Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

The Rationale for Use of Amiodarone and its Derivatives for the Treatment of Chagas’ Disease and Leishmaniasis

Author(s): Gustavo Benaim*, Alberto E. Paniz-Mondolfi and Emilia Mia Sordillo

Volume 27, Issue 15, 2021

Published on: 28 September, 2020

Page: [1825 - 1833] Pages: 9

DOI: 10.2174/1381612826666200928161403

Price: $65

conference banner
Abstract

The repurposing or repositioning of previously-approved drugs has become an accepted strategy for the expansion of the pharmacopeia for neglected diseases. Accordingly, amiodarone, an inexpensive and extensively- used class III antiarrhythmic has been proposed as a treatment for Chagas’ disease and leishmaniasis. Amiodarone has a potent trypanocidal and leishmanicidal action, mainly acting through the disruption of parasite intracellular Ca2+ homeostasis, which is a recognized target of different drugs that have activity against trypanosomatids. Amiodarone collapses the mitochondrial electrochemical potential (Δφm) and induces the rapid alkalinization of parasite acidocalcisomes, driving a large increase in the intracellular Ca2+ concentration. Amiodarone also inhibits oxidosqualene cyclase activity, a key enzyme in the ergosterol synthesis pathway that is essential for trypanosomatid survival. In combination, these three effects lead to parasite death. Dronedarone, a drug synthesized to minimize some of the adverse effects of amiodarone, displays trypanocidal and leishmanicidal activity through the same mechanisms, but curiously, being more potent on Leishmaniasis than its predecessor. In vitro studies suggest that other recently-synthesized benzofuran derivatives can act through the same mechanisms, and produce similar effects on different trypanosomatid species. Recently, the combination of amiodarone and itraconazole has been used successfully to treat 121 dogs naturally-infected by T. cruzi, strongly supporting the potential therapeutic use of this combination against human trypanosomatid infections.

Keywords: Amiodarone, dronedarone, benzofuran derivatives, calcium, Trypanosoma cruzi, Chagas disease, Leishmaniasis.

[1]
Sbaraglini ML, Vanrell MC, Bellera CL, et al. Drug repositioning for neglected tropical protozoan diseases. Curr Top Med Chem 2016; 16: 2201-22.
[http://dx.doi.org/10.2174/1568026616666160216154309] [PMID: 26881713]
[2]
Available form: www.clincalc.com
[3]
Colunga Biancatelli RM, Congedo V, Calvosa L, Ciacciarelli M, Polidoro A, Iuliano L. Adverse reactions of Amiodarone. J Geriatr Cardiol 2019; 16(7): 552-66.
[http://dx.doi.org/10.11909/j.issn.1671-5411.2019.07.004] [PMID: 31447894]
[4]
Courchesne WE. Characterization of a novel, broad-based fungicidal activity for the antiarrhythmic drug amiodarone. J Pharmacol Exp Ther 2002; 300(1): 195-9.
[http://dx.doi.org/10.1124/jpet.300.1.195] [PMID: 11752116]
[5]
Courchesne WE, Ozturk S. Amiodarone induces a caffeine-inhibited, MID1-depedent rise in free cytoplasmic calcium in Saccharomyces cerevisiae. Mol Microbiol 2003; 47(1): 223-34.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03291.x] [PMID: 12492866]
[6]
Courchesne WE, Tunc M, Liao S. Amiodarone induces stress responses and calcium flux mediated by the cell wall in Saccharomyces cerevisiae. Can J Microbiol 2009; 55(3): 288-303.
[http://dx.doi.org/10.1139/W08-132] [PMID: 19370072]
[7]
Benaim G, Garcia CRS. Targeting calcium homeostasis as the therapy of Chagas’ disease and leishmaniasis - a review. Trop Biomed 2011; 28(3): 471-81.
[PMID: 22433874]
[8]
Benaim G, Paniz-Mondolfi AE, Sordillo EM, Martinez-Sotillo N. Disruption of intracellular calcium homeostasis as a therapeutic target against Trypanosoma cruzi. Front Cell Infect Microbiol 2020; 10: 46.
[http://dx.doi.org/10.3389/fcimb.2020.00046] [PMID: 32133302]
[9]
Benaim G, Sanders JM, Garcia-Marchán Y, et al. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem 2006; 49(3): 892-9.
[http://dx.doi.org/10.1021/jm050691f] [PMID: 16451055]
[10]
Piérard GE, Arrese JE, Piérard-Franchimont C. Itraconazole. Expert Opin Pharmacother 2000; 1(2): 287-304.
[http://dx.doi.org/10.1517/14656566.1.2.287] [PMID: 11249550]
[11]
Veiga-Santos P, Barrias ES, Santos JF, et al. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Agents 2012; 40(1): 61-71.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.03.009] [PMID: 22591838]
[12]
Urbina JA, Payares G, Contreras LM, et al. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother 1998; 42(7): 1771-7.
[http://dx.doi.org/10.1128/AAC.42.7.1771] [PMID: 9661019]
[13]
Molina J, Martins-Filho O, Brener Z, Romanha AJ, Loebenberg D, Urbina JA. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother 2000; 44(1): 150-5.
[http://dx.doi.org/10.1128/AAC.44.1.150-155.2000] [PMID: 10602737]
[14]
Benaim G, Paniz-Mondolfi AE. The emerging role of amiodarone and dronedarone in treatment of chronic chagasic cardiomyopathy. Nat Rev Cardiol 2012; 9: 605-9.
[http://dx.doi.org/10.1038/nrcardio.2012.108] [PMID: 22869282]
[15]
Adesse D, Garzoni LR, Huang H, Tanowitz HB, de Nazareth Meirelles M, Spray DC. Trypanosoma cruzi induces changes in cardiac connexin43 expression. Microbes Infect 2008; 10(1): 21-8.
[http://dx.doi.org/10.1016/j.micinf.2007.09.017] [PMID: 18068391]
[16]
Adesse D, Azzam EM, Meirelles MdeN, Urbina JA, Garzoni LR. Amiodarone inhibits Trypanosoma cruzi infection and promotes cardiac cell recovery with gap junction and cytoskeleton reassembly in vitro. Antimicrob Agents Chemother 2011; 55(1): 203-10.
[http://dx.doi.org/10.1128/AAC.01129-10] [PMID: 21078932]
[17]
Serrano-Martín X, García-Marchan Y, Fernandez A, et al. Amiodarone destabilizes intracellular Ca2+ homeostasis and biosynthesis of sterols in Leishmania mexicana. Antimicrob Agents Chemother 2009; 53(4): 1403-10.
[http://dx.doi.org/10.1128/AAC.01215-08] [PMID: 19164149]
[18]
Pinto-Martinez AK, Rodriguez-Durán J, Serrano-Martin X, Hernandez-Rodriguez V, Benaim G. Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the Sphingosine-dependent plasma membrane Ca2+ Channel. Antimicrob Agents Chemother 2017; 62(1): 1-10.
[http://dx.doi.org/10.1128/AAC.01614-17] [PMID: 29061745]
[19]
Serrano-Martín X, Payares G, DeLucca M, et al. Amiodarone and miltefosine synergistically induce parasitological cure of mice infected with Leishmania mexicana. Antimicrob Agents Chemother 2009; 53: 5108-13.
[http://dx.doi.org/10.1128/AAC.00505-09] [PMID: 19805563]
[20]
Benaim G, García-Marchán Y, Reyes C, Uzcanga G, Figarella K. Identification of a sphingosine-sensitive Ca2+ channel in the plasma membrane of Leishmania mexicana. Biochem Biophys Res Commun 2013; 430(3): 1091-6.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.033] [PMID: 23261440]
[21]
Rodriguez-Duran J, Pinto-Martinez A, Castillo C, Benaim G. Identification and electrophysiological properties of a sphingosine-dependent plasma membrane Ca2+ channel in Trypanosoma cruzi. FEBS J 2019; 286(19): 3909-25.
[http://dx.doi.org/10.1111/febs.14947] [PMID: 31162791]
[22]
Bemani E, Oryan A, Bahrami S. Effectiveness of amiodarone in treatment of cutaneous leishmaniasis caused by Leishmania major. Exp Parasitol 2019; 205: 107747.
[http://dx.doi.org/10.1016/j.exppara.2019.107747] [PMID: 31442454]
[23]
Patel C, Yan GX, Kowey PR. Dronedarone. Circulation 2009; 120(7): 636-44.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.858027] [PMID: 19687370]
[24]
Benaim G, Hernandez-Rodriguez V, Mujica-Gonzalez S, et al. In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile. Antimicrob Agents Chemother 2012; 56(7): 3720-5.
[http://dx.doi.org/10.1128/AAC.00207-12] [PMID: 22508311]
[25]
Benaim G, Casanova P, Hernandez-Rodriguez V, et al. Dronedarone, an amiodarone analog with improved anti-Leishmania mexicana efficacy. Antimicrob Agents Chemother 2014; 58(4): 2295-303.
[http://dx.doi.org/10.1128/AAC.01240-13] [PMID: 24492373]
[26]
Hejchman E, Ostrowska K, Maciejewska D, Kossakowski J, Courchesne WE. Synthesis and antifungal activity of derivatives of 2- and 3-benzofurancarboxylic acids. J Pharmacol Exp Ther 2012; 343(2): 380-8.
[http://dx.doi.org/10.1124/jpet.112.196980] [PMID: 22892340]
[27]
Pinto-Martinez A, Hernández-Rodríguez V, Rodríguez-Durán J, Hejchman E, Benaim G. Anti-Trypanosoma cruzi action of a new benzofuran derivative based on amiodarone structure. Exp Parasitol 2018; 189: 8-15.
[http://dx.doi.org/10.1016/j.exppara.2018.04.010] [PMID: 29684665]
[28]
Martinez-Sotillo N, Pinto-Martínez A, Hejchman E, Benaim G. Antiproliferative effect of a benzofuran derivate based on the structure of amiodarone on Leishmania donovani affecting mitochondria, acidocalcisomes and intracellular Ca2+ homeostasis. Parasitol Int 2019; 70: 112-7.
[http://dx.doi.org/10.1016/j.parint.2019.02.006] [PMID: 30794871]
[29]
Madigan R, Majoy S, Ritter K, et al. Successful treatment of canine Chagas’ disease using a combination of amiodarone and itraconazole. J Am Vet Med Assoc 2019; 255: 317-29.
[http://dx.doi.org/10.2460/javma.255.3.317] [PMID: 31298647]
[30]
Sass G, Madigan RT, Joubert LM, et al. A combination of itraconazole and amiodarone is highly effective against Trypanosoma cruzi infection of human stem cell-derived cardiomyocytes. Am J Trop Med Hyg 2019; 101(2): 383-91.
[http://dx.doi.org/10.4269/ajtmh.19-0023] [PMID: 31219005]
[31]
Cruz L, Vivas A, Montilla M, et al. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. Infect Genet Evol 2015; 29: 110-7.
[http://dx.doi.org/10.1016/j.meegid.2014.11.012] [PMID: 25461848]
[32]
Santana RA, Magalhães LK, Magalhães LK, et al. Trypanosoma cruzi strain TcI is associated with chronic Chagas disease in the Brazilian Amazon. Parasit Vectors 2014; 7: 267.
[http://dx.doi.org/10.1186/1756-3305-7-267] [PMID: 24916362]
[33]
Teston AP, Monteiro WM, Reis D, et al. In vivo susceptibility to benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health 2013; 18(1): 85-95.
[http://dx.doi.org/10.1111/tmi.12014] [PMID: 23130989]
[34]
Calvopina M, Segovia G, Cevallos W, Vicuña Y, Costales JA, Guevara A. Fatal acute Chagas disease by Trypanosoma cruzi DTU TcI, Ecuador. BMC Infect Dis 2020; 20(1): 143.
[http://dx.doi.org/10.1186/s12879-020-4851-0] [PMID: 32059706]
[35]
Paniz-Mondolfi AE, Pérez-Alvarez AM, Lanza G, Márquez E, Concepción JL. Amiodarone and itraconazole: a rational therapeutic approach for the treatment of chronic Chagas’ disease. Chemotherapy 2009; 55(4): 228-33.
[http://dx.doi.org/10.1159/000219436] [PMID: 19451712]
[36]
Krautz GM, Galvão LM, Cançado JR, Guevara-Espinoza A, Ouaissi A, Krettli AU. Use of a 24-kilodalton Trypanosoma cruzi recombinant protein to monitor cure of human Chagas’ disease. J Clin Microbiol 1995; 33(8): 2086-90.
[http://dx.doi.org/10.1128/JCM.33.8.2086-2090.1995] [PMID: 7559953]
[37]
Kaski JC, Haedo A, Chiale P, Elizari M, Rosenbaum MB. Efficacy of amiodarone in patients with Chagas’ disease and life-threatening arrhythmias. Br J Clin Pract Suppl 1986; 44: 11-5.
[PMID: 3089249]
[38]
Carmo AA, Rocha MO, Silva JL, et al. Amiodarone and Trypanosoma cruzi parasitemia in patients with Chagas disease. Int J Cardiol 2015; 189: 182-4.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.061] [PMID: 25897900]
[39]
Molina I, Salvador F, Sánchez-Montalvá A, et al. Pharmacokinetics of benznidazole in healthy volunteers and implications in future clinical trials. Antimicrob Agents Chemother 2017; 61(4): 1912-619.
[http://dx.doi.org/10.1128/AAC.01912-16] [PMID: 28167552]
[40]
Sporaxox (R) Package Insert NV Olen. Belgium: Janssen Pharmaceutica. 2012.
[41]
Combs TP, Nagajyothi , Mukherjee S, et al. The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 2005; 280(25): 24085-94.
[http://dx.doi.org/10.1074/jbc.M412802200] [PMID: 15843370]
[42]
Kirk RG, Lee P, Reasor MJ. Quantitative X-ray microanalysis of alveolar macrophages after long-term treatment with amiodarone. Exp Mol Pathol 1990; 52(1): 122-31.
[http://dx.doi.org/10.1016/0014-4800(90)90064-K] [PMID: 2307209]
[43]
Prentice AG, Glasmacher A. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother 2005; 56(Suppl. 1): i17-22.
[http://dx.doi.org/10.1093/jac/dki220] [PMID: 16120630]
[44]
Paniz-Mondolfi AE, Pérez-Alvarez AM, Reyes-Jaimes O, et al. Concurrent Chagas’ disease and borderline disseminated cutaneous leishmaniasis: The role of amiodarone as an antitrypanosomatidae drug. Ther Clin Risk Manag 2008; 4(3): 659-63.
[http://dx.doi.org/10.2147/TCRM.S2801] [PMID: 18827865]
[45]
de Macedo-Silva ST, de Oliveira Silva TL, Urbina JA, de Souza W, Rodrigues JC. Antiproliferative, ultrastructural, and physiological effects of amiodarone on promastigote and amastigote forms of Leishmania amazonensis. Mol Biol Int 2011; 2011: 876021.
[http://dx.doi.org/10.4061/2011/876021] [PMID: 22091415]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy