Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Comparative Analysis of the Rabbit Endothelial Progenitor Cells from Bone Marrow and Peripheral Blood Treated with Selenium Nanoparticles

Author(s): Sara Shoeibi *

Volume 21, Issue 6, 2021

Published on: 18 September, 2020

Page: [803 - 808] Pages: 6

DOI: 10.2174/1871520620666200918112552

Price: $65

Abstract

Background: Selenium Nanoparticles (Se-NPs) are known for their antioxidant and anti-inflammatory activities, which are effective in preventing oxidative damage and improving physiological processes.

Objectives: This study aimed at investigating the effects of biosynthesized Se-NPs on bone marrow-derived Endothelial Progenitor Cells (bone marrow-derived EPCs) and blood-derived endothelial progenitor cells (blood-derived EPCs) isolated from rabbits in vitro.

Methods: The cultured EPCs incubated with biosynthesized Se-NPs at the concentrations of 0.19, 0.38, 0.76, 1.71, 3.42, 7.03, 14.25, 28.50, 57, 114, and 228μg/ml for 48h. After screening the proliferative potential of the Se-NPs by the MTT assay, the best concentrations were selected for Real-Time quantitative Polymerase Chain Reaction (RT-qPCR). Real-time quantification of Vascular Cell Adhesion Molecule 1 (VCAM-1), lectin-like oxidized Low-Density Lipoprotein (LDL) receptor-1 (LOX-1), endothelial Nitric Oxide Synthase (eNOS), and Monocyte Chemoattractant Protein-1 (MCP-1) gene expressions were analyzed by normalizing with Glyceraldehyde- 3-Phosphate Dehydrogenase (GAPDH) as an endogenous reference gene.

Results: Blood-derived EPCs and bone marrow-derived EPCs showed morphological differences before treatment in vitro. Se-NPs treated EPCs indicated a significant dose-dependent proliferative activity (p<0.01). In general, the expression levels of VCAM-1, LOX-1, and MCP-1 mRNA were significantly decreased (p<0.01), whereas that of the eNOS expression was significantly increased at the concentrations of 7.3 and 14.25μg/ml (p<0.01). Although the expressions of MCP-1, LOX-1, and eNOS mRNA were decreased at certain concentrations of Se-NPs (p<0.01 and p<0.05, respectively) in the treated bone marrow-derived EPCs, no significant differences were observed in the VCAM-1 mRNA expression levels in bone marrow-derived EPCs compared with the control group (p>0.05).

Conclusion: This was the first report to demonstrate the effects of Se-NPs on proliferative, anti-oxidative, and anti-inflammatory activities for bone marrow-derived EPCs and blood-derived EPCs. Our findings suggested that Se-NPs could be considered as an effective agent that may ameliorate vascular problems.

Keywords: Se-NPs, EPCs, proliferation, inflammation, anti-oxidative, eNOS.

« Previous
Graphical Abstract

[1]
Benko, I.; Nagy, G.; Tanczos, B.; Ungvari, E.; Sztrik, A.; Eszenyi, P.; Prokisch, J.; Banfalvi, G. Subacute toxicity of nano-selenium compared to other selenium species in mice. Environ. Toxicol. Chem., 2012, 31(12), 2812-2820.
[http://dx.doi.org/10.1002/etc.1995] [PMID: 22927138]
[2]
Zheng, C.; Wang, J.; Liu, Y.; Yu, Q.; Liu, Y.; Deng, N.; Liu, J. Antifibrotic candidates of selenium nanoparticles and selenium in the experimental model. J. Appl. Pharm. Sci., 2017, 24, 6872-6883.
[3]
Orazizadeh, M.; Khodadadi, A.; Bayati, V.; Saremy, S.; Farasat, M.; Khorsandi, L. In vitro toxic effects of zinc oxide nanoparticles on rat adipose tissue-derived mesenchymal stem cells. Cell J., 2015, 17(3), 412-421.
[PMID: 26464812]
[4]
Vaishnavi, A.S.; Mangala Gowri, A.; Valli, C.; Meenambigai, T.V.; Baskaran, D. Assessment of nano selenium effect in developing zebra fish embryos. J. Entomol. Zool. Stud., 2019, 7(1), 914-917.
[5]
Wang, G.; Guo, Y.; Yang, G.; Yang, L.; Ma, X.; Wang, K.; Zhu, L.; Sun, J.; Wang, X.; Zhang, H. Mitochondria-mediated protein regulation mechanism of polymorphs-dependent inhibition of nanoselenium on cancer cells. Sci. Rep., 2016, 6, 31427.
[http://dx.doi.org/10.1038/srep31427] [PMID: 27514819]
[6]
Liu, Y.; Li, W.; Guo, M.; Li, C.; Qiu, C. Protective role of selenium compounds on the proliferation, apoptosis, and angiogenesis of a canine breast cancer cell line. Biol. Trace Elem. Res., 2016, 169(1), 86-93.
[http://dx.doi.org/10.1007/s12011-015-0387-3] [PMID: 26051789]
[7]
Mangala Gowri, A.; Abiroopa, A.; Vaishnavi, A.S.; Nandhini, S. Nano-selenium activates Mucin gene expression in intestinal crypt cells. J. Pharm. Innov., 2018, 7(11), 421-424.
[8]
Alkhudhayri, A.A.; Dkhil, M.A.; Al-Quraishy, S. Nanoselenium prevents eimeriosis-induced inflammation and regulates mucin gene expression in mice jejunum. Int. J. Nanomedicine, 2018, 13, 1993-2003.
[http://dx.doi.org/10.2147/IJN.S162355] [PMID: 29662312]
[9]
Abdel-Halim, B.R.; Helmy, N.A. Effect of nano-selenium and nano-zinc particles during in vitro maturation on the developmental competence of bovine oocytes. Anim. Prod. Sci., 2021, 58(11) 2021
[http://dx.doi.org/10.1071/AN17057]
[10]
Patra, C.R.; Bhattacharya, R.; Mukhopadhyay, D.; Mukherjee, P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev., 2010, 62(3), 346-361.
[http://dx.doi.org/10.1016/j.addr.2009.11.007] [PMID: 19914317]
[11]
Sadowski, Z. Biosynthesis and application of silver and gold nanoparticles. In:Silver nanoparticles; Perez, D.P., Ed.; InTech: UK, 2010, pp. 257-276.
[http://dx.doi.org/10.5772/8508]
[12]
Shoeibi, S.; Mohammadi, S.; Sadeghnia, H.R.; Mahdipour, E.; Ghayour-Mobarhan, M. Determine exogenous human DDAH2 gene function in rabbit bone marrow-derived endothelial progenitor cells in vitro. Cell Biochem. Funct., 2017, 35(2), 69-76.
[http://dx.doi.org/10.1002/cbf.3249] [PMID: 28150318]
[13]
Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol., 2017, 39, 135-139.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.003] [PMID: 27908405]
[14]
Yang, N.; Li, D.; Jiao, P.; Chen, B.; Yao, S.; Sang, H.; Yang, M.; Han, J.; Zhang, Y.; Qin, S. The characteristics of endothelial progenitor cells derived from mononuclear cells of rat bone marrow in different culture conditions. Cytotechnology, 2011, 63(3), 217-226.
[http://dx.doi.org/10.1007/s10616-010-9329-2] [PMID: 21331655]
[15]
Zengin, E.; Chalajour, F.; Gehling, U.M.; Ito, W.D.; Treede, H.; Lauke, H.; Weil, J.; Reichenspurner, H.; Kilic, N.; Ergün, S. Vascular wall resident progenitor cells: A source for postnatal vasculogenesis. Development, 2006, 133(8), 1543-1551.
[http://dx.doi.org/10.1242/dev.02315] [PMID: 16524930]
[16]
Guan, X.M.; Cheng, M.; Li, H.; Cui, X.D.; Li, X.; Wang, Y.L.; Sun, J.L.; Zhang, X.Y. Biological properties of bone marrow-derived early and late endothelial progenitor cells in different culture media. Mol. Med. Rep., 2013, 8(6), 1722-1728.
[http://dx.doi.org/10.3892/mmr.2013.1718] [PMID: 24126824]
[17]
Ingram, D.A.; Mead, L.E.; Tanaka, H.; Meade, V.; Fenoglio, A.; Mortell, K.; Pollok, K.; Ferkowicz, M.J.; Gilley, D.; Yoder, M.C. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood, 2004, 104(9), 2752-2760.
[http://dx.doi.org/10.1182/blood-2004-04-1396] [PMID: 15226175]
[18]
Rao, R.R.; Peterson, A.W.; Ceccarelli, J.; Putnam, A.J.; Stegemann, J.P. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis, 2012, 15(2), 253-264.
[http://dx.doi.org/10.1007/s10456-012-9257-1] [PMID: 22382584]
[19]
Ip, C.; Thompson, H.J.; Ganther, H.E. Selenium modulation of cell proliferation and cell cycle biomarkers in normal and premalignant cells of the rat mammary gland. Cancer Epidemiol. Biomarkers Prev., 2000, 9(1), 49-54.
[PMID: 10667463]
[20]
Redman, C.; Scott, J.A.; Baines, A.T.; Basye, J.L.; Clark, L.C.; Calley, C.; Roe, D.; Payne, C.M.; Nelson, M.A. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett., 1998, 125(1-2), 103-110.
[http://dx.doi.org/10.1016/S0304-3835(97)00497-7] [PMID: 9566703]
[21]
Zheng, C.; Wang, J.; Liu, Y.; Yu, Q.; Liu, Y.; Deng, N.; Liu, J. Functional selenium nanoparticles enhanced stem Cell osteoblastic differentiation through BMP signaling pathways. Adv. Funct. Mater., 2014, 24(43), 6872-6883.
[http://dx.doi.org/10.1002/adfm.201401263]
[22]
Mishra, J.; Drummond, J.; Quazi, S.H.; Karanki, S.S.; Shaw, J.J.; Chen, B.; Kumar, N. Prospective of colon cancer treatments and scope for combinatorial approach to enhanced cancer cell apoptosis. Crit. Rev. Oncol. Hematol., 2013, 86(3), 232-250.
[http://dx.doi.org/10.1016/j.critrevonc.2012.09.014] [PMID: 23098684]
[23]
Shahbazzadeh, D.; Ahari, H.; Motalebi, A.A.; Anvar, A.A.; Moaddab, S.; Asadi, T.; Shokrgozar, M.A.; Rahman-Nya, J. In vitro effect of nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran. J. Fish. Sci., 2010, 10(3), 487-496.
[24]
Wang, X.; Sun, K.; Tan, Y.; Wu, S.; Zhang, J. Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radic. Biol. Med., 2014, 72, 1-10.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.003] [PMID: 24727439]
[25]
Qiao, W.; Niu, L.; Liu, Z.; Qiao, T.; Liu, C. Endothelial nitric oxide synthase as a marker for human endothelial progenitor cells. Tohoku J. Exp. Med., 2010, 221(1), 19-27.
[http://dx.doi.org/10.1620/tjem.221.19] [PMID: 20448437]
[26]
Oztürk, Z.; Gurpinar, T.; Vural, K.; Boyacıoglu, S.; Korkmaz, M.; Var, A. Effects of selenium on endothelial dysfunction and metabolic profile in low dose streptozotocin induced diabetic rats fed a high fat diet. Biotech. Histochem., 2015, 90(7), 506-515.
[http://dx.doi.org/10.3109/10520295.2015.1042050] [PMID: 25978137]
[27]
Ren, H.; Mu, J.; Ma, J.; Gong, J.; Li, J.; Wang, J.; Gao, T.; Zhu, P.; Zheng, S.; Xie, J.; Yuan, B. Selenium inhibits homocysteine-induced endothelial dysfunction and apoptosis via activation of AKT. Cell. Physiol. Biochem., 2016, 38(3), 871-882.
[http://dx.doi.org/10.1159/000443041] [PMID: 26909517]
[28]
Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm., 2013, 2013152786
[http://dx.doi.org/10.1155/2013/152786] [PMID: 23935243]
[29]
Jahnova, E.; Horvathova, M.; Gazdik, F.; Weissova, S. Effects of selenium supplementation on expression of adhesion molecules in corticoid-dependent asthmatics. Bratisl. Lek Listy, 2002, 103(1), 12-16.
[PMID: 12061080]
[30]
Zhang, F.; Yu, W.; Hargrove, J.L.; Greenspan, P.; Dean, R.G.; Taylor, E.W.; Hartle, D.K. Inhibition of TNF-α induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis, 2002, 161(2), 381-386.
[http://dx.doi.org/10.1016/S0021-9150(01)00672-4] [PMID: 11888521]
[31]
Fink, K.; Moebes, M.; Vetter, C.; Bourgeois, N.; Schmid, B.; Bode, C.; Helbing, T.; Busch, H.J. Selenium prevents microparticle-induced endothelial inflammation in patients after cardiopulmonary resuscitation. Crit. Care, 2015, 19, 58.
[http://dx.doi.org/10.1186/s13054-015-0774-3] [PMID: 25886988]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy