[1]
Nicoglou A, Merlin F. Epigenetics: A way to bridge the gap between biological fields. Stud Hist Philos Biol Biomed Sci 2017; 66: 73-82.
[http://dx.doi.org/10.1016/j.shpsc.2017.10.002. ]
[http://dx.doi.org/10.1016/j.shpsc.2017.10.002. ]
[2]
Ma K, Sun L, Cheng T, Pan H, Wang J, Zhang Q. Epigenetic variance, performing cooperative structure with genetics, is associated with leaf shape traits in widely distributed populations of ornamental Tree Prunus mume. Front Plant Sci 2018; 9: 41.
[http://dx.doi.org/10.3389/fpls.2018.00041. eCollection 2018.]
[http://dx.doi.org/10.3389/fpls.2018.00041. eCollection 2018.]
[3]
Morgado L, Preite V, Oplaat C, et al. J.F. Verhoeven K. Small RNAs reflect grandparental environments in apomictic dandelion. Mol Biol Evol 2017; 34(8): 2035-40.
[http://dx.doi.org/10.1093/molbev/msx150.]
[http://dx.doi.org/10.1093/molbev/msx150.]
[4]
Vick AD, Burris HH. Epigenetics and health disparities. Curr Epidemiol Rep 2017; 4(1): 31-7.
[http://dx.doi.org/10.1007/s40471-017-0096-x. ]
[http://dx.doi.org/10.1007/s40471-017-0096-x. ]
[5]
Huang B, Jiang C, Zhang R. Epigenetics: The language of the cell? Epigenomics 2014; 6(1): 73-88.
[http://dx.doi.org/10.2217/epi.13.72.]
[http://dx.doi.org/10.2217/epi.13.72.]
[6]
Laubach ZM, Perng W, Dolinoy DC, et al. Epigenetics and the maintenance of developmental plasticity: Extending the signalling theory framework. Biol Rev Camb Philos Soc 2018; 93(3): 1323-38.
[http://dx.doi.org/10.1111/brv.12396. ]
[http://dx.doi.org/10.1111/brv.12396. ]
[7]
Cheung WA, Shao X, Morin A, et al. Functional variation in allelic methylomes underscores a strong genetic contribution and reveals novel epigenetic alterations in the human epigenome. Genome Biol 2017; 18(1): 50.
[http://dx.doi.org/10.1186/s13059-017-1173-7.]
[http://dx.doi.org/10.1186/s13059-017-1173-7.]
[8]
Heyn H, Moran S, Hernando-Herraez I, et al. DNA methylation contributes to natural human variation. Genome Res 2013; 23: 1363-72.
[http://dx.doi.org/10.1101/gr.154187.112]
[http://dx.doi.org/10.1101/gr.154187.112]
[9]
Kubota T, Takae H, Miyake K. Epigenetic mechanisms and therapeutic perspectives for neurodevelopmental disorders. Pharmaceuticals (Basel) 2012; 5: 369-83.
[http://dx.doi.org/10.3390/ph5040369]
[http://dx.doi.org/10.3390/ph5040369]
[10]
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer’s disease: Novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175: 323-556.
[http://dx.doi.org/10.1007/978-1-4939-0956-8_13]
[http://dx.doi.org/10.1007/978-1-4939-0956-8_13]
[11]
Cacabelos R. Epigenomic networking in drug development: From pathogenic mechanisms to pharmacogenomics. Drug Dev Res 2014; 75: 348-65.
[http://dx.doi.org/10.1002/ddr.21219]
[http://dx.doi.org/10.1002/ddr.21219]
[12]
Rasool M, Malik A, Naseer MI, et al. The role of epigenetics in personalized medicine: Challenges and opportunities. BMC Med Genomics 2015; 8 Suppl 1:S5.
[http://dx.doi.org/10.1186/1755-8794-8-S1-S5. ]
[http://dx.doi.org/10.1186/1755-8794-8-S1-S5. ]
[13]
Cacabelos R, Torrellas C. Pharmacoepigenomics. In: Medical Epigenetics. T. Tollefsbol (Ed). United States: Elsevier..
[http://dx.doi.org/10.1016/B978-0-12-803239-8.00032-6.]
[http://dx.doi.org/10.1016/B978-0-12-803239-8.00032-6.]
[14]
Cacabelos R, Torrellas C. Epigenetics of aging and Alzheimer’s disease: Implications for pharmacogenomics and drug response. Int J Mol Sci 2015; 16: 30483-543.
[http://dx.doi.org/10.3390/ijms161226236.]
[http://dx.doi.org/10.3390/ijms161226236.]
[15]
Cacabelos R. World guide for drug use and pharmacogenomics. EuroEspes Publishing, Corunna, Spain, 2012.
[16]
Cacabelos R, Ed. Pharmacoepigenetics. Translational Epigenetics. Vol. 10. San Diego: Elsevier/Academic Press 2019.
[17]
Yung PYK, Elsässer SJ. Evolution of epigenetic chromatin states. Curr Opin Chem Biol 2017; 41: 36-42.
[http://dx.doi.org/10.1016/j.cbpa.2017.10.001. ]
[http://dx.doi.org/10.1016/j.cbpa.2017.10.001. ]
[18]
Waryah CB, Moses C, Arooj M, Blancafort P. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing. Methods Mol Biol 2018; 1767: 19-63.
[http://dx.doi.org/10.1007/978-1-4939-7774-1_2.]
[http://dx.doi.org/10.1007/978-1-4939-7774-1_2.]
[19]
Ouimette JF, Rougeulle C, Veitia RA. Three-dimensional genome architecture in health and disease. Clin Genet 2018; 95(2): 187-341.
[http://dx.doi.org/10.1111/cge.13219]
[http://dx.doi.org/10.1111/cge.13219]
[20]
Robison SK. The political implications of epigenetics. Politics Life Sci 2016; 35(2): 30-53.
[http://dx.doi.org/10.1017/pls.2016.14.]
[http://dx.doi.org/10.1017/pls.2016.14.]
[21]
de Mendoza VB, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived racial discrimination and dna methylation among african american women in the intergen study. Biol Res Nurs 2018; 20(2): 145-52.
[http://dx.doi.org/10.1177/1099800417748759.]
[http://dx.doi.org/10.1177/1099800417748759.]
[22]
Cote IL, McCullough SD, Hines RN, Vandenberg JJ. Application of epigenetic data in human health risk assessment. Curr Opin Toxicol 2017; 6: 71-8.
[http://dx.doi.org/10.1016/j.cotox.2017.09.002.]
[http://dx.doi.org/10.1016/j.cotox.2017.09.002.]
[23]
DeCandia AL, Dobson AP, vonHoldt BM. Toward an integrative molecular approach to wildlife disease. Conserv Biol 2018; 32(4): 798-807.
[http://dx.doi.org/10.1111/cobi.13083.]
[http://dx.doi.org/10.1111/cobi.13083.]
[24]
Angarica VE, Del Sol A. Bioinformatics tools for genome-wide epigenetic research. Adv Exp Med Biol 2017; 978: 489-512.
[http://dx.doi.org/10.1007/978-3-319-53889-1_25.]
[http://dx.doi.org/10.1007/978-3-319-53889-1_25.]
[25]
Guest FL, Guest PC. Point-of-Care testing and personalized medicine for metabolic disorders. Methods Mol Biol 2018; 1735: 105-14.
[http://dx.doi.org/10.1007/978-1-4939-7614-0_6.]
[http://dx.doi.org/10.1007/978-1-4939-7614-0_6.]
[26]
van Karnebeek CDM, Wortmann SB, Tarailo-Graovac M, et al. The role of the clinician in the multi-omics era: Are you ready? J Inherit Metab Dis 2018; 41(3): 571-82.
[http://dx.doi.org/10.1007/s10545-017-0128-1.]
[http://dx.doi.org/10.1007/s10545-017-0128-1.]