Abstract
Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route.
Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles.
Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method.
Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase.
Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.
Keywords: ZnO, Sm-doped ZnO, sol-gel auto-combustion method, X-ray diffraction, bandgap tunability, photoluminescence.
Graphical Abstract
[http://dx.doi.org/10.1007/s10971-017-4335-x]
[http://dx.doi.org/10.1007/s10971-017-4540-7]
[http://dx.doi.org/10.1007/s10854-013-1302-3]
[http://dx.doi.org/10.1007/s10854-013-1173-7]
[http://dx.doi.org/10.1016/j.jlumin.2010.02.028]
[http://dx.doi.org/10.1016/j.apsusc.2014.04.192]
[http://dx.doi.org/10.1007/s00339-019-2397-z]
[http://dx.doi.org/10.1039/C0JM01800G]
[http://dx.doi.org/10.1016/j.apsusc.2019.01.077]
[http://dx.doi.org/10.1007/s00339-019-2584-y]
[http://dx.doi.org/10.1007/s00339-019-2732-4]
[http://dx.doi.org/10.1007/s00339-016-9759-6]
[http://dx.doi.org/10.1007/s10971-013-3061-2]
[http://dx.doi.org/10.1039/C4RA12157K]
[http://dx.doi.org/10.1016/j.jre.2019.02.009]
[http://dx.doi.org/10.1039/C8RA01638K]
[http://dx.doi.org/10.1039/C6RA12905F]
[http://dx.doi.org/10.1016/j.jallcom.2019.04.113]
[http://dx.doi.org/10.1143/APEX.2.071004]
[http://dx.doi.org/10.1039/b307028j]
[http://dx.doi.org/10.1016/j.jnoncrysol.2019.04.015]
[http://dx.doi.org/10.1016/j.matchemphys.2019.03.016]
[http://dx.doi.org/10.1080/00387010.2010.486717]
[http://dx.doi.org/10.1016/j.ijleo.2017.10.004]
[http://dx.doi.org/10.1016/j.molcata.2006.11.008]
[http://dx.doi.org/10.1007/s42452-019-0272-3]
[http://dx.doi.org/10.1039/C7NJ03927A]
[http://dx.doi.org/10.1016/j.catcom.2006.12.001]
[http://dx.doi.org/10.1007/s10971-017-4503-z]
[http://dx.doi.org/10.1039/C9CP02285F] [PMID: 31149686]
[http://dx.doi.org/10.1016/j.apsusc.2017.11.127]
[http://dx.doi.org/10.1016/j.matchemphys.2017.08.067]
[http://dx.doi.org/10.1039/C8RA09939A]
[http://dx.doi.org/10.1016/j.jascer.2017.02.001]
[http://dx.doi.org/10.1016/j.moem.2017.10.001]
[http://dx.doi.org/10.1155/2018/7096195]
[http://dx.doi.org/10.1007/s42452-020-2639-x]
[http://dx.doi.org/10.1016/j.cdc.2020.100505]
[http://dx.doi.org/10.1016/j.matchemphys.2008.09.025]
[http://dx.doi.org/10.1002/pssb.19660150224]
[http://dx.doi.org/10.1007/s10854-016-4765-1]
[http://dx.doi.org/10.1016/j.ceramint.2014.07.148]
[http://dx.doi.org/10.1063/1.1992666]
[http://dx.doi.org/10.1016/j.ceramint.2014.03.119]
[http://dx.doi.org/10.1002/adfm.200901884]
[http://dx.doi.org/10.1063/1.2196051]
[http://dx.doi.org/10.1007/s10854-013-1359-z]
[http://dx.doi.org/10.1007/s00339-004-2996-0]
[http://dx.doi.org/10.1016/j.ijleo.2016.01.074]
[http://dx.doi.org/10.1007/s13391-013-3082-6]
[http://dx.doi.org/10.1016/j.optmat.2017.08.015]
[http://dx.doi.org/10.1007/s10854-017-6355-2]
[http://dx.doi.org/10.1016/j.jallcom.2013.04.133]
[http://dx.doi.org/10.1007/s40094-018-0304-1]
[http://dx.doi.org/10.1039/C6RA02278B]
[http://dx.doi.org/10.1002/pssc.201000468]
[http://dx.doi.org/10.1016/j.physb.2014.11.016]
[http://dx.doi.org/10.1111/j.1151-2916.2002.tb00223.x]