Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Human Exfoliated Deciduous Teeth Stem Cells: Features and Therapeutic Effects on Neurogenerative and Hepatobiliary-pancreatic Diseases

Author(s): Nurul W.A. Wahab, Rhanye M. Guad, Vetriselvan Subramaniyan, Ismail M. Fareez, Ker W. Choy, Srinivasa R. Bonam, Chandrasekaran Selvaraju, Maw S. Sim, Subash C.B. Gopinath* and Yuan S. Wu*

Volume 16, Issue 5, 2021

Published on: 18 September, 2020

Page: [563 - 576] Pages: 14

DOI: 10.2174/1574888X15999200918105623

Price: $65

Abstract

Stem cells can multiply into more cells with similar types in an undifferentiated form and differentiate into other types of cells. The great success and key essence of stem cell technology is the isolation of high-quality Mesenchymal Stem Cells (MSCs) with high potency, either with multipotent or pluripotent property. In this line, Stem cells from Human Exfoliated Deciduous teeth (SHEDs) are highly proliferative stem cells from dental pulp and have multipoint differentiation capacity. These cells play a pivotal role in regenerative medicine, such as cell repair associated with neurodegenerative, hepatobiliary, and pancreatic diseases. In addition, stem cell therapy has been widely used to regulate immune response and repair of tissue lesions. This overview captured the differential biological characteristics, and the potential role of stem cell technology and paid special attention to human welfare SHEDs in eliminating the above-mentioned diseases. This review provides further insights into stem cell technology by expanding the therapeutic potential of SHEDs in tissue engineering and cell organ repairs.

Keywords: Totipotency, pluripotent, human exfoliated deciduous teeth, SHEDs, neurodegenerative disease, retinal degeneration, liver diseases, diabetes mellitus, organ transplantation.

[1]
Becker AJ, McCULLOCH EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963; 197: 452-4.
[http://dx.doi.org/10.1038/197452a0] [PMID: 13970094]
[2]
Till JE, McCULLOCH EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213-22.
[http://dx.doi.org/10.2307/3570892] [PMID: 13776896]
[3]
Till JE, McCulloch EA, Siminovitch L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964; 51: 29-36.
[http://dx.doi.org/10.1073/pnas.51.1.29] [PMID: 14104600]
[4]
Ramalho-Santos M, Willenbring H. On the origin of the term “stem cell”. Cell Stem Cell 2007; 1(1): 35-8.
[http://dx.doi.org/10.1016/j.stem.2007.05.013] [PMID: 18371332]
[5]
Maehle AH. Ambiguous cells: The emergence of the stem cell concept in the nineteenth and twentieth centuries. Notes Rec R Soc Lond 2011; 65(4): 359-78.
[http://dx.doi.org/10.1098/rsnr.2011.0023] [PMID: 22332468]
[6]
Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles ME, et al. Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol 2012; 49(2): R89-R111.
[http://dx.doi.org/10.1530/JME-12-0072] [PMID: 22822049]
[7]
Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol 2010; 20(12): 715-22.
[http://dx.doi.org/10.1016/j.tcb.2010.09.012] [PMID: 21035344]
[8]
Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 2009; 35(11): 1536-42.
[http://dx.doi.org/10.1016/j.joen.2009.07.024] [PMID: 19840643]
[9]
Abdallah BM, Kassem M. The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: Current status and future perspectives. J Cell Physiol 2009; 218(1): 9-12.
[http://dx.doi.org/10.1002/jcp.21572] [PMID: 18726996]
[10]
Miura M, Gronthos S, Zhao M, et al. SHED: Stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10): 5807-12.
[http://dx.doi.org/10.1073/pnas.0937635100] [PMID: 12716973]
[11]
Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications. Stem Cells Transl Med 2020; 9(4): 445-64.
[http://dx.doi.org/10.1002/sctm.19-0398] [PMID: 31943813]
[12]
Koyama N, Okubo Y, Nakao K, Bessho K. Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 2009; 67(3): 501-6.
[http://dx.doi.org/10.1016/j.joms.2008.09.011] [PMID: 19231772]
[13]
Srijaya TC, Sriram S, Sugii S, Kasim NH. Stem cells in dentistry: Potential applications and perspectives in clinical research.Bone and cartilage regeneration. Springer 2016; pp. 293-308.
[http://dx.doi.org/10.1007/978-3-319-40144-7_15]
[14]
Govindasamy V, Abdullah AN, Ronald VS, et al. Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endod 2010; 36(9): 1504-15.
[http://dx.doi.org/10.1016/j.joen.2010.05.006] [PMID: 20728718]
[15]
Yamada Y, Nakamura S, Ito K, et al. A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 2010; 16(6): 1891-900.
[http://dx.doi.org/10.1089/ten.tea.2009.0732] [PMID: 20067397]
[16]
Morsczeck C, Völlner F, Saugspier M, et al. Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Investig 2010; 14(4): 433-40.
[http://dx.doi.org/10.1007/s00784-009-0310-4] [PMID: 19590907]
[17]
Lee S, An S, Kang TH, et al. Comparison of mesenchymal-like stem/progenitor cells derived from supernumerary teeth with stem cells from human exfoliated deciduous teeth. Regen Med 2011; 6(6): 689-99.
[http://dx.doi.org/10.2217/rme.11.95] [PMID: 22050521]
[18]
Lee HS, Jeon M, Kim SO, et al. Characteristics of stem cells from human exfoliated deciduous teeth (SHED) from intact cryopreserved deciduous teeth. Cryobiology 2015; 71(3): 374-83.
[http://dx.doi.org/10.1016/j.cryobiol.2015.10.146] [PMID: 26506257]
[19]
Akpinar G, Kasap M, Aksoy A, Duruksu G, Gacar G, Karaoz E. Phenotypic and proteomic characteristics of human dental pulp derived mesenchymal stem cells from a natal, an exfoliated deciduous, and an impacted third molar tooth. Stem Cells Int 2014; 2014: 457059.
[http://dx.doi.org/10.1155/2014/457059] [PMID: 25379041]
[20]
Isobe Y, Koyama N, Nakao K, et al. Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 2016; 45(1): 124-31.
[http://dx.doi.org/10.1016/j.ijom.2015.06.022] [PMID: 26235629]
[21]
Aghajani F, Hooshmand T, Khanmohammadi M, et al. Comparative immunophenotypic characteristics, proliferative features, and osteogenic differentiation of stem cells isolated from human permanent and deciduous teeth with bone marrow. Mol Biotechnol 2016; 58(6): 415-27.
[http://dx.doi.org/10.1007/s12033-016-9941-2] [PMID: 27126695]
[22]
Wang X, Sha XJ, Li GH, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth and dental pulp stem cells. Arch Oral Biol 2012; 57(9): 1231-40.
[http://dx.doi.org/10.1016/j.archoralbio.2012.02.014] [PMID: 22455989]
[23]
Yamaza T, Kentaro A, Chen C, et al. Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 2010; 1(1): 5.
[http://dx.doi.org/10.1186/scrt5] [PMID: 20504286]
[24]
Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 2018; 501(1): 193-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.213] [PMID: 29730288]
[25]
Chadipiralla K, Yochim JM, Bahuleyan B, et al. Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell Tissue Res 2010; 340(2): 323-33.
[http://dx.doi.org/10.1007/s00441-010-0953-0] [PMID: 20309582]
[26]
Alipour R, Adib M, Masoumi Karimi M, Hashemi-Beni B, Sereshki N. Comparing the immunoregulatory effects of stem cells from human exfoliated deciduous teeth and bone marrow-derived mesenchymal stem cells. Iran J Allergy Asthma Immunol 2013; 12(4): 331-44.
[PMID: 23996709]
[27]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[28]
Nakajima K, Kunimatsu R, Ando K, et al. Comparison of the bone regeneration ability between stem cells from human exfoliated deciduous teeth, human dental pulp stem cells and human bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2018; 497(3): 876-82.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.156] [PMID: 29477844]
[29]
Vishwanath VR, Nadig RR, Nadig R, Prasanna JS, Karthik J, Pai VS. Differentiation of isolated and characterized human dental pulp stem cells and stem cells from human exfoliated deciduous teeth: An in vitro study. J Conserv Dent 2013; 16(5): 423-8.
[http://dx.doi.org/10.4103/0972-0707.117509] [PMID: 24082571]
[30]
Yildirim S, Zibandeh N, Genc D, Ozcan EM, Goker K, Akkoc T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int 2016; 2016: 4682875.
[http://dx.doi.org/10.1155/2016/4682875] [PMID: 26770205]
[31]
Hara K, Yamada Y, Nakamura S, Umemura E, Ito K, Ueda M. Potential characteristics of stem cells from human exfoliated deciduous teeth compared with bone marrow-derived mesenchymal stem cells for mineralized tissue-forming cell biology. J Endod 2011; 37(12): 1647-52.
[http://dx.doi.org/10.1016/j.joen.2011.08.023] [PMID: 22099898]
[32]
Li J, Xu SQ, Zhao YM, Yu S, Ge LH, Xu BH. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Mol Med Rep 2018; 18(6): 4969-77.
[http://dx.doi.org/10.3892/mmr.2018.9501] [PMID: 30272340]
[33]
Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90(17): 7915-22.
[http://dx.doi.org/10.1073/pnas.90.17.7915] [PMID: 8367443]
[34]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018; 2018: 3057624.
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[35]
Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int J Mol Sci 2019; 20(5): E1132.
[http://dx.doi.org/10.3390/ijms20051132] [PMID: 30845639]
[36]
Chen TF YB, Lee PH, Hsu TY, et al. Human dental exfoliated deciduous teeth stem cell-derived secretory factors rescues neurological deficits in a zebrafish model of Parkinsonism. Available at: SSRN 3429884 2019.
[http://dx.doi.org/10.2139/ssrn.3429884]
[37]
Zhang N, Lu X, Wu S, et al. Intrastriatal transplantation of stem cells from human exfoliated deciduous teeth reduces motor defects in Parkinsonian rats. Cytotherapy 2018; 20(5): 670-86.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.371] [PMID: 29576501]
[38]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[39]
Bertuzzi L RA, Ourique A, Wendt L, et al. Stem cell’s behavioral effects in rats in a model of Alzheimer’s disease. Advances in stem cells 2014.
[http://dx.doi.org/10.5171/2014.805238]
[40]
Li X, Xie J, Zhai Y, et al. Differentiation of stem cells from human exfoliated deciduous teeth into retinal photoreceptor-like cells and their sustainability in vivo. Stem Cells Int 2019; 2019: 2562981.
[http://dx.doi.org/10.1155/2019/2562981] [PMID: 30906327]
[41]
Ding SLS, Kumar S, Mok PL. Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. Int J Mol Sci 2017; 18(8): E1406.
[http://dx.doi.org/10.3390/ijms18081406] [PMID: 28788088]
[42]
Kelly WR. The liver and biliary system 1993; 2: pp. (4)319-406.
[http://dx.doi.org/10.1016/B978-0-12-391606-8.50010-7]
[43]
Sherlock S, Dooley J. Diseases of the liver and biliary system. New York: John Wiley & Sons 2008.
[44]
Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death Dis 2016; 7: e2062.
[http://dx.doi.org/10.1038/cddis.2015.327] [PMID: 26794657]
[45]
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic Mesenchymal Stromal Cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[46]
Wildberger A, Villegas J, Verdier J, Giannini M, Maillard S, Truffault F. Phenotypical and functional characterizations of conditioned Mesenchymal Stromal Cells MSC, as tools for immunomodulation in Myasthenia Gravis. Proceeding of 52th meeting of the French Society for Immunology.
[47]
Ishkitiev N, Yaegaki K, Imai T, et al. High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 2012; 38(4): 475-80.
[http://dx.doi.org/10.1016/j.joen.2011.12.011] [PMID: 22414832]
[48]
Matsushita Y, Ishigami M, Matsubara K, et al. Multifaceted therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for acute liver failure in rats. J Tissue Eng Regen Med 2017; 11(6): 1888-96.
[http://dx.doi.org/10.1002/term.2086] [PMID: 28586545]
[49]
Ito T, Ishigami M, Matsushita Y, et al. Secreted ectodomain of SIGLEC-9 and MCP-1 synergistically improve acute liver failure in rats by altering macrophage polarity. Sci Rep 2017; 7: 44043.
[http://dx.doi.org/10.1038/srep44043] [PMID: 28272428]
[50]
Hirata M, Ishigami M, Matsushita Y, et al. Multifaceted therapeutic benefits of factors derived from dental pulp stem cells for mouse liver fibrosis. Stem Cells Transl Med 2016; 5(10): 1416-24.
[http://dx.doi.org/10.5966/sctm.2015-0353] [PMID: 27280796]
[51]
Yamaza T, Alatas FS, Yuniartha R, et al. In vivo hepatogenic capacity and therapeutic potential of stem cells from human exfoliated deciduous teeth in liver fibrosis in mice. Stem Cell Res Ther 2015; 6: 171.
[http://dx.doi.org/10.1186/s13287-015-0154-6] [PMID: 26358689]
[52]
Takahashi Y, Yuniartha R, Yamaza T, et al. Therapeutic potential of spheroids of stem cells from human exfoliated deciduous teeth for chronic liver fibrosis and hemophilia A. Pediatr Surg Int 2019; 35(12): 1379-88.
[http://dx.doi.org/10.1007/s00383-019-04564-4] [PMID: 31552493]
[53]
Ishkitiev N, Yaegaki K, Imai T, et al. Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 2015; 21(3-4): 586-93.
[http://dx.doi.org/10.1089/ten.tea.2014.0162] [PMID: 25234861]
[54]
Yokoyama T, Yagi Mendoza H, Tanaka T, et al. Regulation of CCl4-induced liver cirrhosis by hepatically differentiated human dental pulp stem cells. Hum Cell 2019; 32(2): 125-40.
[http://dx.doi.org/10.1007/s13577-018-00234-0] [PMID: 30637566]
[55]
Kamisako T, Iwai M, Tsui WM. Hyperbilirubinemia. Diagnosis of Liver Disease. Springer 2019; pp. 173-81.
[http://dx.doi.org/10.1007/978-981-13-6806-6_13]
[56]
Maerckx C, Tondreau T, Berardis S, van Pelt J, Najimi M, Sokal E. Human liver stem/progenitor cells decrease serum bilirubin in hyperbilirubinemic Gunn rat. World J Gastroenterol 2014; 20(30): 10553-63.
[http://dx.doi.org/10.3748/wjg.v20.i30.10553] [PMID: 25132775]
[57]
Spitzhorn LS, Kordes C, Megges M, et al. Transplanted human pluripotent stem cell-derived mesenchymal stem cells support liver regeneration in gunn rats. Stem Cells Dev 2018; 27(24): 1702-14.
[http://dx.doi.org/10.1089/scd.2018.0010] [PMID: 30280963]
[58]
Ishkitiev N, Yaegaki K, Calenic B, et al. Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 2010; 36(3): 469-74.
[http://dx.doi.org/10.1016/j.joen.2009.12.022] [PMID: 20171365]
[59]
Hedera P. Update on the clinical management of Wilson’s disease. Appl Clin Genet 2017; 10: 9-19.
[http://dx.doi.org/10.2147/TACG.S79121] [PMID: 28144156]
[60]
Fujiyoshi J, Yamaza H, Sonoda S, et al. Therapeutic potential of hepatocyte-like-cells converted from stem cells from human exfoliated deciduous teeth in fulminant Wilson’s disease. Sci Rep 2019; 9(1): 1535.
[http://dx.doi.org/10.1038/s41598-018-38275-y] [PMID: 30733544]
[61]
Filippi C, Dhawan A. Current status of human hepatocyte transplantation and its potential for Wilson’s disease. Ann N Y Acad Sci 2014; 1315: 50-5.
[http://dx.doi.org/10.1111/nyas.12386] [PMID: 24605914]
[62]
Diagnosis and classification of diabetes mellitus. Diabetes care 2010; 33(Suppl 1): S62-9.
[63]
Aathira R, Jain V. Advances in management of type 1 diabetes mellitus. World J Diabetes 2014; 5(5): 689-96.
[http://dx.doi.org/10.4239/wjd.v5.i5.689] [PMID: 25317246]
[64]
White MG, Shaw JAM, Taylor R. Type 2 diabetes: The pathologic basis of reversible β-cell dysfunction. Diabetes Care 2016; 39(11): 2080-8.
[http://dx.doi.org/10.2337/dc16-0619] [PMID: 27926891]
[65]
Jeong SU, Kang DG, Lee DH, et al. Clinical characteristics of type 2 diabetes patients according to family history of diabetes. Korean Diabetes J 2010; 34(4): 222-8.
[http://dx.doi.org/10.4093/kdj.2010.34.4.222] [PMID: 20835339]
[66]
Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet 2014; 383(9911): 69-82.
[http://dx.doi.org/10.1016/S0140-6736(13)60591-7] [PMID: 23890997]
[67]
Iqbal Z, Azmi S, Yadav R, et al. Diabetic peripheral neuropathy: Epidemiology, diagnosis, and pharmacotherapy. Clin Ther 2018; 40(6): 828-49.
[http://dx.doi.org/10.1016/j.clinthera.2018.04.001] [PMID: 29709457]
[68]
Kanafi MM, Rajeshwari YB, Gupta S, et al. Transplantation of islet-like cell clusters derived from human dental pulp stem cells restores normoglycemia in diabetic mice. Cytotherapy 2013; 15(10): 1228-36.
[http://dx.doi.org/10.1016/j.jcyt.2013.05.008] [PMID: 23845187]
[69]
Rao N, Wang X, Zhai Y, et al. Stem cells from human exfoliated deciduous teeth ameliorate type II diabetic mellitus in Goto-Kakizaki rats. Diabetol Metab Syndr 2019; 11: 22.
[http://dx.doi.org/10.1186/s13098-019-0417-y] [PMID: 30858895]
[70]
Urbán VS, Kiss J, Kovács J, et al. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 2008; 26(1): 244-53.
[http://dx.doi.org/10.1634/stemcells.2007-0267] [PMID: 17932424]
[71]
Izumoto-Akita T, Tsunekawa S, Yamamoto A, et al. Secreted factors from dental pulp stem cells improve glucose intolerance in streptozotocin-induced diabetic mice by increasing pancreatic β- cell function. BMJ Open Diabetes Res Care 2015; 3(1): e000128.
[http://dx.doi.org/10.1136/bmjdrc-2015-000128] [PMID: 26504525]
[72]
Matsumoto S. Clinical allogeneic and autologous islet cell transplantation: Update. Diabetes Metab J 2011; 35(3): 199-206.
[http://dx.doi.org/10.4093/dmj.2011.35.3.199] [PMID: 21785738]
[73]
Kadam SS, Sudhakar M, Nair PD, Bhonde RR. Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy 2010; 12(8): 982-91.
[http://dx.doi.org/10.3109/14653249.2010.509546] [PMID: 20807019]
[74]
Kadam S, Muthyala S, Nair P, Bhonde R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 2010; 7(2): 168-82.
[http://dx.doi.org/10.1900/RDS.2010.7.168] [PMID: 21060975]
[75]
Xie J, Rao N, Zhai Y, et al. Therapeutic effects of stem cells from human exfoliated deciduous teeth on diabetic peripheral neuropathy. Diabetol Metab Syndr 2019; 11: 38.
[http://dx.doi.org/10.1186/s13098-019-0433-y] [PMID: 31131042]
[76]
Wang C, Lu CF, Peng J, Hu CD, Wang Y. Roles of neural stem cells in the repair of peripheral nerve injury. Neural Regen Res 2017; 12(12): 2106-12.
[http://dx.doi.org/10.4103/1673-5374.221171] [PMID: 29323053]
[77]
Miura-Yura E, Tsunekawa S, Naruse K, et al. Secreted factors from cultured dental pulp stem cells promoted neurite outgrowth of dorsal root ganglion neurons and ameliorated neural functions in streptozotocin-induced diabetic mice. J Diabetes Investig 2020; 11(1): 28-38.
[http://dx.doi.org/10.1111/jdi.13085] [PMID: 31144464]
[78]
Barreca MM, Cancemi P, Geraci F. Mesenchymal and induced pluripotent stem cells-derived extracellular vesicles: The new frontier for regenerative medicine? Cells 2020; 9(5): E1163.
[http://dx.doi.org/10.3390/cells9051163] [PMID: 32397132]
[79]
Cai J, Wu J, Wang J, et al. Extracellular vesicles derived from different sources of mesenchymal stem cells: Therapeutic effects and translational potential. Cell Biosci 2020; 10: 69.
[http://dx.doi.org/10.1186/s13578-020-00427-x] [PMID: 32483483]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy