Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools

Author(s): Tatiana Román, David Ramirez, Ricardo Fierro-Medina, Rosa Santillan and Norberto Farfán*

Volume 24, Issue 21, 2020

Page: [2426 - 2447] Pages: 22

DOI: 10.2174/1385272824999201001154259

Price: $65

Abstract

Organometallic complexes are an important class of synthetic reagents and are of great interest due to their versatility and wide biological application. The cationic nature of the coordination nucleus facilitates its interaction with biological molecules such as amino acids, proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic motifs is a novel strategy for the design and development of molecules with greater biological activity, stability in biological environments, and selectivity for specific targets, which make them valuable tools for designing and obtaining molecules with therapeutic applications. The physicochemical properties of ferrocene make it ideal for drug development, due to its structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way, organotin (IV) derivatives have great potential for drug development because of their multiple biological activities, wide structural versatility, high degree of stability, and low toxicity. However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.

Keywords: Ferrocene, peptides, organometallics, organotin (IV), amino acids, organometallic peptides.

Graphical Abstract

[1]
Ullah, H.; Previtali, V.; Mihigo, H.B.; Twamley, B.; Rauf, M.K.; Javed, F.; Waseem, A.; Baker, R.J.; Rozas, I. Structure-activity relationships of new Organotin(IV) anticancer agents and their cytotoxicity profile on HL-60, MCF-7 and HeLa human cancer cell lines. Eur. J. Med. Chem., 2019, 181(4)111544
[http://dx.doi.org/10.1016/j.ejmech.2019.07.047] [PMID: 31374420]
[2]
Gómez-Ruiz, S.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G.N. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg. Chem. Appl., 2012, 2012140284
[http://dx.doi.org/10.1155/2012/140284] [PMID: 22844263]
[3]
Schatzschneider, U. Antimicrobial activity of organometal compounds: past, present, and future prospects.Advances in Bioorganometallic Chemistry; Hirao, T.; Moriuchi, T., Eds.; Elsevier Inc., 2019, pp. 173-192.
[http://dx.doi.org/10.1016/B978-0-12-814197-7.00009-1]
[4]
Singh, A.; Lumb, I.; Mehra, V.; Kumar, V. Ferrocene-appended pharmacophores: an exciting approach for modulating the biological potential of organic scaffolds. Dalton Trans., 2019, 48(9), 2840-2860.
[http://dx.doi.org/10.1039/C8DT03440K] [PMID: 30663743]
[5]
Jaouen, G.; Top, S.; Vessieres, A. Organometallics targeted to specific biological sites: the development of new therapies.Bioorganometallics: Biomolecules, Labelling, Medicine; Jaouen, G., Ed.; John Wiley & Sons, 2005, pp. 65-95.
[http://dx.doi.org/10.1002/3527607692]
[6]
Peter, S.; Aderibigbe, B.A. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules, 2019, 24(19), 3604.
[http://dx.doi.org/10.3390/molecules24193604] [PMID: 31591298]
[7]
Lal, B.; Badshah, A.; Altaf, A.A.; Khan, N.; Ullah, S. Miscellaneous applications of ferrocene-based peptides/amides. Appl. Organomet. Chem., 2011, 25(12), 843-855.
[http://dx.doi.org/10.1002/aoc.1843]
[8]
Kumar, S.S.; Jhun, P.B. Synthesis and antimicrobial screening of some novel ferrocenyl derivates of pyrazole analogues. Int. J. Res. Pharm. Chem., 2014, 4(2), 473-478.
[9]
Huang, X.F.; Wang, L.Z.; Tang, L.; Lu, Y.X.; Wang, F.; Song, G.Q.; Ruan, B.F. Synthesis, characterization and antitumor activity of novel ferrocene derivatives containing pyrazolyl-moiety. J. Organomet. Chem., 2014, 749, 157-162.
[http://dx.doi.org/10.1016/j.jorganchem.2013.08.043]
[10]
Baul, T.S.B. Antimicrobial activity of Organotin(IV) compounds: a review. Appl. Organomet. Chem., 2008, 22(4), 195-204.
[http://dx.doi.org/10.1002/aoc.1378]
[11]
Ashfaq, M.; Ahmed, M.M.; Shaheen, S.; Tabussam, R.; Rivera, G. Synthesis and biological activiity of new series of Organotin(IV) esters with N,N-dacetylglycine. Quim. Nova, 2016, 39(1), 19-25.
[http://dx.doi.org/10.5935/0100-4042.20150171]
[12]
Shaheen, A.; Akhtar, S.; Ahmad, S. Aziz-Ur-Rehman; Saeed, A.; Sharif, A.; Mustaqeem, M.; Nawaz, M.; Abbas Shah, S. T. Antimicrobial activities, characterization and synthesis of Organotin(IV) complexes with benzohydrazide derivative. J. Pure Appl. Microbiol., 2017, 11(1), 141-150.
[http://dx.doi.org/10.22207/JPAM.11.1.19]
[13]
Adeyemi, J.O.; Onwudiwe, D.C.; Singh, M. Synthesis, characterization, and cytotoxicity study of Organotin(IV) complexes involving different dithiocarbamate groups. J. Mol. Struct., 2019, 1179(IV), 366-375.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.022]
[14]
Woodward, R.B.R. R.; Whiting M.C. A new aromatic system. J. Am. Chem. Soc., 1952, 74(13), 3458-3459.
[http://dx.doi.org/10.1021/ja01133a543]
[15]
Kealy, T.J.; Pauson, P.L. A new type of organo-iron compound. Nature, 1951, 168, 1039-1040.
[http://dx.doi.org/10.1038/1681039b0]
[16]
Wilkinson, G.; Rosenblum, M.; Whiting, M.C.; Woodward, R.B. The structure of iron bis-cyclopentadienyl. J. Am. Chem. Soc., 1952, 74(8), 2125-2126.
[http://dx.doi.org/10.1021/ja01128a527]
[17]
Fischer, E.O.; Pfab, W. Cyclopentadien-Metallkomplexe Ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch. - Sect. B J. Chem. Sc., 1952, 7(7), 377-379.
[http://dx.doi.org/10.1515/znb-1952-0701]
[18]
Rosenblum, M.; Woodward, R.B. The structure and chemistry of ferrocene. 111. Evidence pertaining to the ring rotational barrier. J. Am. Chem. Soc., 1958, 80(20), 5443-5449.
[http://dx.doi.org/10.1021/ja01553a032]
[19]
Astruc, D. Why is ferrocene so exceptional? Eur. J. Inorg. Chem., 2017, 2017(1), 6-29.
[http://dx.doi.org/10.1002/ejic.201600983]
[20]
Meléndez, E. Metallocenes as target specific drugs for cancer treatment. Inorg. Chim. Acta, 2012, 393, 36-52.
[http://dx.doi.org/10.1016/j.ica.2012.06.007] [PMID: 23180884]
[21]
Abd-El-Aziz, A.S.; Manners, I. Neutral and cationic macromolecules based on iron sandwich complexes. J. Inorg. Organomet. Polym., 2005, 15(1), 157-195.
[http://dx.doi.org/10.1007/s10904-004-2384-4]
[22]
Fouda, M.F.R.; Abd‐Elzaher, M.M.; Abdelsamaia, R.A.; Labib, A.A. On the medicinal chemistry of ferrocene. Appl. Organometal. Chem, 2007, 21, 613-625.https://doi.org/doi:10.1002/aoc.1202
[23]
Allardyce, C.S.; Dorcier, A.; Scolaro, C.; Dyson, P.J. Development of organometallic (organo-transition metal). Pharmaceuticals. Appl. Organomet. Chem., 2005, 19(1), 1-10.
[http://dx.doi.org/10.1002/aoc.725]
[24]
Neuse, E.W. Macromolecular ferrocene compounds as cancer drug models. J. Inorg. Organomet. Polym., 2005, 15(1), 3-32.
[http://dx.doi.org/10.1007/s10904-004-2371-9]
[25]
van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev., 2004, 104(12), 5931-5985.
[http://dx.doi.org/10.1021/cr0101510] [PMID: 15584693]
[26]
Barik, T.; Ghosh, A.; Mishra, A.; Dhiman, R.; Sasamori, T.; Chatterjee, S. Bioactive 1,1′-unsymmetrical bi-functional ferrocenyl compounds using a novel solvent free one pot multicomponent reaction method. J. Organomet. Chem., 2020, 908121095
[http://dx.doi.org/10.1021/cr0101510]
[27]
Macomber, D.W.; Hart, W.P.; Rausch, M.D. Functionally substituted cyclopentadienyl metal compounds. Adv. Organomet. Chem., 1982, 2, 1-55.
[http://dx.doi.org/10.1016/S0065-3055(08)60377-9]
[28]
Petrov, A.R.; Jess, K.; Freytag, M.; Jones, P.G.; Tamm, M. Large-scale preparation of 1,1′-ferrocenedicarboxylic acid, a key compound for the synthesis of 1,1′-disubstituted ferrocene derivatives. Organometallics, 2013, 32(20), 5946-5954.
[http://dx.doi.org/10.1021/om4004972]
[29]
Rausch, M.D. Metallocene chemistry a decade of progreses. Can. J. Chem., 1963, 41(5), 1289-1314.
[http://dx.doi.org/10.1139/v63-182]
[30]
Martić, S.; Labib, M.; Shipman, P.O.; Kraatz, H.B. Ferrocene-peptido conjugates: from synthesis to sensory applications. Dalton Trans., 2011, 40(28), 7264-7290.
[http://dx.doi.org/10.1039/c0dt01707h] [PMID: 21483964]
[31]
Reeves, P.C. Carboxylation of aromatic compounds: ferrocenecarboxylic acid. Org. Synth., 1977, 56, 28.
[http://dx.doi.org/10.15227/orgsyn.056.0028]
[32]
Arimoto, F.S.; Haven, A.C. Derivatives of dicyclopentadienyliron. J. Am. Chem. Soc., 1955, 77(23), 6295-6297.
[http://dx.doi.org/10.1021/ja01628a068]
[33]
Nesmeyanov, A.N.; Drozd, V.N.; Sazonova, V.A. Azids of ferrocene. Dokl. Akad. Nauk SSSR, 1963, 150(2), 321-324.
[34]
Sethi, S.; Das, P.K.; Behera, N. The chemistry of aminoferrocene, Fe(η5-C5H4NH2)(η5-Cp): synthesis, reactivity and applications. J. Organomet. Chem., 2016, 824, 140-165.
[http://dx.doi.org/10.1016/j.jorganchem.2016.10.014]
[35]
Knox, G.R.; Pauson, P.L.; Willison, D.; Solgniovbt, E.; Toma, S. Ferrocene derivatives. 23. Isocyanoferrocene and isothiocyanatoferrocene. Organometallics, 1990, 9, 301-306.
[http://dx.doi.org/10.1021/om00116a002]
[36]
Bildstein, B.; Malaun, M.; Kopacka, H.; Wurst, K.; Mitterböck, M.; Ongania, K.H.; Opromolla, G.; Zanello, P.N.N. ′-Diferrocenyl-N-heterocyclic carbenes and their derivatives. Organometallics, 1999, 18(21), 4325-4336.
[http://dx.doi.org/10.1021/om990377h]
[37]
Siemeling, U. Singlet carbenes derived from ferrocene and closely related sandwich complexes. Eur. J. Inorg. Chem., 2012, 22, 3523-3536.
[http://dx.doi.org/10.1002/ejic.201200443]
[38]
Kavallieratos, K.; Hwang, S.; Crabtree, R.H. Aminoferrocene derivatives in chloride recognition and electrochemical sensing. Inorg. Chem., 1999, 38(22), 5184-5186.
[http://dx.doi.org/10.1021/ic990813s] [PMID: 11671267]
[39]
Shafir, A.; Power, M.P.; Whitener, G.D.; Arnold, J. Synthesis, structure, and properties of 1,1′-diamino- and 1,1′-diazidoferrocene. Organometallics, 2000, 19(19), 3978-3982.
[http://dx.doi.org/10.1021/om0004085]
[40]
Herberhold, M.; Ellinger, M.; Kremnitz, W. Ferrocenylamine. J. Organomet. Chem., 1983, 24, 227-240.
[http://dx.doi.org/10.1016/s0022-328x(00)98509-7]
[41]
Bildstein, B. Carbenes with ferrocenyl substituents. J. Organomet. Chem., 2001, 617, 28-38.
[http://dx.doi.org/10.1016/S0022-328X(00)00549-0]
[42]
Adhikari, B.; Singh, C.; Shah, A.; Lough, A.J.; Kraatz, H.B. Amino acid chirality and ferrocene conformation guided self-assembly and gelation of ferrocene-peptide conjugates. Chemistry, 2015, 21(32), 11560-11572.
[http://dx.doi.org/10.1002/chem.201501395] [PMID: 26121412]
[43]
Afrasiabi, R.; Kraatz, H.B. Stimuli-responsive supramolecular gelation in ferrocene-peptide conjugates. Chemistry, 2013, 19(51), 17296-17300.
[http://dx.doi.org/10.1002/chem.201302450] [PMID: 24318264]
[44]
Schlögl, K. Über Ferrocen-Aminosäuren Und Verwandte Verbindungen. Monatsh. Chem., 1957, 88(4), 601-621.
[http://dx.doi.org/10.1007/BF00901345]
[45]
Herrick, R.S.; Jarret, R.M.; Curran, T.P.; Dragoli, D.R.; Flaherty, M.B.; Lindyberg, S.E.; Slate, R.A.; Thornton, L.C. Ordered conformations in bis(amino acid) derivatives of 1,1′-ferrocenedicarboxylic acid. Tetrahedron Lett., 1996, 37(30), 5289-5292.
[http://dx.doi.org/10.1016/0040-4039(96)01094-5]
[46]
Van Staveren, D.R.; Weyhermüller, T.; Metzler-Nolte, N. Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. Dalton Trans., 2003, 2, 210-220.
[http://dx.doi.org/10.1039/b208363a]
[47]
Kraatz, H.B.; Lusztyk, J.; Enright, G.D. Ferrocenoyl amino acids: a synthetic and structural study. Inorg. Chem., 1997, 36(11), 2400-2405.
[http://dx.doi.org/10.1021/ic961454t] [PMID: 11669877]
[48]
Corry, A.J.; Goel, A.; Alley, S.R.; Kelly, P.N.; O’Sullivan, D.; Savage, D.; Kenny, P.T.M. N-ortho-ferrocenyl benzoyl dipeptide esters: synthesis, structural characterization and in vitro anti-cancer activity of N-ortho-(ferrocenyl)benzoyl-glycine-l-alanine ethyl ester and N-ortho-(ferrocenyl)benzoyl-l-alanine-glycine ethyl ester. J. Organomet. Chem., 2007, 692(6), 1405-1410.
[http://dx.doi.org/10.1016/j.jorganchem.2006.10.018]
[49]
Lataifeh, A. Ferrocenoyl conjugates of hydroxyl group containing side chain amino acids: synthesis, electrochemical study and reactivity toward electrophiles. J. Organomet. Chem., 2020, 906121056
[http://dx.doi.org/10.1016/j.jorganchem.2019.121056]
[50]
Appoh, F.E.; Sutherland, T.C.; Kraatz, H.B. Changes in the hydrogen bonding pattern in ferrocene peptides. J. Organomet. Chem., 2004, 689(25), 4669-4677.
[http://dx.doi.org/10.1016/j.jorganchem.2004.04.017]
[51]
Gimeno, M.C.; Goitia, H.; Laguna, A.; Luque, M.E.; Villacampa, M.D.; Sepúlveda, C.; Meireles, M. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties. J. Inorg. Biochem., 2011, 105(11), 1373-1382.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.07.015] [PMID: 21946437]
[52]
Goswami, T.K.; Gadadhar, S.; Gole, B.; Karande, A.A.; Chakravarty, A.R. Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-L-amino acids. Eur. J. Med. Chem., 2013, 63, 800-810.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.026] [PMID: 23584543]
[53]
Goswami, T.K.; Gadadhar, S.; Balaji, B.; Gole, B.; Karande, A.A.; Chakravarty, A.R. Ferrocenyl-L-amino acid copper(II) complexes showing remarkable photo-induced anticancer activity in visible light. Dalton Trans., 2014, 43(31), 11988-11999.
[http://dx.doi.org/10.1039/C4DT01348D] [PMID: 24971754]
[54]
Chanawanno, K.; Blesener, T.S.; Schrage, B.R.; Nemykin, V.N.; Herrick, R.S.; Ziegler, C.J. Amino acid ferrocene conjugates using sulfonamide linkages. J. Organomet. Chem., 2018, 870, 121-129.
[http://dx.doi.org/10.1016/j.jorganchem.2018.06.018] [PMID: 31105336]
[55]
Chen, Y.; Wang, A.J.; Yuan, P.X.; Luo, X.; Xue, Y.; Feng, J.J. Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosens. Bioelectron., 2019, 132, 294-301.
[http://dx.doi.org/10.1016/j.bios.2019.02.057] [PMID: 30884316]
[56]
Barišić, L.; Rapić, V.; Kovač, V. Ferrocene compounds. XXIX. Efficient syntheses of 1′-aminoferrocene-1-carboxylic acid derivatives. Croat. Chem. Acta, 2002, 75(1), 199-210.https://doi.org/https://hrcak.srce.hr/127496
[57]
Sudhir, V.S.; Venkateswarlu, C.; Musthafa, O.T.M.; Sampath, S.; Chandrasekaran, S. Click chemistry inspired synthesis of novel ferrocenyl-substituted amino acids or peptides. Eur. J. Org. Chem., 2009, 3(13), 2120-2129.
[http://dx.doi.org/10.1002/ejoc.200801266]
[58]
Sudhir, V.S.; Phani Kumar, N.Y.; Chandrasekaran, S. Click chemistry inspired synthesis of ferrocene amino acids and other derivatives. Tetrahedron, 2010, 66(6), 1327-1334.
[http://dx.doi.org/10.1016/j.tet.2009.12.011]
[59]
Philip, A.T.; Chacko, S.; Ramapanicker, R. Synthesis of stable C-linked ferrocenyl amino acids and their use in solution-phase peptide synthesis. J. Pept. Sci., 2015, 21(12), 887-892.
[http://dx.doi.org/10.1002/psc.2831] [PMID: 26477332]
[60]
Hirao, T. Control of chirality-organized structures of ferrocene-dipeptide bioconjugates. J. Organomet. Chem., 2009, 694(6), 806-811.
[http://dx.doi.org/10.1016/j.jorganchem.2008.09.074]
[61]
Moriuchi, T.; Nagai, T.; Hirao, T. Chirality organization of ferrocenes bearing dipeptide chains of heterochiral sequence. Org. Lett., 2005, 7(23), 5265-5268.
[http://dx.doi.org/10.1021/ol052134t] [PMID: 16268554]
[62]
Ong, C.; Jeng, J.; Juang, S.; Chen, C. A ferrocene-intercalator conjugate with a potente cytotoxicity. Bioorg. Med. Chem. Lett., 1992, 2(9), 929-932.
[http://dx.doi.org/10.1016/S0960-894X(00)80590-9]
[63]
Jaouen, G.; Metzler-Nolte, N. Medicinal Organometallic Chemistry, 32nd ed; Springer, 2010.
[http://dx.doi.org/10.1007/978-3-642-13185-1]
[64]
Marchesan, S.; Easton, C.D.; Styan, K.E.; Waddington, L.J.; Kushkaki, F.; Goodall, L.; McLean, K.M.; Forsythe, J.S.; Hartley, P.G. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials. Nanoscale, 2014, 6(10), 5172-5180.
[http://dx.doi.org/10.1039/C3NR06752A] [PMID: 24700146]
[65]
Cheng, L.Y.; Long, Y.T.; Kraatz, H.B.; Tian, H. Evaluation of an immobilized artificial carbonic anhydrase model for CO2 sequestration. Chem. Sci. (Camb.), 2011, 2(8), 1515-1518.
[http://dx.doi.org/10.1039/c1sc00028d]
[66]
Siebler, D.; Förster, C.; Heinze, K. Redox-responsive organometallic foldamers from ferrocene amino acid: solid-phase synthesis, secondary structure and mixed-valence properties. Dalton Trans., 2011, 40(14), 3558-3575.
[http://dx.doi.org/10.1039/c0dt01528h] [PMID: 21373676]
[67]
Beeren, S.R.; Sanders, J.K.M. Ferrocene-amino acid macrocycles as hydrazone-based receptors for anions. Chem. Sci. (Camb.), 2011, 2(8), 1560-1567.
[http://dx.doi.org/10.1039/c1sc00168j]
[68]
Ludwig, B.S.; Correia, J.D.G.; Kühn, F.E. Ferrocene derivatives as anti-infective agents. Coord. Chem. Rev., 2019, 396, 22-48.
[http://dx.doi.org/10.1016/j.ccr.2019.06.004]
[69]
Gasser, G.; Ott, I.; Metzler-Nolte, N. Organometallic anticancer compounds. J. Med. Chem., 2011, 54(1), 3-25.
[http://dx.doi.org/10.1021/jm100020w] [PMID: 21077686]
[70]
Dirscherl, G.; König, B. The use of solid-phase synthesis techniques for the preparation of peptide-metal complex conjugates. Eur. J. Org. Chem., 2008, 4, 597-634.
[http://dx.doi.org/10.1002/ejoc.200700787]
[71]
Falcone, N.; Kraatz, H-B. Ferrocene Peptide-Based Supramolecular Gels; Elsevier Inc., 2019.
[http://dx.doi.org/10.1016/B978-0-12-814197-7.00003-0]
[72]
Adhikari, B.; Lough, A.J.; Barker, B.; Shah, A.; Xiang, C.; Kraatz, H.B. Bis-amino acid derivatives of 1,1′-ferrocenedicarboxylic acid: structural, electrochemical, and metal ion binding studies. Organometallics, 2014, 33(18), 4873-4887.
[http://dx.doi.org/10.1021/om500032p]
[73]
Adhikari, B.; Kraatz, H-B. Redox-triggered changes in the self-assembly of a ferrocene-peptide conjugate. Chem. Commun. (Camb.), 2014, 50(42), 5551-5553.
[http://dx.doi.org/10.1039/C3CC49268K] [PMID: 24667982]
[74]
Kovač, V.; Čakić Semencic, M.; Kodrin, I.; Roca, S.; Rapić, V. Ferrocene-dipeptide conjugates derived from aminoferrocene and 1-acetyl-1′-aminoferrocene: synthesis and conformational studies. Tetrahedron, 2013, 69(48), 10497-10506.
[http://dx.doi.org/10.1016/j.tet.2013.09.048]
[75]
Falcone, N.; Basak, S.; Dong, B.; Syed, J.; Ferranco, A.; Lough, A.; She, Z.; Kraatz, H.B. A ferrocene-tryptophan conjugate: the role of the indolic nitrogen in supramolecular assembly. ChemPlusChem, 2017, 82(10), 1282-1289.
[http://dx.doi.org/10.1002/cplu.201700407] [PMID: 31957997]
[76]
Xu, S.; Wang, Y.; Qi, W.; Su, R.; He, Z. Design of silica nanostructures with tunable architectures templated by ferrocene peptides. ChemistrySelect, 2018, 3(17), 4939-4943.
[http://dx.doi.org/10.1002/slct.201800805]
[77]
Brenner, M.; Huber, W.W. Herstellung von Alpha‐aminosäureestern durch alkoholyse der methyleste. Helv. Chim. Acta, 1953, 36(5), 1109-1115.
[http://dx.doi.org/10.1002/hlca.19530360522]
[78]
Lataifeh, A.; Bondy, C.R.; Kraatz, H.B. Ferrocene conjugates containing diarginine and aspartic acid: salt bridge interactions in water. Eur. J. Inorg. Chem., 2009, 2009(29-30), 4425-4432.
[http://dx.doi.org/10.1002/ejic.200900444]
[79]
Cheng, L.Y.; Long, Y.T.; Tian, H.; Kraatz, H.B. Spectroscopic and electrochemical investigations into the interactions of metal ions with a ferrocenoyl-histidine peptide conjugate. Eur. J. Inorg. Chem., 2010, 2010(33), 5231-5238.
[http://dx.doi.org/10.1002/ejic.201000658]
[80]
Ferranco, A.; Sun, K.; Udaipaul, T.; Kraatz, H.B. Metal coordination to unsymmetric 1,N′-disubstituted ferrocene histidine peptides. Eur. J. Inorg. Chem., 2018, 2018(27), 3213-3223.
[http://dx.doi.org/10.1002/ejic.201800455]
[81]
Beheshti, S.; Lataifeh, A.; Kraatz, H.B. Hydrogen-bonding interactions in ferrocene-peptide conjugates containing valine. J. Organomet. Chem., 2011, 696(5), 1117-1125.
[http://dx.doi.org/10.1016/j.jorganchem.2010.10.061]
[82]
Scully, C.C.G.; Rutledge, P.J. Synthesis and electrochemical studies of disubstituted ferrocene/dipeptide conjugates with sulfur-containing side chains. Tetrahedron, 2010, 66(30), 5653-5659.
[http://dx.doi.org/10.1016/j.tet.2010.05.070]
[83]
Zhou, B.; Li, C.L.; Hao, Y.Q.; Johnny, M.C.; Liu, Y.N.; Li, J. Ferrocene tripeptide Gly-Pro-Arg conjugates: synthesis and inhibitory effects on Alzheimer’s Aβ(1-42) fibrillogenesis and Aβ-induced cytotoxicity in vitro. Bioorg. Med. Chem., 2013, 21(2), 395-402.
[http://dx.doi.org/10.1016/j.bmc.2012.11.030] [PMID: 23245572]
[84]
Prokopchuk, D.E.; Orlowski, G.A.; Kraatz, H.B. synthesis of amino acid conjugates of 1,1′-dimethylferrocene: new chiral conjugates. Inorg. Chim. Acta, 2008, 361(5), 1327-1331.
[http://dx.doi.org/10.1016/j.ica.2007.08.028]
[85]
Barišić, L.; Roščić, M.; Kovačević, M.; Semenčić, M.Č.; Horvat, S.; Rapić, V. The first ferrocene analogues of muramyldipeptide. Carbohydr. Res., 2011, 346(5), 678-684.
[http://dx.doi.org/10.1016/j.carres.2011.01.006] [PMID: 21316038]
[86]
Lara, C.J.A.; Fierro, M.R.; Manríquez, R.J.; Bustos, B.E.; Insuasty, C.D.S.; García, C.J.E.; Rivera, M.Z.J. Design, synthesis, and use of peptides derived from human papillomavirus L1 protein for the modification of gold electrode surfaces by self-assembled monolayers. Molecules, 2017, 22(11), 1970.
[http://dx.doi.org/10.3390/molecules22111970]
[87]
Valencia, D.P.; Dantas, L.M.F.; Lara, A.; García, J.; Rivera, Z.; Rosas, J.; Bertotti, M. Development of a bio-electrochemical immunosensor based on the immobilization of SPINNTKPHEAR peptide derived from HPV-L1 protein on a gold electrode surface. J. Electroanal. Chem. (Lausanne Switz.), 2016, 770, 50-55.
[http://dx.doi.org/10.1016/j.jelechem.2016.03.040]
[88]
Liu, G.; Wang, J.; Wunschel, D.S.; Lin, Y. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities. J. Am. Chem. Soc., 2006, 128(38), 12382-12383.
[http://dx.doi.org/10.1021/ja0626638] [PMID: 16984165]
[89]
Xiao, H.; Liu, L.; Meng, F.; Huang, J.; Li, G. Electrochemical approach to detect apoptosis. Anal. Chem., 2008, 80(13), 5272-5275.
[http://dx.doi.org/10.1021/ac8005268] [PMID: 18529016]
[90]
Ohtsuka, K.; Maekawa, I.; Waki, M.; Takenaka, S. Electrochemical assay of plasmin activity and its kinetic analysis. Anal. Biochem., 2009, 385(2), 293-299.
[http://dx.doi.org/10.1016/j.ab.2008.11.006] [PMID: 19041631]
[91]
Sun, L.; Chen, Y.; Chen, F.; Ma, F. Peptide-based electrochemical biosensor for matrix metalloproteinase-14 and protein-over expressing cancer cells based on analyte-induced cleavage of peptide. Microchem. J., 2020, 157105103
[http://dx.doi.org/10.1016/j.microc.2020.105103]
[92]
Chowdhury, S.; Schatte, G.; Kraatz, H.B. Synthesis, structure and electrochemistry of ferrocene-peptide macrocycles. Dalton Trans., 2004, 2(11), 1726-1730.
[http://dx.doi.org/10.1039/B401039F] [PMID: 15252569]
[93]
Chowdhury, S.; Sanders, D.A.R.; Schatte, G.; Kraatz, H.B. Discovery of a pseudo β barrel: synthesis and formation by tiling of ferrocene cyclopeptides. Angew. Chem. Int. Ed. Engl., 2006, 45(5), 751-754.
[http://dx.doi.org/10.1002/anie.200502788] [PMID: 16380946]
[94]
Orlowski, G.A.; Chowdhury, S.; Kraatz, H.B. The effect of alkali metal ions on the electrochemical behavior of ferrocene-peptide conjugates immobilized on gold surfaces. Electrochim. Acta, 2007, 53(4), 2034-2039.
[http://dx.doi.org/10.1016/j.electacta.2007.09.014]
[95]
Chantson, J.T.; Verga Falzacappa, M.V.; Crovella, S.; Metzler-Nolte, N. Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. ChemMedChem, 2006, 1(11), 1268-1274.
[http://dx.doi.org/10.1002/cmdc.200600117] [PMID: 17004283]
[96]
Ardila, N. Síntesis y Evaluación de La Actividad Antibacteriana de Potenciales Fármacos Basados.Péptidos Derivados de Buforina y Lactoferricina Bovina Funcionalizados Con Moléculas Antimicrobianas; Universidad Nacional de Colombia, 2019.
[97]
Costa, N.C.S.; Piccoli, J.P.; Santos-Filho, N.A.; Clementino, L.C.; Fusco-Almeida, A.M.; De Annunzio, S.R.; Fontana, C.R.; Verga, J.B.M.; Eto, S.F.; Pizauro-Junior, J.M.; Graminha, M.A.S.; Cilli, E.M. Antimicrobial activity of RP-1 peptide conjugate with ferrocene group. PLoS One, 2020, 15(3)e0228740
[http://dx.doi.org/10.1371/journal.pone.0228740] [PMID: 32214347]
[98]
Yao, P.; Zhang, J.; You, S.; Qi, W.; Su, R.; He, Z. Ferrocene-modified peptides as inhibitors against insulin amyloid aggregation based on molecular simulation. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 3076-3086.
[http://dx.doi.org/10.1039/D0TB00144A] [PMID: 32202581]
[99]
Slootweg, J.C.; Prochnow, P.; Bobersky, S.; Bandow, J.E.; Metzler-Nolte, N. Exploring structure–activity relationships in synthetic antimicrobial peptides (SynAMPs) by a ferrocene scan. Eur. J. Inorg. Chem., 2017, 2017(2), 360-367.
[http://dx.doi.org/10.1002/ejic.201600799]
[100]
Hoffknecht, B.C.; Prochnow, P.; Bandow, J.E.; Metzler-Nolte, N. Influence of metallocene substitution on the antibacterial activity of multivalent peptide conjugates. J. Inorg. Biochem., 2016, 160, 246-249.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.02.036] [PMID: 26988572]
[101]
Miklán, Z.; Szabó, R.; Zsoldos-Mády, V.; Reményi, J.; Bánóczi, Z.; Hudecz, F. New ferrocene containing peptide conjugates: synthesis and effect on human leukemia (HL-60) cells. Biopolymers, 2007, 88(2), 108-114.
[http://dx.doi.org/10.1002/bip.20696] [PMID: 17266125]
[102]
Albada, B.; Metzler-Nolte, N. Highly potent antibacterial organometallic peptide conjugates. Acc. Chem. Res., 2017, 50(10), 2510-2518.
[http://dx.doi.org/10.1021/acs.accounts.7b00282] [PMID: 28953347]
[103]
Zhou, B.; Li, J.; Feng, B.J.; Ouyang, Y.; Liu, Y.N.; Zhou, F. Syntheses and in vitro antitumor activities of ferrocene-conjugated Arg-Gly-Asp peptides. J. Inorg. Biochem., 2012, 116, 19-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.06.014] [PMID: 23010325]
[104]
Harry, A.G.; Murphy, J.P.; Donovan, N.O.; Crown, J.; Rai, D.K.; Kenny, T.M. The synthesis, structural characterization and biological evaluation of novel N- para-(ferrocenyl) ethynyl benzoyl amino acid and dipeptide methyl and ethyl esters as anticancer agents. J. Organomet. Chem., 2017, 846, 379-388.
[http://dx.doi.org/10.1016/j.jorganchem.2017.07.019]
[105]
Albada, H.B.; Prochnow, P.; Bobersky, S.; Langklotz, S.; Schriek, P.; Bandow, J.E.; Metzler-Nolte, N. Tuning the activity of a short arg-trp antimicrobial peptide by lipidation of a C- or N-terminal lysine side-chain. ACS Med. Chem. Lett., 2012, 3(12), 980-984.
[http://dx.doi.org/10.1021/ml300148v] [PMID: 24900420]
[106]
Mari, C.; Mosberger, S.; Llorente, N.; Spreckelmeyer, S.; Gasser, G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “Click” strategies. Inorg. Chem. Front., 2016, 3(3), 397-405.
[http://dx.doi.org/10.1039/C5QI00270B]
[107]
Beckmann, H.S.G.; Wittmann, V. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: triazole linkages from amines. Org. Lett., 2007, 9(1), 1-4.
[http://dx.doi.org/10.1021/ol0621506] [PMID: 17192070]
[108]
Wang, Y.; Vera, C.I.; Lin, Q. Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1,3-dipolar cycloaddition. Org. Lett., 2007, 9(21), 4155-4158.
[http://dx.doi.org/10.1021/ol7017328] [PMID: 17867694]
[109]
Drexler, C.; Milne, M.; Morgan, E.; Jennings, M.; Kraatz, H-B. Synthesis and characterization of new ferrocene peptide conjugates. Dalton Trans., 2009, 22(22), 4370-4378.
[http://dx.doi.org/10.1039/b817670a] [PMID: 19662315]
[110]
Ghazi, D.; Rasheed, Z.E.Y. A review of organotin compounds: chemistry and applications. Arch. Org. Inorg. Chem. Sci., 2018, 3(3), 344-352.
[http://dx.doi.org/10.32474/aoics.2018.03.000161]
[111]
Ingham, R.K.; Rosenberg, S.D.; Gilman, H. Organotin compounds. Chem. Rev., 1960, 60(5), 459-539.
[http://dx.doi.org/10.1021/cr60207a002]
[112]
Nath, M.; Saini, P.K. Chemistry and applications of Organotin(IV) complexes of Schiff bases. Dalton Trans., 2011, 40(27), 7077-7121.
[http://dx.doi.org/10.1039/c0dt01426e] [PMID: 21494719]
[113]
Rabiee, N.; Safarkhani, M.; Amini, M.M. Investigating the structural chemistry of Organotin(IV) compounds: recent advances. Rev. Inorg. Chem., 2019, 39(1), 13-45.
[http://dx.doi.org/10.1515/revic-2018-0014]
[114]
Caseri, W. Initial organotin chemistry. J. Organomet. Chem., 2014, 751, 20-24.
[http://dx.doi.org/10.1016/j.jorganchem.2013.08.009]
[115]
Davies, A. Organotin Chemistry, 2nd ed; John Wiley & Sons, 2004.
[http://dx.doi.org/10.1002/3527601899]
[116]
Hulme, R. 287. The crystal and molecular structure of chloro (trimethyl)-pyridinetin (IV). J. Chem. Soc., 1963, 1963, 1524-1527.
[http://dx.doi.org/10.1039/jr9630001524]
[117]
Pellerito, L.; Prinzivalli, C.; Casella, G.; Fiore, T.; Pellerito, O.; Giuliano, M.; Scopelliti, M.; Pellerito, C. Diorganotin(IV) N-acetyl-L-cysteinate complexes: synthesis, solid state, solution phase, DFT and biological investigations. J. Inorg. Biochem., 2010, 104(7), 750-758.
[http://dx.doi.org/10.1016/j.jinorgbio.2010.03.008] [PMID: 20421134]
[118]
Kumari, A.; Tandon, J.P.; Singh, R.V. Antimicorbial effects of newly synthesized Organotin(IV) and Organolead(IV) derivatives. Appl. Organomet. Chem., 1993, 7(8), 655-660.
[http://dx.doi.org/10.1002/aoc.590070809]
[119]
Bhanuka, S.; Singh, H.L. Spectral, DFT and antibacterial studies of Tin(II) complexes of Schiff bases derived from aromatic aldehyde and amino acids. Rasayan J. Chem., 2017, 10(2), 673-681.
[http://dx.doi.org/10.7324/RJC.2017.1021668]
[120]
Basu Baul, T.S.; Kehie, P.; Höpfl, H.; Duthie, A.; Eng, G.; Linden, A. Organotin(IV) complexes derived from proteinogenic amino acid: synthesis, structure and evaluation of larvicidal efficacy on Anopheles stephensi mosquito larvae. Appl. Organomet. Chem., 2017, 31(1)e3547
[http://dx.doi.org/10.1002/aoc.3547]
[121]
Shujha, S.; Shah, A. Zia-Ur-Rehman; Muhammad, N.; Ali, S.; Qureshi, R.; Khalid, N.; Meetsma, A. Diorganotin(IV) derivatives of ONO tridentate Schiff base: synthesis, crystal structure, in vitro antimicrobial, anti-leishmanial and DNA binding studies. Eur. J. Med. Chem., 2010, 45(7), 2902-2911.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.015] [PMID: 20399542]
[122]
Banti, C.N.; Hadjikakou, S.K.; Sismanoglu, T.; Hadjiliadis, N. Anti-proliferative and antitumor activity of organotin(IV) compounds. An overview of the last decade and future perspectives. J. Inorg. Biochem., 2019, 194, 114-152.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.02.003] [PMID: 30851663]
[123]
Attanzio, A.; Ippolito, M.; Girasolo, M.A.; Saiano, F.; Rotondo, A.; Rubino, S.; Mondello, L.; Capobianco, M.L.; Sabatino, P.; Tesoriere, L.; Casella, G. Anti-cancer activity of di- and tri-organotin(IV) compounds with D-(+)-Galacturonic acid on human tumor cells. J. Inorg. Biochem., 2018, 188, 102-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.04.006] [PMID: 29807841]
[124]
Kobakhidze, N.; Farfán, N.; Romero, M.; Méndez-Stivalet, J.M.; Ballinas-López, M.G.; García-Ortega, H.; Domínguez, O.; Santillan, R.; Sánchez-Bartéz, F.; Gracia-Mora, I. New Pentacoordinated Schiff-base Diorganotin(IV) complexes derived from nonpolar side chain α-amino acids. J. Organomet. Chem., 2010, 695(8), 1189-1199.
[http://dx.doi.org/10.1016/j.jorganchem.2010.01.024]
[125]
Nath, M.; Yadav, R.; Gielen, M.; Dalil, H.; De Vos, D.; Eng, G. Synthesis, characteristic spectral studies and in vitro antimicrobial and antitumour activities of Organotin(IV) complexes of Schiff bases derived from amino-acids. Appl. Organomet. Chem., 1997, 11(9), 727-736.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199709)11:9<727:AID-AOC639>3.0.CO;2-X]
[126]
Nath, M.; Jairath, R.; Eng, G.; Song, X.; Kumar, A. Synthesis, spectral characterization and biological studies of some organotin(IV) complexes of L-proline, trans-hydroxy-L-proline and L-glutamine. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2005, 62(4-5), 1179-1187.
[http://dx.doi.org/10.1016/j.saa.2005.04.012] [PMID: 15955727]
[127]
Nath, M. Toxicity and the cardiovascular activity of organotin compounds: a review. Appl. Organomet. Chem., 2008, 22(10), 598-612.
[http://dx.doi.org/10.1002/aoc.1436]
[128]
Nath, M.; Saini, P.K.; Kumar, A. Synthesis, structural characterization, biological activity and thermal study of tri and diorganotin(IV) complexes of Schiff bases derived from 2-aminomethyl benzimidazole. Appl. Organomet. Chem., 2009, 23(11), 434-445.
[http://dx.doi.org/10.1002/aoc.1537]
[129]
Antonenko, T.A.; Shpakovsky, D.B.; Berseneva, D.; Gracheva, Y.A.; Dubova, L.G.; Shevtsov, P.N.; Redkozubova, O.M.; Shevtsova, E.F.; Tafeenko, V.A.; Aslanov, L.A.; Milaeva, E.R. Cytotoxic activity of organotin carboxylates based on synthetic phenolic antioxidants and polycyclic bile acids. J. Organomet. Chem., 2020, 909121089
[http://dx.doi.org/10.1016/j.jorganchem.2019.121089]
[130]
Pellerito, C.; Emanuele, S.; Ferrante, F.; Celesia, A.; Giuliano, M.; Fiore, T. Tributyltin(IV) ferulate, a novel synthetic ferulic acid-derivative, induces autophagic cell death in colon cancer cells: from chemical synthesis to biochemical effects. J. Inorg. Biochem., 2020, 205110999
[http://dx.doi.org/10.1016/j.jinorgbio.2020.110999]
[131]
Nath, M.; Yadav, R.; Eng, G.; Musingarimi, P. Characteristic spectral studies and in vitro antimicrobial and in vivo multi-infection antifungal activities in mice of new Organotin(IV) derivatives of heterocyclic amino acids. Appl. Organomet. Chem., 1999, 13(1), 29-37.https://doi.org/https://doi.org/10.1002/(SICI)1099-0739(199901)13:1<29:AID-AOC809>3.0.CO;2-D
[132]
Dylag, M.; Pruchnik, H.; Pruchnik, F.; Majkowska-Skrobek, G.; Ułaszewski, S. Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med. Mycol., 2010, 48(2), 373-383.
[http://dx.doi.org/10.3109/13693780903188680] [PMID: 19688632]
[133]
Ali, S.; Shahzadi, S. Imtiaz-ud-Din. Anticarcinogenicity and toxicity of Organotin(IV) complexes: a review. Iran. J. Sci. Technol. Trans. A Sci., 2018, 42(2), 505-524.
[http://dx.doi.org/10.1007/s40995-016-0048-1]
[134]
Amir, M. K.; Khan, S. Anticancer activity of Organotin(IV) carboxylates. Inorganica Chim. Acta, 2014, 423(B), 14-25.
[http://dx.doi.org/10.1016/j.ica.2014.07.053]
[135]
Baul, T.S.; Basu, S.; de Vos, D.; Linden, A. Amino acetate functionalized Schiff base Organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Invest. New Drugs, 2009, 27(5), 419-431.
[http://dx.doi.org/10.1007/s10637-008-9189-1] [PMID: 18941713]
[136]
Devi, J.; Yadav, J. Recent advancements in Organotin(IV) complexes as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(3), 335-353.
[http://dx.doi.org/10.2174/1871520617666171106125114] [PMID: 29110624]
[137]
Kaluđerović, G.N.; Kommera, H.; Hey-Hawkins, E.; Paschke, R.; Gómez-Ruiz, S. Synthesis and biological applications of ionic triphenyltin(IV) chloride carboxylate complexes with exceptionally high cytotoxicity. Metallomics, 2010, 2(6), 419-428.
[http://dx.doi.org/10.1039/c0mt00007h] [PMID: 21072389]
[138]
Ordóñez-Hernández, J.; Arcos-Ramos, R.; García-Ortega, H.; Munguía-Viveros, E.; Romero-Ávila, M.; Flores-Alamo, M.; Gracia-Mora, I.; Sánchez-Bartéz, F.; Santillan, R.; Farfán, N. Synthesis and structural analysis of bioactive schiff-base pentacoordinated Diorganotin(IV). Complexes. J. Mol. Struct., 2019, 1180, 462-471.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.107]
[139]
Frankel, M.; Gertner, D.; Wagner, D.; Zilkha, A. Organotin esters of amino acids and their use in peptide syntheses. J. Org. Chem., 1965, 30(5), 1596-1599.
[http://dx.doi.org/10.1021/jo01016a063]
[140]
Kong-Mun, Lo. V.G. Kumar Das. Organotin esters of 3-ureidopropionic acid. Crystal structure of (C6H5)3SnCO(CH2)2NHCONH2. J. Organomet. Chem., 1991, 412(1–2), 21-29.
[http://dx.doi.org/10.1016/0022-328X(91)86037-Q]
[141]
Nath, M.; Pokharia, S.; Yadav, R. Organotin(IV) complexes of amino acids and peptides. Coord. Chem. Rev., 2001, 215(1), 99-149.
[http://dx.doi.org/10.1016/S0010-8545(00)00404-5]
[142]
Smith, P.; Hyams, R.; Brooks, J.; Clarkson, R. Synthesis of air stable triorganotin derivates of aminoacids. J. Organomet. Chem., 1979, 171, C29-C33.
[http://dx.doi.org/10.1016/S0022-328X(00)81547-8]
[143]
Girasolo, M.A.; Tesoriere, L.; Casella, G.; Attanzio, A.; Capobianco, M.L.; Sabatino, P.; Barone, G.; Rubino, S.; Bonsignore, R. A novel compound of triphenyltin(IV) with N-tert-butoxycarbonyl-L-ornithine causes cancer cell death by inducing a P53-dependent activation of the mitochondrial pathway of apoptosis. Inorg. Chim. Acta, 2017, 456, 1-8.
[http://dx.doi.org/10.1016/j.ica.2016.11.012]
[144]
Nagy, L.; Korecz, L.; Kiricsi, I.; Zsikla, L.; Burger, K. Synthesis, Mössbauer, and IP spectroscopic studies and thermal behavior of Diorganotin(IV) complexes with carbohydrate ligands. Struct. Chem., 1991, 2(3-4), 23-231.
[http://dx.doi.org/10.1007/BF00672219]
[145]
Tabassum, S.; Yadav, S.; Arjmand, F. Exploration of glycosylated- Organotin(IV) complexes as anticancer drug candidates. Inorganica Chim. Acta, 2014, 423(B), 38-45.
[http://dx.doi.org/10.1016/j.ica.2014.07.080]
[146]
Nath, M.; Vats, M.; Roy, P. Mode of action of tin-based anti-proliferative agents: Biological studies of Organotin(IV) derivatives of fatty acids. J. Photochem. Photobiol. B, 2015, 148, 88-100.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.023] [PMID: 25900554]
[147]
Nath, M.; Roy, P.; Mishra, R.; Thakur, M. Structure-cytotoxicity relationship for apoptotic inducers Organotin(IV) derivatives of mandelic acid and L-proline and their mixed ligand complexes having enhanced cytotoxicity. Appl. Organomet. Chem., 2019, 33(2), 1-17.
[http://dx.doi.org/10.1002/aoc.4663]
[148]
Ruan, B.; Tian, Y.; Zhou, H.; Wu, J.; Hu, R.; Zhu, C.; Yang, J.; Zhu, H. synthesis, characterization and in vitro antitumor activity of three Organotin(IV) complexes with carbazole ligand. Inorg. Chim. Acta, 2011, 365(1), 302-308.
[http://dx.doi.org/10.1016/j.ica.2010.09.024]
[149]
Muthalib, A.F.A.; Baba, I. New mono-Organotin (IV) dithiocarbamate complexes. AIP Conf. Proc., 2014, 1614, 237-243.
[http://dx.doi.org/10.1063/1.4895202]
[150]
Adeyemi, J.O.; Onwudiwe, D.C.; Hosten, E.C. Synthesis, characterization and the use of Organotin(IV) dithiocarbamate complexes as precursor to tin sulfide nanoparticles by heat up approach. J. Mol. Struct., 2019, 1195, 395-402.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.115]
[151]
Cruz-Huerta, J.; Carillo-Morales, M.; Santacruz-Juárez, E.; Hernández-Ahuactzi, I.F.; Escalante-García, J.; Godoy-Alcantar, C.; Guerrero-Alvarez, J.A.; Höpfl, H.; Morales-Rojas, H.; Sánchez, M. Macrocyclic diorganotin complexes of γ-amino acid dithiocarbamates as hosts for ion-pair recognition. Inorg. Chem., 2008, 47(21), 9874-9885.
[http://dx.doi.org/10.1021/ic8007987] [PMID: 18841933]
[152]
Yusof, E.N.M.; Latif, M.A.M.; Tahir, M.I.M.; Sakoff, J.A.; Simone, M.I.; Page, A.J.; Veerakumarasivam, A.; Tiekink, E.R.T.; Ravoof, T.B.S.A. o-Vanillin derived Schiff bases and their Organotin(IV) compounds: synthesis, structural characterisation, in-silico studies and cytotoxicity. Int. J. Mol. Sci., 2019, 20(4), 854.
[http://dx.doi.org/10.3390/ijms20040854] [PMID: 30781445]
[153]
Torres-Huerta, A.; Cruz-Huerta, J.; Höpfl, H.; Hernández-Vázquez, L.G.; Escalante-García, J.; Jiménez-Sánchez, A.; Santillan, R.; Hernández-Ahuactzi, I.F.; Sánchez, M. Variation of the molecular conformation, shape, and cavity size in dinuclear metalla-macrocycles containing hetero-ditopic dithiocarbamate-carboxylate ligands from a homologous series of N-substituted amino acids. Inorg. Chem., 2016, 55(23), 12451-12469.
[http://dx.doi.org/10.1021/acs.inorgchem.6b02387] [PMID: 27934408]
[154]
Shaheen, F.; Sirajuddin, M.; Ali, S. Zia-ur-Rehman; Dyson, P. J.; Shah, N. A.; Tahir, M. N. Organotin(IV) 4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbodithioates: synthesis, characterization and biological activities. J. Organomet. Chem., 2018, 856(IV), 13-22.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.010]
[155]
Tzimopoulos, D.; Sanidas, I.; Varvogli, A.C.; Czapik, A.; Gdaniec, M.; Nikolakaki, E.; Akrivos, P.D. On the bioreactivity of triorganotin aminobenzoates. Investigation of trialkyl and triarylyltin(IV) esters of 3-amino and 4-aminobenzoic acids. J. Inorg. Biochem., 2010, 104(4), 423-430.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.12.006] [PMID: 20060169]
[156]
Beltrán, H.I.; Zamudio-Rivera, L.S.; Mancilla, T.; Santillan, R.; Farfán, N. One-step preparation, structural assignment, and X-ray study of 2,2-di-n-butyl- and 2,2-diphenyl-6-aza-1,3-dioxa-2-stannabenzocyclononen-4-ones derived from amino acids. Chemistry, 2003, 9(10), 2291-2306.
[http://dx.doi.org/10.1002/chem.200204260] [PMID: 12772304]
[157]
Nath, M.; Sharma, C. Sharma, N. Dibutyltin(IV) Complexes of Schiff bases derived from aminoacids. Synth. React. Inorg. Met. Chem., 1991, 21(5), 807-824.
[http://dx.doi.org/10.1080/15533179108016844]
[158]
Yin, H.D.; Wang, Q.B.; Xue, S.C. Synthesis and structural characterization of Diorganotin(IV) esters of salicylidene-amino acids. J. Organomet. Chem., 2004, 689(15), 2480-2485.
[http://dx.doi.org/10.1016/j.jorganchem.2004.05.004]
[159]
Rocha-Del Castillo, E.; Gómez-García, O.; Andrade-Pavón, D.; Villa-Tanaca, L.; Ramírez-Apan, T.; Nieto-Camacho, A.; Gómez, E. Dibutyltin(IV) complexes derived from L-DOPA: synthesis, molecular docking, cytotoxic and antifungal activity. Chem. Pharm. Bull. (Tokyo), 2018, 66(12), 1104-1113.
[http://dx.doi.org/10.1248/cpb.c18-00441] [PMID: 30504627]
[160]
Basu Baul, T.S.; Kehie, P.; Duthie, A.; Guchhait, N.; Raviprakash, N.; Mokhamatam, R.B.; Manna, S.K.; Armata, N.; Scopelliti, M.; Wang, R.; Englert, U. Synthesis, photophysical properties and structures of organotin-Schiff bases utilizing aromatic amino acid from the chiral pool and evaluation of the biological perspective of a triphenyltin compound. J. Inorg. Biochem., 2017, 168, 76-89.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.12.001] [PMID: 28024187]
[161]
Xiao, X.; Li, Y.; Dong, Y.; Li, W.; Xu, K.; Shi, N.; Liu, X.; Xie, J.; Liu, P. “S” Shaped Organotin(IV) carboxylates based on amide carboxylic acids: syntheses, crystal structures and antitumor activities. J. Mol. Struct., 2017, 1130, 901-908.
[http://dx.doi.org/10.1016/j.molstruc.2016.10.083]
[162]
Singh, N.; Kumar, K.; Srivastav, N.; Singh, R.; Kaur, V.; Jasinski, J.P.; Butcher, R.J. Exploration of fluorescent organotin compounds of α-amino acid Schiff bases for the detection of organophosphorous chemical warfare agents: quantification of diethylchlorophosphate. New J. Chem., 2018, 42(11), 8756-8764.
[http://dx.doi.org/10.1039/C8NJ01153B]
[163]
Cordes, E.H.; Jencks, W.P. On the Mechanism of Schiff base formation and hydrolysis. J. Am. Chem. Soc., 1962, 84(5), 832-837.
[http://dx.doi.org/10.1021/ja00864a031]
[164]
Yan, C.; Zhang, J.; Liang, T.; Li, Q. Diorganotin (IV) complexes with 4-nitro-N-phthaloyl-glycine: Synthesis, characterization, antitumor activity and DNA-binding studies. Biomed. Pharmacother., 2015, 71, 119-127.
[http://dx.doi.org/10.1016/j.biopha.2015.02.027] [PMID: 25960226]
[165]
Ronconi, L.; Marzano, C.; Russo, U.; Sitran, S.; Graziani, R.; Fregona, D. Synthesis, characterization and in vitro cytotoxicity of new organotin(IV) derivatives of N-methylglycine. J. Inorg. Biochem., 2002, 91(2), 413-420.
[http://dx.doi.org/10.1016/S0162-0134(02)00465-8] [PMID: 12161311]
[166]
Singh, H.L.; Singh, J. Synthesis, spectroscopic, molecular structure, and antibacterial studies of Dibutyltin(Iv) Schiff base complexes derived from phenylalanine, isoleucine, and glycine. Bioinorg. Chem. Appl., 2014, 716578
[http://dx.doi.org/10.1155/2014/716578]
[167]
Engel, A.; Dehnen, S. Amino acid functionalized organotin trichlorides and their tin sulfide clusters. Eur. J. Inorg. Chem., 2019, (39-40), 4313-4320.
[http://dx.doi.org/10.1002/ejic.201900528]
[168]
Tahira, K.; Ali, S.; Shahzadi, S.; Sharma, S.K.; Qanungo, K. Bimetallic Organotin(IV) complexes with ferrocene-based azomethines: synthesis, characterization, semi-empirical study, and antibacterial activity. J. Coord. Chem., 2011, 64(11), 1871-1884.
[http://dx.doi.org/10.1080/00958972.2011.584190]
[169]
Nath, M.; Pokharia, S.; Song, X.; Eng, G.; Gielen, M.; Kemmer, M.; Biesemans, M.; Willem, R.; de Vos, D. New Organotin(IV) derivatives of dipeptides as models for metal-protein interactions: in vitro anti-tumour activity. Appl. Organomet. Chem., 2003, 17(5), 305-314.
[http://dx.doi.org/10.1002/aoc.451]
[170]
Nath, M.; Singh, H.; Eng, G.; Song, X. New diorganotin(IV) derivatives of dipeptides: synthesis and characteristic spectral studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(2), 529-536.
[http://dx.doi.org/10.1016/j.saa.2008.01.006] [PMID: 18289925]
[171]
Katsoulakou, E.; Tiliakos, M.; Papaefstathiou, G.; Terzis, A.; Raptopoulou, C.; Geromichalos, G.; Papazisis, K.; Papi, R.; Pantazaki, A.; Kyriakidis, D.; Cordopatis, P.; Manessi-Zoupa, E. Diorganotin(IV) complexes of dipeptides containing the α-aminoisobutyryl residue (Aib): preparation, structural characterization, antibacterial and antiproliferative activities of [(n-Bu)2Sn(H-1L)] (LH=H-Aib-L-Leu-OH, H-Aib-L-Ala-OH). J. Inorg. Biochem., 2008, 102(7), 1397-1405.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.01.001] [PMID: 18289688]
[172]
Mundus-glowacki, B.; Huber, F.; Preut, H.; Ruisit, G.; Barbieri, R. Synthesis and spectroscopic characterization of dimethyl, di-n-butil, di-t-butyl and diphenyl-tin(IV) derivates of dipeptides: crystal and molecular structure of di-n- butyltin (IV). Glycylvalinate. Appl. Organomet. Chem., 1992, 6, 83-94.
[http://dx.doi.org/10.1002/aoc.590060111]
[173]
Nath, M.; Pokharia, S.; Eng, G.; Song, X.; Kumar, A.; Gielen, M.; Willem, R.; Biesemans, M. New trimethyltin(IV) derivatives of dipeptides: synthesis, characteristic spectral studies and biological activity. Appl. Organomet. Chem., 2004, 18(9), 460-470.
[http://dx.doi.org/10.1002/aoc.698]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy