Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Editorial

Protein Metabolism in Host Gastrointestinal Tract

Author(s): Xi Ma

Volume 21, Issue 8, 2020

Page: [742 - 743] Pages: 2

DOI: 10.2174/138920372108200923163047

conference banner
[1]
Li, H.; Wei, J.; Ma, F.; Shan, Q.; Gao, D.; Jin, Y.; Sun, P. Melatonin modulates lactation by regulating prolactin secretion via tuberoinfundibular dopaminergic neurons in the hypothalamus-pituitary system. Curr. Protein Pept. Sci., 2020, 21(8), 744-750.
[2]
Shan, Q.; Ma, F.; Wei, J.; Li, H.; Ma, H.; Sun, P. Physiological functions of heat shock proteins. Curr. Protein Pept. Sci., 2020, 21(8), 751-760.
[3]
Ma, N.; Ma, X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr. Rev. Food Sci. Food Saf., 2019, 18, 221-242.
[4]
Xie, F.; Liu, Z.; Liu, M.; Chen, L.; Ding, W.; Zhang, H. Amino acids regulate glycolipid metabolism and alter intestinal microbial composition. Curr. Protein Pept. Sci., 2020, 21(8), 761-765.
[5]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[6]
Chen, X.; Song, P.; Fan, P.; He, T.; Jacobs, D.; Levesque, C.L.; Johnston, L.J.; Ji, L.; Ma, N.; Chen, Y.; Zhang, J.; Zhao, J.; Ma, X. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Front. Cell. Infect. Microbiol., 2018, 8, 246.
[7]
Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science, 2018, 362, 776-780.
[8]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[9]
Peng, X-P.; Nie, C.; Guan, W-Y.; Qiao, L-D.; Cao, S-J. Regulation of probiotics on metabolism of dietary protein in intestine. Curr. Protein Pept. Sci., 2020, 21(8), 766-771.
[10]
Peng, X-P.; Ding, W.; Ma, J-M.; Zhang, J.; Sun, J.; Cao, Y.; Lei, L-H.; Zhao, J.; Li, Y-F. Effect of Escherichia Coli infection on metabolism of dietary protein in intestine. Curr. Protein Pept. Sci., 2020, 21(8), 772-776.
[11]
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; Xavier, R.J.; Teixeira, M.M.; Mackay, C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461, 1282-1286.
[12]
Husted, A.S.; Trauelsen, M.; Rudenko, O.; Hjorth, S.A.; Schwartz, T.W. GPCR-mediated signaling of metabolites. Cell Metab., 2017, 25, 777-796.
[13]
Liu, H.; Wang, J.; He, T.; Becker, S.; Zhang, G.; Li, D.; Ma, X. Butyrate: a double-edged sword for health? Adv. Nutr., 2018, 9, 21-29.
[14]
Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun., 2018, 9, 3294.
[15]
Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell, 2015, 161, 264-276.
[16]
Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23, 716-724.
[17]
Schiering, C.; Wincent, E.; Metidji, A.; Iseppon, A.; Li, Y.; Potocnik, A.J.; Stockinger, B. Feedback control of AHR signalling regulates intestinal immunity. Nature, 2017, 542, 242-245.
[18]
Lamas, B.; Richard, M.L.; Leducq, V.; Pham, H.P.; Michel, M.L.; Da Costa, G.; Bridonneau, C.; Jegou, S.; Hoffmann, T.W.; Natividad, J.M.; Brot, L.; Taleb, S.; Couturier-Maillard, A.; Nion-Larmurier, I.; Merabtene, F.; Seksik, P.; Bourrier, A.; Cosnes, J.; Ryffel, B.; Beaugerie, L.; Launay, J.M.; Langella, P.; Xavier, R.J.; Sokol, H. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med., 2016, 22, 598-605.
[19]
Jia, M.; Zhang, Y.; Gao, Y.; Ma, X. Effects of medium chain fatty acids on intestinal health of monogastric animals. Curr. Protein Pept. Sci., 2020, 21(8), 777-784.
[20]
Abdallah, A.; Elemba, E.; Zhong, Q.; Sun, Z. Gastrointestinal interaction between dietary amino acids and gut microbiota: With special emphasis on host nutrition. Curr. Protein Pept. Sci., 2020, 21(8), 785-798.
[21]
Ma, N.; Zhang, J.; Reiter, R.J.; Ma, X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med. Res. Rev., 2020, 40, 606-632.
[22]
Dalton, A.; Mermier, C.; Zuhl, M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes, 2019, 10, 555-568.
[23]
Wu, Y.; Ma, N.; Song, P.; He, T.; Levesque, C.L.; Bai, Y.; Zhang, A.; Ma, X. Grape seed proanthocyanidin affects lipid metabolism via changing gut microflora and enhancing propionate production in weaned pigs. J. Nutr., 2019, 149, 1523-1532.
[24]
Roberts, A.B.; Gu, X.; Buffa, J.A.; Hurd, A.G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S.M.; Cody, D.B.; Levison, B.S.; Barrington, W.T.; Russell, M.W.; Reed, J.M.; Duzan, A.; Lang, J.M.; Fu, X.; Li, L.; Myers, A.J.; Rachakonda, S.; DiDonato, J.A.; Brown, J.M.; Gogonea, V.; Lusis, A.J.; Garcia-Garcia, J.C.; Hazen, S.L. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med., 2018, 24, 1407-1417.
[25]
Zheng, C.; Liu, T.; Liu, H.; Wang, J. Role of BCL-2 Family Proteins in Apoptosis and its Regulation by Nutrients. Curr. Protein Pept. Sci., 2020, 21(8), 799-806.
[26]
Zhang, K.; Wang, N.; Lu, L.; Ma, X. Fermentation and Metabolism of Dietary Protein by Intestinal Microorganisms. Curr. Protein Pept. Sci., 2020, 21(8), 807-811.
[27]
Nie, C.; Wang, Y.; Liu, Y.; Liu, J.; Ge, W.; Ma, X.; Zhang, W. Impacts of dietary protein from fermented cottonseed meal on lipid metabolism and metabolomic profiling in the serum of broilers. Curr. Protein Pept. Sci., 2020, 21(8), 812-820.

© 2024 Bentham Science Publishers | Privacy Policy