Review Article

探索基因治疗对神经系统疾病的作用

卷 21, 期 1, 2021

发表于: 17 September, 2020

页: [11 - 22] 页: 12

弟呕挨: 10.2174/1566523220999200917114101

价格: $65

摘要

基因治疗是医学突破的前沿领域之一,可以有效地解决以前无法治愈的疾病。将矫正遗传物质或治疗性基因注入细胞可恢复缺失的基因功能,并治愈大量传统医学方法无法治愈的疾病。这一发现有望治疗许多神经退行性疾病,如肌肉萎缩、多发性硬化症、帕金森病(PD)和阿尔茨海默病(AD)等。基因疗法被证明是一种人道的、成本效益高的选择,而不是费力而又及时、不可能的寻找匹配捐赠者和大规模手术的过程。它也克服了传统方法穿越血脑屏障的缺点。然而,只有在对该病的免疫发病机制和分子机制有了深入的了解后,基因治疗的应用才有可能。基因治疗的过程大致可分为三个主要步骤:阐明目的基因,筛选合适的载体,确定最佳的转移方式;每一步都需要进行普及研究。本文就基因治疗在神经退行性疾病中的作用、载体和传递方法进行综述,重点对中枢神经系统(CNS)的基因治疗进行综述。

关键词: 基因治疗,神经退行性疾病,神经病变,中枢神经系统,AAV,载体

图形摘要

[1]
Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES. Development and clinical translation of gene therapy for genetic disorders. Front Genet 2019; 10: 868.
[http://dx.doi.org/10.3389/fgene.2019.00868] [PMID: 31608113]
[2]
Cooney AL, McCray PB Jr, Sinn PL. Cystic Fibrosis Gene Therapy: Looking Back, Looking Forward. Genes (Basel) 2018; 9(11): E538.
[http://dx.doi.org/10.3390/genes9110538] [PMID: 30405068]
[3]
Guo X-L, Chung T-H, Qin Y, et al. Hemophilia gene therapy: New development from bench to bed side. Curr Gene Ther 2019; 19(4): 264-73.
[http://dx.doi.org/10.2174/1566523219666190924121836] [PMID: 31549954]
[4]
Thrasher AJ, Williams DA. Evolving gene therapy in primary immunodeficiency. J Am Soc Gene Therap 2017; 25(5): 1132-41.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.018]
[5]
Lee JH, Wang J-H, Chen J, et al. Gene therapy for visual loss: Opportunities and concerns. Prog Retin Eye Res 2019; 68: 31-53.
[http://dx.doi.org/10.1016/j.preteyeres.2018.08.003] [PMID: 30170104]
[6]
Ziccardi L, Cordeddu V, Gaddini L, et al. Gene therapy in retinal dystrophies. Int J Mol Sci 2019; 20(22): 5722.
[http://dx.doi.org/10.3390/ijms20225722] [PMID: 31739639]
[7]
Hoban MD, Orkin SH, Bauer DE. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease. Blood 2016; 127(7): 839-48.
[http://dx.doi.org/10.1182/blood-2015-09-618587] [PMID: 26758916]
[8]
Al-Zaidy SA, Lloyd-Puryear M, Kennedy A, Lopez V, Mendell JR. A roadmap to newborn screening for duchenne muscular dystrophy. Int J Neonatal Screen 2017; 3(2): 8.
[http://dx.doi.org/10.3390/ijns3020008] [PMID: 31588416]
[9]
Duan D. Challenges and opportunities in dystrophin-deficient cardiomyopathy gene therapy. Hum Mol Gene 2006; 15(2): 253-61.
[http://dx.doi.org/10.1093/hmg/ddl180]
[10]
Duan D. Duchenne muscular dystrophy gene therapy: Lost in translation? Res Rep Biol 2011; 2011(2): 31-42.
[http://dx.doi.org/10.2147/RRB.S13463] [PMID: 21691429]
[11]
Duan D. Duchenne muscular dystrophy gene therapy in the canine model. Hum Gene Ther Clin Dev 2015; 26(1): 57-69.
[http://dx.doi.org/10.1089/humc.2015.006] [PMID: 25710459]
[12]
Wirth T, Ylä-Herttuala S. Gene therapy used in cancer treatment. Biomedicines 2014; 2(2): 149-62.
[http://dx.doi.org/10.3390/biomedicines2020149] [PMID: 28548065]
[13]
Yue Y, Binalsheikh IM, Leach SB, Domeier TL, Duan D. Prospect of gene therapy for cardiomyopathy in hereditary muscular dystrophy. Expert Opin Orphan Drugs 2016; 4(2): 169-83.
[http://dx.doi.org/10.1517/21678707.2016.1124039] [PMID: 27340611]
[14]
Mason D, Chen Y-Z, Krishnan HV, Sant S. Cardiac gene therapy: Recent advances and future directions. J Control Release 2015; 215: 101-11.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.001] [PMID: 26254712]
[15]
Misra S. Human gene therapy: a brief overview of the genetic revolution. J Assoc Physicians India 2013; 61(2): 127-33.
[PMID: 24471251]
[16]
Choong CJ, Baba K, Mochizuki H. Gene therapy for neurological disorders. Expert Opin Biol Ther 2016; 16(2): 143-59.
[http://dx.doi.org/10.1517/14712598.2016.1114096] [PMID: 26642082]
[17]
Aiuti A, Roncarolo MG, Naldini L. Gene therapy for ADA-SCID, the first marketing approval of an ex vivo gene therapy in Europe: paving the road for the next generation of advanced therapy medicinal products. EMBO Mol Med 2017; 9(6): 737-40.
[http://dx.doi.org/10.15252/emmm.201707573] [PMID: 28396566]
[18]
Finer M, Glorioso J. A brief account of viral vectors and their promise for gene therapy. Gene Ther 2017; 24(1): 1-2.
[http://dx.doi.org/10.1038/gt.2016.71] [PMID: 28123184]
[19]
Kaufmann KB, Büning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med 2013; 5(11): 1642-61.
[http://dx.doi.org/10.1002/emmm.201202287] [PMID: 24106209]
[20]
Li Q, Verma A, Zhu P, et al. Gene therapy for diabetic retinopathy – targeting the renin-angiotensin system.Gene therapy-tools and potential applications, Martin F (Ed)IntechOpen. 2013.
[http://dx.doi.org/10.5772/52702]
[21]
O’Connor DM, Boulis NM. Gene therapy for neurodegenerative diseases. Trends Mol Med 2015; 21(8): 504-12.
[http://dx.doi.org/10.1016/j.molmed.2015.06.001] [PMID: 26122838]
[22]
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14(6): 931-8.
[http://dx.doi.org/10.4103/1673-5374.250570] [PMID: 30761996]
[23]
Blaese M, Blankenstein T, Brenner M, et al. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther 1995; 2(4): 291-7.
[PMID: 8548583]
[24]
Liu W, Liu Z, Cao X, et al. Recombinant human foamy virus, a novel vector for neurological disorders gene therapy, drives production of GAD in cultured astrocytes. Mol Ther 2007; 15(10): 1834-41.
[http://dx.doi.org/10.1038/sj.mt.6300224] [PMID: 17579580]
[25]
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene Therapy for ALS-A Perspective. Int J Mol Sci 2019; 20(18): 4388.
[http://dx.doi.org/10.3390/ijms20184388] [PMID: 31500113]
[26]
Giau VV, Senanarong V, Bagyinszky E, An SSA, Kim S. Analysis of 50 neurodegenerative genes in clinically diagnosed early-onset Alzheimer’s disease. Int J Mol Sci 2019; 20(6): 1514.
[http://dx.doi.org/10.3390/ijms20061514] [PMID: 30917570]
[27]
Karim S, Mirza Z, A, Kamal M, et al. The role of viruses in neurodegenerative and neurobehavioral diseases. CNS Neurol Dis Drug Targ 2014; 13(7): 1213-23.
[http://dx.doi.org/10.2174/187152731307141015122638]
[28]
García JC, Bustos RH. The genetic diagnosis of neurodegenerative diseases and therapeutic perspectives. Brain Sci 2018; 8(12): E222.
[http://dx.doi.org/10.3390/brainsci8120222] [PMID: 30551598]
[29]
Ashim K, Tridip C. Progresses in gene therapy of neurodegenerative disorders. On J Neur Br Disord 2018; 1(1): 1-18.
[http://dx.doi.org/10.32474/OJNBD.2018.01.000103]
[30]
Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 2004; 10(10): 1055-63.
[http://dx.doi.org/10.1038/nm1113] [PMID: 15459709]
[31]
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019; 16(1): 166-75.
[http://dx.doi.org/10.1007/s13311-018-00694-0] [PMID: 30542906]
[32]
Piguet F, Alves S, Cartier N. Clinical gene therapy for neurodegenerative diseases: past, present, and future. Hum Gene Ther 2017; 28(11): 988-1003.
[http://dx.doi.org/10.1089/hum.2017.160] [PMID: 29035118]
[33]
Gan Y, Jing Z, Stetler RA, Cao G. Gene delivery with viral vectors for cerebrovascular diseases. Front Biosci (Elite Ed) 2013; 5: 188-203.
[http://dx.doi.org/10.2741/E607] [PMID: 23276981]
[34]
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: Challenges and new strategies. Neurotherapeutics 2014; 11(4): 817-39.
[http://dx.doi.org/10.1007/s13311-014-0299-5] [PMID: 25159276]
[35]
Kumar SR, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: Results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3: 16034.
[http://dx.doi.org/10.1038/mtm.2016.34] [PMID: 27257611]
[36]
Dong X. Current strategies for brain drug delivery. Theranostics 2018; 8(6): 1481-93.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[37]
Gholizadeh-Ghaleh Aziz S, Pashaei-Asl F, Fardyazar Z, Pashaiasl M. Isolation, characterization, cryopreservation of human amniotic stem cells and differentiation to osteogenic and adipogenic cells. PloS One 2016; 11(7): e0158281.
[38]
Zare S, Zarei MA, Ghadimi T, Fathi F, Jalili A, Hakhamaneshi MS. Isolation, cultivation and transfection of human keratinocytes. Cell Biol Int 2014; 38(4): 444-51.
[http://dx.doi.org/10.1002/cbin.10218] [PMID: 24323435]
[39]
Farahzadi R, Fathi E, Vietor I. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem Neurosci 2020; 11(10): 1424-35.
[http://dx.doi.org/10.1021/acschemneuro.0c00052] [PMID: 32310632]
[40]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19.
[http://dx.doi.org/10.21037/sci.2019.06.04] [PMID: 31463312]
[41]
Van der Perren A, Van den Haute C, Baekelandt V. Behavioral neurobiology of huntington’s disease and Parkinson’s disease Springer. 2014; pp. pp. 271-301.
[http://dx.doi.org/10.1007/7854_2014_310]
[42]
Shastry BS. Parkinson disease: Etiology, pathogenesis and future of gene therapy. Neurosci Res 2001; 41(1): 5-12.
[http://dx.doi.org/10.1016/S0168-0102(01)00254-1] [PMID: 11535288]
[43]
Chang JL, Hinrich AJ, Roman B, et al. Targeting amyloid-β precursor protein, APP, splicing with antisense oligonucleotides reduces toxic amyloid-β production. Mol Ther 2018; 26(6): 1539-51.
[http://dx.doi.org/10.1016/j.ymthe.2018.02.029] [PMID: 29628304]
[44]
Chaudhary A, Maurya PK, Yadav BS, Singh S, Mani A. Current therapeutic targets for Alzheimer’s disease. J Biomed (Syd) 2018; 3: 74-84.
[http://dx.doi.org/10.7150/jbm.26783]
[45]
Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The incidence and prevalence of Huntington’s disease: A systematic review and meta-analysis. Mov Disord 2012; 27(9): 1083-91.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[46]
Chen S, Sayana P, Zhang X, Le W. Genetics of amyotrophic lateral sclerosis: An update. Mol Neurodegener 2013; 8(1): 28.
[http://dx.doi.org/10.1186/1750-1326-8-28] [PMID: 23941283]
[47]
Lai Y, Duan D. Progress in gene therapy of dystrophic heart disease. Gene Ther 2012; 19(6): 678-85.
[http://dx.doi.org/10.1038/gt.2012.10] [PMID: 22318092]
[48]
Hosseini A, Estiri H, Niaki HA, et al. Multiple sclerosis gene therapy using recombinant viral vectors: Overexpression of IL-4, IL-10 and leukemia inhibitory factor in wharton’s jelly stem cells in the eae mice model. Cell 2017; 19(3): 361.
[PMID: 28836399]
[49]
Hamana A, Takahashi Y, Tanioka A, Nishikawa M, Takakura Y. Safe and effective interferon-beta gene therapy for the treatment of multiple sclerosis by regulating biological activity through the design of interferon-beta-galectin-9 fusion proteins. Int J Pharm 2018; 536(1): 310-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.010] [PMID: 29217470]
[50]
Burch PM, Pogoryelova O, Goldstein R, et al. Muscle-derived proteins as serum biomarkers for monitoring disease progression in three forms of muscular dystrophy. J Neuromuscul Dis 2015; 2(3): 241-55.
[http://dx.doi.org/10.3233/JND-140066] [PMID: 26870665]
[51]
Mata M, Chattopadhyay M, Fink DJ. Gene therapy for the treatment of diabetic neuropathy. Curr Diab Rep 2008; 8(6): 431-6.
[http://dx.doi.org/10.1007/s11892-008-0075-1] [PMID: 18990298]
[52]
Sandford E, Burmeister M. Genes and genetic testing in hereditary ataxias. Genes (Basel) 2014; 5(3): 586-603.
[http://dx.doi.org/10.3390/genes5030586] [PMID: 25055202]
[53]
Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet 2011; 20(R1): R28-41.
[http://dx.doi.org/10.1093/hmg/ddr110] [PMID: 21429918]
[54]
Sung YK, Kim SW. Recent advances in the development of gene delivery systems. Biomater Res 2019; 23(1): 8.
[http://dx.doi.org/10.1186/s40824-019-0156-z] [PMID: 30915230]
[55]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[56]
Deglon N, Hantraye P. Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005; 7(5): 530-9.
[http://dx.doi.org/10.1002/jgm.707]
[57]
Raoul C, Barker SD, Aebischer P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther 2006; 13(6): 487-95.
[http://dx.doi.org/10.1038/sj.gt.3302690] [PMID: 16319945]
[58]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[59]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[60]
Mali S. Delivery systems for gene therapy. Indian J Hum Genet 2013; 19(1): 3-8.
[http://dx.doi.org/10.4103/0971-6866.112870] [PMID: 23901186]
[61]
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene therapy tools for brain diseases. Front Pharmacol 2019; 10: 724.
[http://dx.doi.org/10.3389/fphar.2019.00724] [PMID: 31312139]
[62]
Varga CM, Hong K, Lauffenburger DA. Quantitative analysis of synthetic gene delivery vector design properties. Mol Ther 2001; 4(5): 438-46.
[http://dx.doi.org/10.1006/mthe.2001.0475] [PMID: 11708880]
[63]
Jayant RD, Sosa D, Kaushik A, et al. Current status of non-viral gene therapy for CNS disorders. Expert Opin Drug Deliv 2016; 13(10): 1433-45.
[http://dx.doi.org/10.1080/17425247.2016.1188802] [PMID: 27249310]
[64]
Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm 2014; 459(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.041] [PMID: 24286924]
[65]
Uchida M, Li XW, Mertens P, Alpar HO. Transfection by particle bombardment: delivery of plasmid DNA into mammalian cells using gene gun. Biochim Biophys Acta 2009; 1790(8): 754-64.
[http://dx.doi.org/10.1016/j.bbagen.2009.05.013] [PMID: 19477233]
[66]
Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009; 109(2): 259-302.
[http://dx.doi.org/10.1021/cr800409e] [PMID: 19053809]
[67]
Al-Dosari MS, Gao X. Nonviral gene delivery: Principle, limitations, and recent progress. AAPS J 2009; 11(4): 671-81.
[http://dx.doi.org/10.1208/s12248-009-9143-y] [PMID: 19834816]
[68]
Patil S, Gao Y-G, Lin X, et al. The development of functional non-viral vectors for gene delivery. Int J Mol Sci 2019; 20(21): 5491.
[http://dx.doi.org/10.3390/ijms20215491] [PMID: 31690044]
[69]
Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics 2012; 2(12): 1208-22.
[http://dx.doi.org/10.7150/thno.4306] [PMID: 23382777]
[70]
Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99(18): 11854-9.
[http://dx.doi.org/10.1073/pnas.182412299] [PMID: 12192090]
[71]
Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1(1): 427-51.
[http://dx.doi.org/10.1146/annurev-virology-031413-085355] [PMID: 26958729]
[72]
Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success a personal perspective. Hum Gene Ther 2015; 26(5): 257-65.
[http://dx.doi.org/10.1089/hum.2015.025] [PMID: 25807962]
[73]
Naso MF, Tomkowicz B, Perry WL III, Strohl WR. Adeno-Associated Virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[74]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: Their current status and future potential. Arch Immunol Ther Exp 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[75]
Singer O, Marr RA, Rockenstein E, et al. Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 2005; 8(10): 1343-9.
[http://dx.doi.org/10.1038/nn1531] [PMID: 16136043]
[76]
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer’s disease treatment. Expert Opin Biol Ther 2007; 7(12): 1853-67.
[http://dx.doi.org/10.1517/14712598.7.12.1853] [PMID: 18034651]
[77]
O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 2011; 34: 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[78]
Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology 2017; 120: 63-80.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.013] [PMID: 26905292]
[79]
Machida Y, Okada T, Kurosawa M, Oyama F, Ozawa K, Nukina N. rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 2006; 343(1): 190-7.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.141] [PMID: 16530728]
[80]
Pfister EL, DiNardo N, Mondo E, et al. Artificial miRNAs reduce human mutant huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther 2018; 29(6): 663-73.
[http://dx.doi.org/10.1089/hum.2017.199] [PMID: 29207890]
[81]
Bush DL, Vogt VM. In vitro assembly of retroviruses. Annu Rev Virol 2014; 1(1): 561-80.
[http://dx.doi.org/10.1146/annurev-virology-031413-085427] [PMID: 26958734]
[82]
Saxena SK, Chitti SVP. Molecular biology and pathogenesis of retroviruses.Advances in molecular retrovirology Intechopen. 2016.
[http://dx.doi.org/10.5772/62885]
[83]
Kennedy PG. Potential use of herpes simplex virus (HSV) vectors for gene therapy of neurological disorders. Brain 1997; 120(Pt 7): 1245-59.
[http://dx.doi.org/10.1093/brain/120.7.1245] [PMID: 9236634]
[84]
Artusi S, Miyagawa Y, Goins WF, Cohen JB, Glorioso JC. Herpes simplex virus vectors for gene transfer to the central nervous system. Diseases 2018; 6(3): E74.
[http://dx.doi.org/10.3390/diseases6030074] [PMID: 30110885]
[85]
Goss JR, Krisky D, Wechuck J, Wolfe D. Herpes simplex virus-based nerve targeting gene therapy in pain management. J Pain Res 2014; 7: 71-9.
[PMID: 24470772]
[86]
Manservigi R, Argnani R, Marconi P. HSV recombinant vectors for gene therapy. Open Virol J 2010; 4: 123-56.
[PMID: 20835362]
[87]
Lundstrom K. Viral vectors in gene therapy. Diseases 2018; 6(2): 42.
[http://dx.doi.org/10.3390/diseases6020042] [PMID: 29883422]
[88]
Thakur V, Gonzalez M, Pennington K, Chattopadhyay M. Viral vector mediated continuous expression of interleukin-10 in DRG alleviates pain in type 1 diabetic animals. Mol Cell Neurosci 2016; 72: 46-53.
[http://dx.doi.org/10.1016/j.mcn.2016.01.006] [PMID: 26802537]
[89]
Lundstrom K. Alphavirus vectors as tools in neuroscience and gene therapy. Virus Res 2016; 216: 16-25.
[http://dx.doi.org/10.1016/j.virusres.2015.08.015] [PMID: 26307195]
[90]
Lundstrom K. Alphavirus-based vaccines. Curr Opin Mol Ther 2002; 4(1): 28-34.
[PMID: 11883692]
[91]
Lundstrom K. G Protein-coupled receptors in drug discovery Springer. 2009; pp. pp. 51-66.
[http://dx.doi.org/10.1007/978-1-60327-317-6_4]
[92]
Wahlfors JJ, Zullo SA, Loimas S, Nelson DM, Morgan RA. Evaluation of recombinant alphaviruses as vectors in gene therapy. Gene Ther 2000; 7(6): 472-80.
[http://dx.doi.org/10.1038/sj.gt.3301122] [PMID: 10757020]
[93]
Harrison IF, Crum WR, Vernon AC, Dexter DT. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. Br J Pharmacol 2015; 172(16): 4200-15.
[http://dx.doi.org/10.1111/bph.13208] [PMID: 26040297]
[94]
Sarkar S, Raymick J, Imam S. Neuroprotective and therapeutic strategies against Parkinson’s disease: recent perspectives. Int J Mol Sci 2016; 17(6): 904.
[http://dx.doi.org/10.3390/ijms17060904] [PMID: 27338353]
[95]
Triarhou LC. Madame Curie Bioscience Database Landes Bioscience. 2013.
[96]
Bowers WJ, Howard DF, Federoff HJ. Gene therapeutic strategies for neuroprotection: implications for Parkinson’s disease. Exp Neurol 1997; 144(1): 58-68.
[http://dx.doi.org/10.1006/exnr.1996.6389] [PMID: 9126153]
[97]
Axelsen TM, Woldbye DPD. Gene therapy for Parkinson’s disease, an update. J Parkinsons Dis 2018; 8(2): 195-215.
[http://dx.doi.org/10.3233/JPD-181331] [PMID: 29710735]
[98]
Douglas M, Hazlehurst J. Gene therapy for Parkinson’s disease Towards new therapies for Parkinson's disease Intechopen. 2011; p. p. 255.
[http://dx.doi.org/10.5772/17420]
[99]
LeWitt PA, Rezai AR, Leehey MA, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 2011; 10(4): 309-19.
[http://dx.doi.org/10.1016/S1474-4422(11)70039-4] [PMID: 21419704]
[100]
During MJ. Gene therapy in Parkinson’s disease. Expert Rev Neurother 2003; 3(6): 729-32.
[http://dx.doi.org/10.1586/14737175.3.6.729] [PMID: 19810875]
[101]
Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease Exp Neurol 2017; 298(Pt B): 137-47.
[http://dx.doi.org/10.1016/j.expneurol.2017.10.001]
[102]
Segura-Aguilar J. Commentary: gene therapy: A promising approach for neuroprotection in Parkinson’s Disease? Front Neuroanat 2017; 11: 40.
[http://dx.doi.org/10.3389/fnana.2017.00040] [PMID: 28579947]
[103]
Denyer R, Douglas MR. Gene therapy for Parkinson’s disease. Parkinsons Dis 2012; 2012: 757305.
[http://dx.doi.org/10.1155/2012/757305] [PMID: 22619738]
[104]
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011; 1(1): a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189]
[105]
Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav 2008; 7(Suppl 1): 43-56.
[http://dx.doi.org/10.1111/j.1601-183X.2007.00378.x] [PMID: 18184369]
[106]
Tuszynski MH, Yang JH, Barba D, et al. Nerve growth factor gene therapy: Activation of neuronal responses in Alzheimer Disease. JAMA Neurol 2015; 72(10): 1139-47.
[http://dx.doi.org/10.1001/jamaneurol.2015.1807] [PMID: 26302439]
[107]
A controlled trial of recombinant methionyl human BDNF in ALS: The BDNF Study Group (Phase III). Neurology 1999; 52(7): 1427-33.
[http://dx.doi.org/10.1212/WNL.52.7.1427] [PMID: 10227630]
[108]
Henriques A, Pitzer C, Schneider A. Neurotrophic growth factors for the treatment of amyotrophic lateral sclerosis: Where do we stand? Front Neurosci 2010; 4: 32.
[http://dx.doi.org/10.3389/fnins.2010.00032] [PMID: 20592948]
[109]
Suzuki M, McHugh J, Tork C, et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2007; 2(8): e689.
[http://dx.doi.org/10.1371/journal.pone.0000689] [PMID: 17668067]
[110]
Bohn MC, Connor B, Kozlowski DA, Mohajeri MH. Gene transfer for neuroprotection in animal models of Parkinson's disease and amyotrophic lateral sclerosis. Novartis Found Symp 2000; 231: 70-89.
[http://dx.doi.org/10.1002/0470870834.ch5]
[111]
Wang LJ, Lu YY, Muramatsu S, et al. Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 2002; 22(16): 6920-8.
[http://dx.doi.org/10.1523/JNEUROSCI.22-16-06920.2002] [PMID: 12177190]
[112]
Dodge JC, Haidet AM, Yang W, et al. Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Therap 2008; 16(6): 1056-64.
[http://dx.doi.org/10.1038/mt.2008.60] [PMID: 18388910]
[113]
Dodge JC, Treleaven CM, Fidler JA, et al. AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol Therap 2010; 18(12): 2075-84.
[http://dx.doi.org/10.1038/mt.2010.206] [PMID: 20859261]
[114]
Stoica L, Sena-Esteves M. Adeno associated viral vector delivered rnai for gene therapy of SOD1 amyotrophic lateral sclerosis. Front Mol Neurosci 2016; 9(56): 56.
[http://dx.doi.org/10.3389/fnmol.2016.00056] [PMID: 27531973]
[115]
Gouel F, Rolland A-S, Devedjian J-C, Burnouf T, Devos D. Past and future of neurotrophic growth factors therapies in ALS: From single neurotrophic growth factor to stem cells and human platelet lysates. Front Neurol 2019; 10(835): 835.
[http://dx.doi.org/10.3389/fneur.2019.00835] [PMID: 31428042]
[116]
Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci 2013; 70(24): 4729-45.
[http://dx.doi.org/10.1007/s00018-013-1415-0] [PMID: 23864030]
[117]
Glorioso JC, Cohen JB, Carlisle DL, Munoz-Sanjuan I, Friedlander RM. Moving toward a gene therapy for Huntington’s disease. Gene Ther 2015; 22(12): 931-3.
[http://dx.doi.org/10.1038/gt.2015.102] [PMID: 26633828]
[118]
Kells AP, Fong DM, Dragunow M, During MJ, Young D, Connor B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004; 9(5): 682-8.
[http://dx.doi.org/10.1016/j.ymthe.2004.02.016] [PMID: 15120329]
[119]
Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: A gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res 2010; 61(1): 14-26.
[http://dx.doi.org/10.1016/j.phrs.2009.10.002] [PMID: 19840853]
[120]
Lauterbach EC, Fontenelle LF, Teixeira AL. The neuroprotective disease-modifying potential of psychotropics in Parkinson’s disease. Parkinsons Dis 2012; 2012: 753548.
[http://dx.doi.org/10.1155/2012/753548] [PMID: 22254151]
[121]
Garcia P, Youssef I, Utvik JK, et al. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 2010; 30(22): 7516-27.
[http://dx.doi.org/10.1523/JNEUROSCI.4182-09.2010] [PMID: 20519526]
[122]
Simonato M, Tongiorgi E, Kokaia M. Angels and demons: Neurotrophic factors and epilepsy. Trends Pharmacol Sci 2006; 27(12): 631-8.
[http://dx.doi.org/10.1016/j.tips.2006.10.002] [PMID: 17055067]
[123]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 11(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[124]
Noe FM, Sørensen AT, Kokaia M, Vezzani A. Jasper’s basic mechanisms of the epilepsies (4th ed), US: National Center for Biotechnology Information. 2012. Available at://www.ncbi.nlm.nih.gov/books/NBK50785/
[125]
Sørensen AT, Kokaia M, Vezzani A. Gene therapy of focal onset epilepsy using adeno-associated virus vector-mediated overexpression of neuropeptide Y. In: In Jasper’s basic mechanisms of the epilepsies. 4th ed, Noebels JL, Avoli M, Rogawski MA, et al. Editors. 2012. Available at://www.ncbi.nlm.nih.gov/books/NBK 98184/
[126]
Pöyhönen S, Er S, Domanskyi A, Airavaara M. Effects of neurotrophic factors in glial cells in the central nervous system: Expression and properties in neurodegeneration and injury. Front Physiol 2019; 10(486): 486.
[http://dx.doi.org/10.3389/fphys.2019.00486] [PMID: 31105589]
[127]
Weinberg MS, McCown TJ. Current prospects and challenges for epilepsy gene therapy. Exp Neurol 2013; 244: 27-35.
[http://dx.doi.org/10.1016/j.expneurol.2011.10.003] [PMID: 22008258]
[128]
Woldbye DP, Ängehagen M, Gøtzsche CR, et al. Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 2010; 133(9): 2778-88.
[http://dx.doi.org/10.1093/brain/awq219] [PMID: 20688813]
[129]
Sørensen AT, Kokaia M. Novel approaches to epilepsy treatment. Epilepsia 2013; 54(1): 1-10.
[http://dx.doi.org/10.1111/epi.12000] [PMID: 23106744]
[130]
Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y, Abe K. Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res 2002; 947(1): 140-5.
[http://dx.doi.org/10.1016/S0006-8993(02)02923-2] [PMID: 12144862]
[131]
Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 1998; 29(7): 1417-22.
[http://dx.doi.org/10.1161/01.STR.29.7.1417] [PMID: 9660398]
[132]
Katt ME, Mayo LN, Ellis SE, et al. The role of mutations associated with familial neurodegenerative disorders on blood-brain barrier function in an iPSC model. Fluids Barriers CNS 2019; 16(1): 20.
[http://dx.doi.org/10.1186/s12987-019-0139-4] [PMID: 31303172]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy