: 26590713]
[11]
Peiris-Pagès M, Martinez-Outschoorn UE, Pestell RG, Sotgia F, Lisanti MP. Cancer stem cell metabolism. Breast Cancer Res 2016; 18(1): 55.
[http://dx.doi.org/10.1186/s13058-016-0712-6] [PMID: 27220421]
[12]
Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer 2017; 16(1): 4.
[http://dx.doi.org/10.1186/s12943-016-0572-9] [PMID: 28137313]
[13]
Mackillop WJ, Ciampi A, Till JE, Buick RN. A stem cell model of human tumor growth: implications for tumor cell clonogenic assays. J Natl Cancer Inst 1983; 70(1): 9-16.
[PMID: 6571928]
[14]
Parida S, Chakraborty S, Maji RK, Ghosh Z. Elucidating the gene regulatory networks modulating cancer stem cells and non-stem cancer cells in high grade serous ovarian cancer. Genomics 2019; 111(1): 103-13.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.006] [PMID: 29355597]
[15]
Batlle E, Clevers H. Cancer stem cells revisited. Nat Med 2017; 23(10): 1124-34.
[http://dx.doi.org/10.1038/nm.4409] [PMID: 28985214]
[16]
Adamowicz J, Pakravan K, Bakhshinejad B, Drewa T, Babashah S. Prostate cancer stem cells: From theory to practice. Scand J Urol 2017; 51(2): 95-106.
[http://dx.doi.org/10.1080/21681805.2017.1283360] [PMID: 28635565]
[17]
Mitchell K, Steidl U. Targeting immunophenotypic markers on leukemic stem cells: How lessons from current approaches and advances in the leukemia stem cell (LSC) model can inform better strategies for treating acute myeloid leukemia (AML). Cold Spring Harb Perspect Med 2020; 10(1): a036251.
[http://dx.doi.org/10.1101/cshperspect.a036251] [PMID: 31451539]
[18]
Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep 2019; 46(6): 6629-45.
[http://dx.doi.org/10.1007/s11033-019-05058-1] [PMID: 31486978]
[19]
Du FY, Zhou QF, Sun WJ, Chen GL. Targeting cancer stem cells in drug discovery: Current state and future perspectives. World J Stem Cells 2019; 11(7): 398-420.
[http://dx.doi.org/10.4252/wjsc.v11.i7.398] [PMID: 31396368]
[20]
Ni X, Hu G, Cai X. The success and the challenge of all-trans retinoic acid in the treatment of cancer Crit Rev Food Sci Nutr 2019; 59(sup1): S71-S80.
[http://dx.doi.org/10.1080/10408398.2018.1509201]
[21]
Haque S, Morris JC. Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother 2017; 13(8): 1741-50.
[http://dx.doi.org/10.1080/21645515.2017.1327107] [PMID: 28575585]
[22]
Lacal PM, Graziani G. Therapeutic implication of vascular endothelial growth factor receptor-1 (VEGFR-1) targeting in cancer cells and tumor microenvironment by competitive and non-competitive inhibitors. Pharmacol Res 2018; 136: 97-107.
[http://dx.doi.org/10.1016/j.phrs.2018.08.023] [PMID: 30170190]
[23]
Shekarian T, Valsesia-Wittmann S, Caux C, Marabelle A. Paradigm shift in oncology: Targeting the immune system rather than cancer cells. Mutagenesis 2015; 30(2): 205-11.
[http://dx.doi.org/10.1093/mutage/geu073] [PMID: 25688113]
[24]
Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 2018; 18(12): 744-57.
[http://dx.doi.org/10.1038/s41568-018-0074-8] [PMID: 30425336]
[25]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[26]
Samir A, Elgamal BM, Gabr H, Sabaawy HE. Nanotechnology applications in hematological malignancies (Review). Oncol Rep 2015; 34(3): 1097-105.
[http://dx.doi.org/10.3892/or.2015.4100] [PMID: 26134389]
[27]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[28]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[29]
De Jong WH, Borm PJ. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[30]
Chen XJ, Zhang XQ, Liu Q, Zhang J, Zhou G. Nanotechnology: A promising method for oral cancer detection and diagnosis. J Nanobiotechnology 2018; 16(1): 52.
[http://dx.doi.org/10.1186/s12951-018-0378-6] [PMID: 29890977]
[31]
Darvishi B, Farahmand L, Majidzadeh-A K. Stimuli-responsive mesoporous silica NPs as non-viral dual sirna/chemotherapy carriers for triple negative breast cancer. Mol Ther Nucleic Acids 2017; 7: 164-80.
[http://dx.doi.org/10.1016/j.omtn.2017.03.007] [PMID: 28624192]
[32]
Iturrioz-Rodríguez N, Correa-Duarte MA, Fanarraga ML. Controlled drug delivery systems for cancer based on mesoporous silica nanoparticles. Int J Nanomedicine 2019; 14: 3389-401.
[http://dx.doi.org/10.2147/IJN.S198848] [PMID: 31190798]
[33]
Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target 2016; 24(3): 179-91.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[34]
Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol 2015; 34: 217-24.
[http://dx.doi.org/10.1016/j.copbio.2015.03.014] [PMID: 25863196]
[35]
Gamaleia NF, Shton IO. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn Photodyn Ther 2015; 12(2): 221-31.
[http://dx.doi.org/10.1016/j.pdpdt.2015.03.002] [PMID: 25818545]
[36]
Zhang D, Zhang J, Zeng J, et al. Nano-gold loaded with resveratrol enhance the anti-hepatoma effect of resveratrol in vitro and in vivo. J Biomed Nanotechnol 2019; 15(2): 288-300.
[http://dx.doi.org/10.1166/jbn.2019.2682] [PMID: 30596551]
[37]
Komenek S, Luesakul U, Ekgasit S, et al. Nanogold-gallate chitosan-targeted pulmonary delivery for treatment of lung cancer. AAPS PharmSciTech 2017; 18(4): 1104-15.
[http://dx.doi.org/10.1208/s12249-016-0644-6] [PMID: 27796908]
[38]
Lin CM, Kao WC, Yeh CA, et al. Hyaluronic acid-fabricated nanogold delivery of the inhibitor of apoptosis protein-2 siRNAs inhibits benzo[a]pyrene-induced oncogenic properties of lung cancer A549 cells. Nanotechnology 2015; 26(10): 105101.
[http://dx.doi.org/10.1088/0957-4484/26/10/105101] [PMID: 25693888]
[39]
Curnis F, Fiocchi M, Sacchi A, Gori A, Gasparri A, Corti A. NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Res 2016; 9(5): 1393-408.
[http://dx.doi.org/10.1007/s12274-016-1035-8] [PMID: 27226823]
[40]
Adewale OB, Davids H, Cairncross L, Roux S. Toxicological behavior of gold nanoparticles on various models: Influence of physicochemical properties and other factors. Int J Toxicol 2019; 38(5): 357-84.
[http://dx.doi.org/10.1177/1091581819863130] [PMID: 31462100]
[41]
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104: 144-64.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004] [PMID: 28088622]
[42]
Świdwińska-Gajewska AM, Czerczak S. [Nanogold - Biological effects and occupational exposure levels]. Med Pr 2017; 68(4): 545-56.
[http://dx.doi.org/10.13075/mp.5893.00538] [PMID: 28584334]
[43]
Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for biology and medicine: Sensing, imaging, and drug delivery. Chem Rev 2019; 119(16): 9559-656.
[http://dx.doi.org/10.1021/acs.chemrev.9b00099] [PMID: 31287663]
[44]
Hassan HAFM, Diebold SS, Smyth LA, Walters AA, Lombardi G, Al-Jamal KT. Application of carbon nanotubes in cancer vaccines: Achievements, challenges and chances. J Control Release 2019; 297: 79-90.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.017] [PMID: 30659906]
[45]
Yan H, Xue Z, Xie J, et al. Toxicity of carbon nanotubes as anti-tumor drug carriers. Int J Nanomedicine 2019; 14: 10179-94.
[http://dx.doi.org/10.2147/IJN.S220087] [PMID: 32021160]
[46]
Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol 2019; 16(1): 18.
[http://dx.doi.org/10.1186/s12989-019-0299-z] [PMID: 30975174]
[47]
Ali A, Suhail M, Mathew S, et al. Nanomaterial induced immune responses and cytotoxicity. J Nanosci Nanotechnol 2016; 16(1): 40-57.
[http://dx.doi.org/10.1166/jnn.2016.10885] [PMID: 27398432]
[48]
Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 2017; 59(5): 394-407.
[http://dx.doi.org/10.1539/joh.17-0089-RA] [PMID: 28794394]
[49]
Shi Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc 2004; 126(22): 6850-1.
[http://dx.doi.org/10.1021/ja0486059] [PMID: 15174838]
[50]
Li H, Zhang N, Hao Y, Wang Y, Jia S, Zhang H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv 2019; 26(1): 1017-26.
[http://dx.doi.org/10.1080/10717544.2019.1672829] [PMID: 31578087]
[51]
Yan Y, Wang R, Hu Y, et al. Stacking of doxorubicin on folic acid-targeted multiwalled carbon nanotubes for in vivo chemotherapy of tumors. Drug Deliv 2018; 25(1): 1607-16.
[http://dx.doi.org/10.1080/10717544.2018.1501120] [PMID: 30348025]
[52]
Chakrabarti M, Kiseleva R, Vertegel A, Ray SK. Carbon nanomaterials for drug delivery and cancer therapy. J Nanosci Nanotechnol 2015; 15(8): 5501-11.
[http://dx.doi.org/10.1166/jnn.2015.10614] [PMID: 26369109]
[53]
Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 2015; 12(7): 1089-105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[54]
Caoduro C, Hervouet E, Girard-Thernier C, et al. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomater 2017; 49: 36-44.
[http://dx.doi.org/10.1016/j.actbio.2016.11.013] [PMID: 27826000]
[55]
Celluzzi A, Paolini A, D’Oria V, et al. Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. Int J Nanomedicine 2017; 13: 1-18.
[http://dx.doi.org/10.2147/IJN.S144155] [PMID: 29296082]
[56]
Chen W, Glackin CA, Horwitz MA, Zink JI. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc Chem Res 2019; 52(6): 1531-42.
[http://dx.doi.org/10.1021/acs.accounts.9b00116] [PMID: 31082188]
[57]
Croissant JG, Fatieiev Y, Julfakyan K, et al. Biodegradable oxamide-phenylene-based mesoporous organosilica nanoparticles with unprecedented drug payloads for delivery in cells. Chemistry 2016; 22(42): 14806-11.
[http://dx.doi.org/10.1002/chem.201601714] [PMID: 27258139]
[58]
Zahiri M, Babaei M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Hybrid nanoreservoirs based on dextran-capped dendritic mesoporous silica nanoparticles for CD133-targeted drug delivery. J Cell Physiol 2020; 235(2): 1036-50.
[http://dx.doi.org/10.1002/jcp.29019] [PMID: 31276199]
[59]
Marino A, Camponovo A, Degl’Innocenti A, et al. Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: Dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale 2019; 11(44): 21227-48.
[http://dx.doi.org/10.1039/C9NR07976A] [PMID: 31663592]
[60]
Sweeney SK, Luo Y, O’Donnell MA, Assouline JG. Peptide-mediated targeting mesoporous silica nanoparticles: A novel tool for fighting bladder cancer. J Biomed Nanotechnol 2017; 13(2): 232-42.
[http://dx.doi.org/10.1166/jbn.2017.2339] [PMID: 29377654]
[61]
Xingyi J, Guonan C, Xin Z, Naijie L. AbCD133 modified αCT1 loaded target magnetic mesoporous silica nano-drugcarriers can sensitizes glioma cancer stem cells to TMZ and have therapeutic potential on TMZ resistant glioblastoma. J Biomed Nanotechnol 2019; 15(7): 1468-81.
[http://dx.doi.org/10.1166/jbn.2019.2795] [PMID: 31196351]
[62]
Mandal T, Beck M, Kirsten N, Lindén M, Buske C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci Rep 2018; 8(1): 989.
[http://dx.doi.org/10.1038/s41598-017-18932-4] [PMID: 29343865]
[63]
Guo X, Guo N, Zhao J, Cai Y. Active targeting co-delivery system based on hollow mesoporous silica nanoparticles for antitumor therapy in ovarian cancer stem-like cells. Oncol Rep 2017; 38(3): 1442-50.
[http://dx.doi.org/10.3892/or.2017.5829] [PMID: 28731164]
[64]
Zhang X, Luan J, Chen W, et al. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. Nanoscale 2018; 10(19): 9141-52.
[http://dx.doi.org/10.1039/C8NR00554K] [PMID: 29722780]
[65]
Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 2019; 109: 2527-38.
[http://dx.doi.org/10.1016/j.biopha.2018.11.093] [PMID: 30551513]
[66]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-52.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[67]
Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol 2017; 1522: 17-22.
[http://dx.doi.org/10.1007/978-1-4939-6591-5_2] [PMID: 27837527]
[68]
Gao M, Kong Y, Yang G, Gao L, Shi J. Multiple myeloma cancer stem cells. Oncotarget 2016; 7(23): 35466-77.
[http://dx.doi.org/10.18632/oncotarget.8154] [PMID: 27007154]
[69]
Li M, Shi F, Fei X, et al. PEGylated long-circulating liposomes deliver homoharringtonine to suppress multiple myeloma cancer stem cells. Exp Biol Med (Maywood) 2017; 242(9): 996-1004.
[http://dx.doi.org/10.1177/1535370216685008] [PMID: 28056549]
[70]
Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 2016; 99: 141-9.
[http://dx.doi.org/10.1016/j.critrevonc.2015.12.005] [PMID: 26775730]
[71]
Jiang J, Lan C, Li L, et al. A novel porcupine inhibitor blocks WNT pathways and attenuates cardiac hypertrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864(10): 3459-67.
[http://dx.doi.org/10.1016/j.bbadis.2018.07.035] [PMID: 30076960]
[72]
Li C, Liang Y, Cao J, et al. The delivery of a Wnt pathway inhibitor toward CSCs requires stable liposome encapsulation and delayed drug release in tumor tissues. Mol Ther 2019; 27(9): 1558-67.
[http://dx.doi.org/10.1016/j.ymthe.2019.06.013] [PMID: 31350188]
[73]
Li XT, Tang W, Jiang Y, et al. Multifunctional targeting vinorelbine plus tetrandrine liposomes for treating brain glioma along with eliminating glioma stem cells. Oncotarget 2016; 7(17): 24604-22.
[http://dx.doi.org/10.18632/oncotarget.8360] [PMID: 27029055]
[74]
Ying X, Wang Y, Xu H, et al. The construction of the multifunctional targeting ursolic acids liposomes and its apoptosis effects to C6 glioma stem cells. Oncotarget 2017; 8(38): 64129-42.
[http://dx.doi.org/10.18632/oncotarget.19784] [PMID: 28969057]
[75]
Wang Y, Ying X, Xu H, Yan H, Li X, Tang H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int J Nanomedicine 2017; 12: 1369-84.
[http://dx.doi.org/10.2147/IJN.S124276] [PMID: 28260885]
[76]
Petersen GH, Alzghari SK, Chee W, Sankari SS, La-Beck NM. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release 2016; 232: 255-64.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.028] [PMID: 27108612]
[77]
Yuan A, Huan W, Liu X, et al. NIR light-activated drug release for synergetic chemo-photothermal therapy. Mol Pharm 2017; 14(1): 242-51.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00820] [PMID: 27983855]
[78]
Koyanagi T, Cifelli JL, Leriche G, Onofrei D, Holland GP, Yang J. Thiol-triggered release of intraliposomal content from liposomes made of extremophile-inspired tetraether lipids. Bioconjug Chem 2017; 28(8): 2041-5.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00342] [PMID: 28708392]
[79]
Hansen AH, Mouritsen OG, Arouri A. Enzymatic action of phospholipase A2 on liposomal drug delivery systems. Int J Pharm 2015; 491(1-2): 49-57.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.005] [PMID: 26056930]
[80]
Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[81]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[82]
Li B, Li Q, Mo J, Dai H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front Pharmacol 2017; 8: 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[83]
Khan I, Gothwal A, Sharma AK, et al. PLGA nanoparticles and their versatile role in anticancer drug delivery. Crit Rev Ther Drug Carrier Syst 2016; 33(2): 159-93.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015273] [PMID: 27651101]
[84]
Wang F, Yuan J, Zhang Q, Yang S, Jiang S, Huang C. PTX-loaded three-layer PLGA/CS/ALG nanoparticle based on layer-by-layer method for cancer therapy. J Biomater Sci Polym Ed 2018; 29(13): 1566-78.
[http://dx.doi.org/10.1080/09205063.2018.1475941] [PMID: 29749303]
[85]
Li L, Cui D, Ye L, et al. Codelivery of salinomycin and docetaxel using poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles to target both gastric cancer cells and cancer stem cells. Anticancer Drugs 2017; 28(9): 989-1001.
[http://dx.doi.org/10.1097/CAD.0000000000000541] [PMID: 28692437]
[86]
Wang H, Agarwal P, Zhao S, et al. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells. Biomaterials 2015; 72: 74-89.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.048] [PMID: 26344365]
[87]
Hu K, Zhou H, Liu Y, et al. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 2015; 7(18): 8607-18.
[http://dx.doi.org/10.1039/C5NR01084E] [PMID: 25898852]
[88]
Chen H, Lin J, Shan Y, Zhengmao L. The promotion of nanoparticle delivery to two populations of gastric cancer stem cells by CD133 and CD44 antibodies. Biomed Pharmacother 2019; 115: 108857.
[http://dx.doi.org/10.1016/j.biopha.2019.108857] [PMID: 31048191]
[89]
Huang J, Tao C, Yu Y, et al. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel- and sulforaphane-loaded self-assembled poly(D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. J Biomed Nanotechnol 2016; 12(7): 1463-77.
[http://dx.doi.org/10.1166/jbn.2016.2234] [PMID: 29337484]
[90]
Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 2010; 49(36): 6288-308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[91]
Shen S, Du XJ, Liu J, Sun R, Zhu YH, Wang J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release 2015; 208: 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[92]
Karabasz A, Szczepanowicz K, Cierniak A, et al. In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: Poly-l-glutamic acid or PEG. Int J Nanomedicine 2019; 14: 9587-602.
[http://dx.doi.org/10.2147/IJN.S230865] [PMID: 31824153]
[93]
Grossen P, Witzigmann D, Sieber S, Huwyler J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J Control Release 2017; 260: 46-60.
[http://dx.doi.org/10.1016/j.jconrel.2017.05.028] [PMID: 28536049]
[94]
Hu X, Yang F, Liao Y, Li L, Zhang L. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: In vitro and in vivo evaluations. Drug Deliv 2017; 24(1): 121-32.
[http://dx.doi.org/10.1080/10717544.2016.1233590] [PMID: 28156159]
[95]
Wang L, Yao J, Zhang X, et al. Delivery of paclitaxel using nanoparticles composed of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO). Colloids Surf B Biointerfaces 2018; 161: 464-70.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.013] [PMID: 29128832]
[96]
Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev 2016; 107: 176-91.
[http://dx.doi.org/10.1016/j.addr.2016.05.020] [PMID: 27262925]
[97]
Yang N, Jiang Y, Zhang H, et al. Active targeting docetaxel-PLA nanoparticles eradicate circulating lung cancer stem-like cells and inhibit liver metastasis. Mol Pharm 2015; 12(1): 232-9.
[http://dx.doi.org/10.1021/mp500568z] [PMID: 25418453]
[98]
Liu CF, Zhou J, Chen XR, Yu J. Drug-loaded nanobubbles for ultrasound-mediated antitumor treatment. J Biol Regul Homeost Agents 2018; 32(4): 923-9.
[PMID: 30043578]
[99]
Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 2016; 107: 163-75.
[http://dx.doi.org/10.1016/j.addr.2016.06.018] [PMID: 27426411]
[100]
Wang J, Li S, Han Y, et al. Poly(Ethylene Glycol)-Polylactide Micelles for Cancer Therapy. Front Pharmacol 2018; 9: 202.
[http://dx.doi.org/10.3389/fphar.2018.00202] [PMID: 29662450]
[101]
Sun X, Zhang J, Yang C, et al. Dual-responsive size-shrinking nanocluster with hierarchical disassembly capability for improved tumor penetration and therapeutic efficacy. ACS Appl Mater Interfaces 2019; 11(12): 11865-75.
[http://dx.doi.org/10.1021/acsami.8b21580] [PMID: 30830746]
[102]
Zhang J, Zhao X, Yang C, et al. A versatile polyion complex can intelligently respond to a tumor microenvironment to eliminate tumor stem cells for enhanced lung cancer targeted therapy. Biomater Sci 2019; 7(9): 3751-63.
[http://dx.doi.org/10.1039/C9BM00812H] [PMID: 31355389]
[103]
Kim JH, Moon MJ, Kim DY, Heo SH, Jeong YY. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers (Basel) 2018; 10(10): 1133.
[http://dx.doi.org/10.3390/polym10101133] [PMID: 30961058]
[104]
Wickens JM, Alsaab HO, Kesharwani P, et al. Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. Drug Discov Today 2017; 22(4): 665-80.
[http://dx.doi.org/10.1016/j.drudis.2016.12.009] [PMID: 28017836]
[105]
Kim K, Choi H, Choi ES, Park MH, Ryu JH. Hyaluronic acid-coated nanomedicine for targeted cancer therapy. Pharmaceutics 2019; 11(7): 301.
[http://dx.doi.org/10.3390/pharmaceutics11070301] [PMID: 31262049]
[106]
Provinciali N, Suen C, Dunn BK, DeCensi A. Raloxifene hydrochloride for breast cancer risk reduction in postmenopausal women. Expert Rev Clin Pharmacol 2016; 9(10): 1263-72.
[http://dx.doi.org/10.1080/17512433.2016.1231575] [PMID: 27583816]
[107]
Almutairi FM, Abd-Rabou AA, Mohamed MS. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells. Bioorg Med Chem 2019; 27(8): 1629-38.
[http://dx.doi.org/10.1016/j.bmc.2019.03.004] [PMID: 30879864]
[108]
Debele TA, Yu LY, Yang CS, Shen YA, Lo CL. pH- and GSH-sensitive hyaluronic acid-MP conjugate micelles for intracellular delivery of doxorubicin to colon cancer cells and cancer stem cells. Biomacromolecules 2018; 19(9): 3725-37.
[http://dx.doi.org/10.1021/acs.biomac.8b00856] [PMID: 30044910]
[109]
Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 2018; 109: 273-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.078] [PMID: 29248555]
[110]
Zhang X, Yang X, Ji J, Liu A, Zhai G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148: 460-73.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.020] [PMID: 27665379]
[111]
Singh PK, Srivastava AK, Dev A, Kaundal B, Choudhury SR, Karmakar S. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr Polym 2018; 180: 365-75.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.030] [PMID: 29103516]
[112]
Sadoughi F, Mansournia MA, Mirhashemi SM. The potential role of chitosan-based nanoparticles as drug delivery systems in pancreatic cancer. IUBMB Life 2020; 72(5): 872-83.
[http://dx.doi.org/10.1002/iub.2252] [PMID: 32057169]
[113]
Varan G, Varan C, Erdoğar N, Hıncal AA, Bilensoy E. Amphiphilic cyclodextrin nanoparticles. Int J Pharm 2017; 531(2): 457-69.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.010] [PMID: 28596142]
[114]
Erdoğar N, Esendağlı G, Nielsen TT, et al. Therapeutic efficacy of folate receptor-targeted amphiphilic cyclodextrin nanoparticles as a novel vehicle for paclitaxel delivery in breast cancer. J Drug Target 2018; 26(1): 66-74.
[http://dx.doi.org/10.1080/1061186X.2017.1339194] [PMID: 28581827]
[115]
Erdogar N, Varan G, Bilensoy E. Amphiphilic cyclodextrin derivatives for targeted drug delivery to tumors. Curr Top Med Chem 2017; 17(13): 1521-8.
[http://dx.doi.org/10.2174/1568026616666161222101104] [PMID: 28017158]
[116]
Kaur J, Kaur G, Sharma S, Jeet K. Cereal starch nanoparticles-A prospective food additive: A review. Crit Rev Food Sci Nutr 2018; 58(7): 1097-107.
[http://dx.doi.org/10.1080/10408398.2016.1238339] [PMID: 27830933]
[117]
Sujka M, Pankiewicz U, Kowalski R, Nowosad K, Noszczyk-Nowak A. Porous starch and its application in drug delivery systems. Polim Med 2018; 48(1): 25-9.
[http://dx.doi.org/10.17219/pim/99799] [PMID: 30657655]
[118]
Jiang Y, Li T, Lu M, et al. TEMPO-oxidized starch nanoassemblies of negligible toxicity compared with polyacrylic acids for high performance anti-cancer therapy. Int J Pharm 2018; 547(1-2): 520-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.019] [PMID: 29886098]
[119]
Sleightholm R, Yang B, Yu F, Xie Y, Oupický D. Chloroquine- modified hydroxyethyl starch as a polymeric drug for cancer therapy. Biomacromolecules 2017; 18(8): 2247-57.
[http://dx.doi.org/10.1021/acs.biomac.7b00023] [PMID: 28708385]
[120]
Leboffe L, di Masi A, Polticelli F, Trezza V, Ascenzi P. Structural basis of drug recognition by human serum albumin. Curr Med Chem 2020; 27(30): 4907-31.
[http://dx.doi.org/10.2174/0929867326666190320105316] [PMID: 30894098]
[121]
Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol 2019; 123: 979-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.053] [PMID: 30439428]
[122]
Yan F, Li B, Shen F, Fu Q. Formulation and characterization of albumin microspheres containing norcantharidate for liver tumor targeting. Drug Deliv 2015; 22(6): 862-8.
[http://dx.doi.org/10.3109/10717544.2014.898715] [PMID: 24670098]
[123]
Abedin F, Anwar MR, Asmatulu R, Yang SY. Albumin-based micro-composite drug carriers with dual chemo-agents for targeted breast cancer treatment. J Biomater Appl 2015; 30(1): 38-49.
[http://dx.doi.org/10.1177/0885328215569614] [PMID: 25638169]
[124]
Jo MJ, Jin IS, Park CW, et al. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch Pharm Res 2020; 43(1): 100-9.
[http://dx.doi.org/10.1007/s12272-020-01215-4] [PMID: 31989478]
[125]
Basso J, Miranda A, Nunes S, et al. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels 2018; 4(3): E62.
[http://dx.doi.org/10.3390/gels4030062] [PMID: 30674838]
[126]
Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Milani MA, Jelvehgari M. Hydrogel nanoparticles and nanocomposites for nasal drug/vaccine delivery. Arch Pharm Res 2016; 39(9): 1181-92.
[http://dx.doi.org/10.1007/s12272-016-0782-0] [PMID: 27352214]
[127]
Vashist A, Kaushik A, Vashist A, et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today 2018; 23(7): 1436-43.
[http://dx.doi.org/10.1016/j.drudis.2018.05.018] [PMID: 29775669]
[128]
Bae KH, Kurisawa M. Emerging hydrogel designs for controlled protein delivery. Biomater Sci 2016; 4(8): 1184-92.
[http://dx.doi.org/10.1039/C6BM00330C] [PMID: 27374633]
[129]
Zhou T, Zhao X, Liu L, Liu P. Preparation of biodegradable PEGylated pH/reduction dual-stimuli responsive nanohydrogels for controlled release of an anti-cancer drug. Nanoscale 2015; 7(28): 12051-60.
[http://dx.doi.org/10.1039/C5NR00758E] [PMID: 26118938]
[130]
De Clercq K, Xie F, De Wever O, et al. Preclinical evaluation of local prolonged release of paclitaxel from gelatin microspheres for the prevention of recurrence of peritoneal carcinomatosis in advanced ovarian cancer. Sci Rep 2019; 9(1): 14881.
[http://dx.doi.org/10.1038/s41598-019-51419-y] [PMID: 31619730]
[131]
Kundranda MN, Niu J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Des Devel Ther 2015; 9: 3767-77.
[http://dx.doi.org/10.2147/DDDT.S88023] [PMID: 26244011]
[132]
Ranade AA, Joshi DA, Phadke GK, et al. Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann Oncol 2013; 24(5)(Suppl. 5): v6-v12.
[http://dx.doi.org/10.1093/annonc/mdt322] [PMID: 23975704]
[133]
Quoc TH, Jin M. Weekly regimen of PAXUS-PM, a novel cremophor-free, with carboplatin in patients with advanced non-small-cell lung cancer in vietnam. J Thorac Oncol 2018; 13(10): S471-2.
[http://dx.doi.org/10.1016/j.jtho.2018.08.587]
[134]
Jain MM, Patil S, Pathak AB, et al. The efficacy and safety of paclitaxel injection concentrate for nano-dispersion (PICN) at two different doses versus paclitaxel albumin-stabilized nanoparticle formulation in subjects with metastatic breast cancer (MBC). J Clin Oncol 2014; 32(15): 1069.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.1069]
[135]
Vergote I, Bergfeldt K, Franquet A, et al. A randomized phase III trial in patients with recurrent platinum sensitive ovarian cancer comparing efficacy and safety of paclitaxel micellar and Cremophor EL-paclitaxel. Gynecol Oncol 2020; 156(2): 293-300.
[http://dx.doi.org/10.1016/j.ygyno.2019.11.034] [PMID: 31826802]
[136]
Ventura M, Bernards N, De Souza R, et al. Longitudinal PET imaging to monitor treatment efficacy by liposomal irinotecan in orthotopic patient-derived pancreatic tumor models of high and low hypoxia. Mol Imaging Biol 2020; 22(3): 653-64.
[http://dx.doi.org/10.1007/s11307-019-01374-x] [PMID: 31482415]
[137]
Simon JA. ESTRASORB Study Group. Estradiol in micellar nanoparticles: The efficacy and safety of a novel transdermal drug-delivery technology in the management of moderate to severe vasomotor symptoms. Menopause 2006; 13(2): 222-31.
[http://dx.doi.org/10.1097/01.gme.0000174096.56652.4f] [PMID: 16645536]
[138]
Hou S, Schmid A, Desai N. ABI-009 (nab-Sirolimus) improves tumor accumulation and antitumor activity over oral mTOR inhibitors. Cancer Res 2019; 79(13)(Suppl.): 348.
[139]
Kaneko T, Sugimori K, Tozuka Y, et al. Combination chemotherapy with gemcitabine and nab-paclitaxel for a metastatic pancreatic ductal adenocarcinoma patient undergoing hemodialysis. Clin J Gastroenterol 2019; 12(5): 484-9.
[http://dx.doi.org/10.1007/s12328-019-00976-w] [PMID: 30993653]
[140]
Kang C, Syed YY. Atezolizumab (in combination with Nab-Paclitaxel): A review in advanced triple-negative breast cancer. Drugs 2020; 80(6): 601-7.
[http://dx.doi.org/10.1007/s40265-020-01295-y] [PMID: 32248356]
[141]
Merle P, Blanc JF, Phelip JM, et al. RELIVE Investigators. Doxorubicin-loaded nanoparticles for patients with advanced hepatocellular carcinoma after sorafenib treatment failure (RELIVE): A phase 3 randomised controlled trial. Lancet Gastroenterol Hepatol 2019; 4(6): 454-65.
[http://dx.doi.org/10.1016/S2468-1253(19)30040-8] [PMID: 30954567]
[142]
Ashton S, Song YH, Nolan J, et al. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med 2016; 8(325): 325ra17.
[http://dx.doi.org/10.1126/scitranslmed.aad2355] [PMID: 26865565]
[143]
Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res 2010; 16(24): 6139-49.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0978] [PMID: 20876255]
[144]
Nevala WK, Butterfield JT, Sutor SL, Knauer DJ, Markovic SN. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20+ B-cell lymphoma. Sci Rep 2017; 7: 45682.
[http://dx.doi.org/10.1038/srep45682] [PMID: 28378801]
[145]
Yin R, Pan J, Zhou B, et al. Evaluation of the toxicity and efficacy of paclitaxel nanoencapsulated with polyethyloxazoline polymers. J Clin Oncol 2013; 31(15): e13538.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.e13538]
[146]
Carie A, Rios-Doria J, Costich T, et al. IT-141, a polymer micelle encapsulating SN-38, induces tumor regression in multiple colorectal cancer models. J Drug Deliv 2011; 2011: 869027.
[http://dx.doi.org/10.1155/2011/869027] [PMID: 22187652]
[147]
Inamura K, Komizu Y, Yamakuchi M, Ishida S, Matsumoto Y, Matsushita T. Inhibitory effect of hybrid liposomes on the growth of liver cancer stem cells. Biochem Biophys Res Commun 2019; 509(1): 268-74.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.118] [PMID: 30583860]
[148]
Ma YY, Jin KT, Wang SB, et al. Molecular imaging of cancer with nanoparticle-based theranostic probes. Contrast Media Mol Imaging 2017; 2017: 1026270.
[http://dx.doi.org/10.1155/2017/1026270] [PMID: 29097909]
[149]
Ma W, Feng Y, Chen K, Ying Z. Functional and parametric estimation in a semi- and nonparametric model with application to mass-spectrometry data. Int J Biostat 2015; 11(2): 285-303.
[http://dx.doi.org/10.1515/ijb-2014-0066] [PMID: 26529566]
[150]
Medarova Z, Balcioglu M, Yigit MV. Controlling RNA expression in cancer using iron oxide nanoparticles detectable by MRI and in vivo optical imaging. Methods Mol Biol 2016; 1372: 163-79.
[http://dx.doi.org/10.1007/978-1-4939-3148-4_13] [PMID: 26530923]
[151]
Krasnoslobodtsev AV, Torres MP, Kaur S, et al. Nano-immunoassay with improved performance for detection of cancer biomarkers. Nanomedicine (Lond) 2015; 11(1): 167-73.
[http://dx.doi.org/10.1016/j.nano.2014.08.012] [PMID: 25200613]
[152]
Karabeber H, Huang R, Iacono P, et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014; 8(10): 9755-66.
[http://dx.doi.org/10.1021/nn503948b] [PMID: 25093240]
[153]
Zhang C, Yan Y, Zou Q, Chen J, Li C. Superparamagnetic iron oxide nanoparticles for MR imaging of pancreatic cancer: Potential for early diagnosis through targeted strategies. Asia Pac J Clin Oncol 2016; 12(1): 13-21.
[http://dx.doi.org/10.1111/ajco.12437] [PMID: 26663873]
[154]
Zhao P, Xu Q, Tao J, et al. Near infrared quantum dots in biomedical applications: Current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2018; 10(3): e1483.
[http://dx.doi.org/10.1002/wnan.1483] [PMID: 28719080]
[155]
Xu HL, Yang JJ, ZhuGe DL, et al. ZhuGe D. Glioma-targeted delivery of a theranostic liposome integrated with quantum dots, superparamagnetic iron oxide, and cilengitide for dual-imaging guiding cancer surgery. Adv Healthc Mater 2018; 7(9): e1701130.
[http://dx.doi.org/10.1002/adhm.201701130] [PMID: 29350498]
[156]
Gazouli M, Lyberopoulou A, Pericleous P, et al. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World J Gastroenterol 2012; 18(32): 4419-26.
[http://dx.doi.org/10.3748/wjg.v18.i32.4419] [PMID: 22969208]
[157]
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 2015; 115(19): 10530-74.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[158]
Huang Y, Cole SP, Cai T, Cai YU. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol Lett 2016; 12(1): 11-5.
[http://dx.doi.org/10.3892/ol.2016.4596] [PMID: 27347092]
[159]
Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol 2019; 71(8): 1185-98.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[160]
Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: A systematic review. Int J Nanomedicine 2018; 13: 3921-35.
[http://dx.doi.org/10.2147/IJN.S165210] [PMID: 30013345]
[161]
Cheung A, Bax HJ, Josephs DH, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553-74.
[http://dx.doi.org/10.18632/oncotarget.9651] [PMID: 27248175]
[162]
Nogueira-Librelotto DR, Codevilla CF, Farooqi A, Rolim CM. Transferrin-conjugated nanocarriers as active-targeted drug delivery platforms for cancer therapy. Curr Pharm Des 2017; 23(3): 454-66.
[http://dx.doi.org/10.2174/1381612822666161026162347] [PMID: 27784246]
[163]
Maeda H. Polymer therapeutics and the EPR effect. J Drug Target 2017; 25(9-10): 781-5.
[http://dx.doi.org/10.1080/1061186X.2017.1365878] [PMID: 28988499]
[164]
Yu M, Zheng J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015; 9(7): 6655-74.
[http://dx.doi.org/10.1021/acsnano.5b01320] [PMID: 26149184]
[165]
Fox ME, Szoka FC, Fréchet JM. Soluble polymer carriers for the treatment of cancer: The importance of molecular architecture. Acc Chem Res 2009; 42(8): 1141-51.
[http://dx.doi.org/10.1021/ar900035f] [PMID: 19555070]
[166]
Kim HJ, Yi Y, Kim A, Miyata K. Small delivery vehicles of siRNA for enhanced cancer targeting. Biomacromolecules 2018; 19(7): 2377-90.
[http://dx.doi.org/10.1021/acs.biomac.8b00546] [PMID: 29864287]
[167]
Wang Y, Sun S, Zhang Z, Shi D. Nanomaterials for cancer precision medicine. Adv Mater 2018; 30(17): e1705660.
[http://dx.doi.org/10.1002/adma.201705660] [PMID: 29504159]
[168]
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem 2016; 27(10): 2225-38.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[169]
Zhang J, Tang H, Liu Z, Chen B. Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. Int J Nanomedicine 2017; 12: 8483-93.
[http://dx.doi.org/10.2147/IJN.S148359] [PMID: 29238188]
[170]
Bhattacharjee S, de Haan LH, Evers NM, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 2010; 7: 25.
[http://dx.doi.org/10.1186/1743-8977-7-25] [PMID: 20831820]
[171]
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998-1004.
[http://dx.doi.org/10.1038/nm.3267] [PMID: 23921754]
[172]
Mooney R, Abdul Majid A, Batalla J, Annala AJ, Aboody KS. Cell-mediated enzyme prodrug cancer therapies. Adv Drug Deliv Rev 2017; 118: 35-51.
[http://dx.doi.org/10.1016/j.addr.2017.09.003] [PMID: 28916493]
[173]
Vegh I, Grau M, Gracia M, Grande J, de la Torre P, Flores AI. Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development. Cancer Gene Ther 2013; 20(1): 8-16.
[http://dx.doi.org/10.1038/cgt.2012.71] [PMID: 23037810]
[174]
Paris JL, de la Torre P, Manzano M, Cabañas MV, Flores AI, Vallet-Regí M. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors. Acta Biomater 2016; 33: 275-82.
[http://dx.doi.org/10.1016/j.actbio.2016.01.017] [PMID: 26796209]
[175]
Mooney R, Hammad M, Batalla-Covello J, Abdul Majid A, Aboody KS. Concise Review: Neural stem cell-mediated targeted cancer therapies. Stem Cells Transl Med 2018; 7(10): 740-7.
[http://dx.doi.org/10.1002/sctm.18-0003] [PMID: 30133188]
[176]
Cao P, Mooney R, Tirughana R, et al. Intraperitoneal administration of neural stem cell-nanoparticle conjugates targets chemotherapy to ovarian tumors. Bioconjug Chem 2017; 28(6): 1767-76.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00237] [PMID: 28453256]
[177]
Dai W, Wang X, Song G, et al. Combination antitumor therapy with targeted dual-nanomedicines. Adv Drug Deliv Rev 2017; 115: 23-45.
[http://dx.doi.org/10.1016/j.addr.2017.03.001] [PMID: 28285944]
[178]
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater 2017; 29(32): 1700996.
[http://dx.doi.org/10.1002/adma.201700996] [PMID: 28643452]
[179]
Gu Z, Wang Q, Shi Y, et al. Nanotechnology-mediated immunochemotherapy combined with docetaxel and PD-L1 antibody increase therapeutic effects and decrease systemic toxicity. J Control Release 2018; 286: 369-80.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.011] [PMID: 30096401]
[180]
Gao C, Bhattarai P, Chen M, et al. Amphiphilic drug conjugates as nanomedicines for combined cancer therapy. Bioconjug Chem 2018; 29(12): 3967-81.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00692] [PMID: 30485070]
[181]
Liu XQ, Picart C. Layer-by-layer assemblies for cancer treatment and diagnosis. Adv Mater 2016; 28(6): 1295-301.
[http://dx.doi.org/10.1002/adma.201502660] [PMID: 26390356]
[182]
Park S, Han U, Choi D, Hong J. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: Design and applications. Biomater Res 2018; 22: 29.
[http://dx.doi.org/10.1186/s40824-018-0139-5] [PMID: 30275972]
[183]
Correa S, Dreaden EC, Gu L, Hammond PT. Engineering nanolayered particles for modular drug delivery. J Control Release 2016; 240: 364-86.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.040] [PMID: 26809005]
[184]
Kabary DM, Helmy MW, Elkhodairy KA, Fang JY, Elzoghby AO. Hyaluronate/lactoferrin layer-by-layer-coated lipid nanocarriers for targeted co-delivery of rapamycin and berberine to lung carcinoma. Colloids Surf B Biointerfaces 2018; 169: 183-94.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.008] [PMID: 29775813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy