Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach

Author(s): Sridhar Muthusami, Ilangovan Ramachandran*, Sneha Krishnamoorthy, Yuvaraj Sambandam, Satish Ramalingam, Lurdes Queimado, Gautam Chaudhuri and Ileng Kumaran Ramachandran*

Volume 21, Issue 1, 2021

Published on: 17 September, 2020

Page: [67 - 76] Pages: 10

DOI: 10.2174/1871530320666200917112802

Price: $65

Abstract

The development of colorectal cancer (CRC) is a multistage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of inflammation-associated CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.

Keywords: Colorectal cancer (CRC), colitis-associated CRC (CAC), cytokines, inflammation, inflammation-associated CRC, inflammatory bowel disease (IBD), interleukin (IL), metastasis, microRNA (miRNA/miR), nuclear factor (NF) kappalightchain- enhancer of activated B cells (NFκB), tumor necrosis factor (TNF), ulcerative colitis (UC).

Graphical Abstract

[1]
Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: projections to the year 2035. Int. J. Cancer, 2019, 144(12), 2992-3000.
[http://dx.doi.org/10.1002/ijc.32055] [PMID: 30536395]
[2]
Mathew, A.; Baby, B.; Wang, K.; Sirohi, B.; Lei, F.; Chen, Q.; Huang, B. Colorectal cancer incidence in younger adults in India. Gut, 2020, 69(10), 1899-1900.
[http://dx.doi.org/10.1136/gutjnl-2019-320271] [PMID: 31836611]
[3]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[4]
Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology, 2010, 138(6), 2101-2114.
[http://dx.doi.org/10.1053/j.gastro.2010.01.058] [PMID: 20420949]
[5]
Dubois, R.N. Role of inflammation and inflammatory mediators in colorectal cancer. Trans. Am. Clin. Climatol. Assoc., 2014, 125, 358-372.
[PMID: 25125751]
[6]
Long, A.G.; Lundsmith, E.T.; Hamilton, K.E. Inflammation and colorectal cancer. Curr. Colorectal Cancer Rep., 2017, 13(4), 341-351.
[http://dx.doi.org/10.1007/s11888-017-0373-6] [PMID: 29129972]
[7]
Tariq, K.; Ghias, K. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol. Med., 2016, 13(1), 120-135.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2015.0103] [PMID: 27144067]
[8]
To, K.K.; Tong, C.W.; Wu, M.; Cho, W.C. MicroRNAs in the prognosis and therapy of colorectal cancer: From bench to bedside. World J. Gastroenterol., 2018, 24(27), 2949-2973.
[http://dx.doi.org/10.3748/wjg.v24.i27.2949] [PMID: 30038463]
[9]
Sureban, S.M.; Qu, D.; Houchen, C.W. Regulation of miRNAs by agents targeting the tumor stem cell markers DCLK1, MSI1, LGR5, and BMI1. Curr. Pharmacol. Rep., 2015, 1(4), 217-222.
[http://dx.doi.org/10.1007/s40495-014-0006-6] [PMID: 26366338]
[10]
Ramalingam, S.; Subramaniam, D.; Anant, S. Manipulating miRNA expression: A novel approach for colon cancer prevention and chemotherapy. Curr. Pharmacol. Rep., 2015, 1(3), 141-153.
[http://dx.doi.org/10.1007/s40495-015-0020-3] [PMID: 26029495]
[11]
Janakiram, N.B.; Rao, C.V. Molecular markers and targets for colorectal cancer prevention. Acta Pharmacol. Sin., 2008, 29(1), 1-20.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00742.x] [PMID: 18158862]
[12]
Tiwari, A.; Saraf, S.; Verma, A.; Panda, P.K.; Jain, S.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J. Gastroenterol., 2018, 24(39), 4428-4435.
[http://dx.doi.org/10.3748/wjg.v24.i39.4428] [PMID: 30357011]
[13]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[14]
Kim, V.N. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol., 2005, 6(5), 376-385.
[http://dx.doi.org/10.1038/nrm1644] [PMID: 15852042]
[15]
Tétreault, N.; De Guire, V. miRNAs: their discovery, biogenesis and mechanism of action. Clin. Biochem., 2013, 46(10-11), 842-845.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.02.009] [PMID: 23454500]
[16]
Faller, M.; Guo, F. MicroRNA biogenesis: there’s more than one way to skin a cat. Biochim. Biophys. Acta, 2008, 1779(11), 663-667.
[http://dx.doi.org/10.1016/j.bbagrm.2008.08.005] [PMID: 18778799]
[17]
Imbar, T.; Eisenberg, I. Regulatory role of microRNAs in ovarian function. Fertil. Steril., 2014, 101(6), 1524-1530.
[http://dx.doi.org/10.1016/j.fertnstert.2014.04.024] [PMID: 24882616]
[18]
Lee, Y.S.; Dutta, A. MicroRNAs in cancer. Annu. Rev. Pathol., 2009, 4, 199-227.
[http://dx.doi.org/10.1146/annurev.pathol.4.110807.092222] [PMID: 18817506]
[19]
Ardekani, A.M.; Naeini, M.M. lArdekani, A. M.; Naeini, M. M. The role of microRNAs in human diseases. Avicenna J. Med. Biotechnol., 2010, 2(4), 161-179.
[PMID: 23407304]
[20]
Hutvagner, G.; Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol., 2008, 9(1), 22-32.
[http://dx.doi.org/10.1038/nrm2321] [PMID: 18073770]
[21]
Muhammad, S.; Tang, Q.; Wei, L.; Zhang, Q.; Wang, G.; Muhammad, B.U.; Kaur, K.; Kamchedalova, T.; Gang, Z.; Jiang, Z.; Liu, Z.; Wang, X. miRNA-30d serves a critical function in colorectal cancer initiation, progression and invasion via directly targeting the GNA13 gene. Exp. Ther. Med., 2019, 17(1), 260-272.
[http://dx.doi.org/10.3892/etm.2018.6902] [PMID: 30651791]
[22]
Park, S.Y.; Kim, H.; Yoon, S.; Bae, J.A.; Choi, S.Y.; Jung, Y.D.; Kim, K.K. KITENIN-targeting microRNA-124 suppresses colorectal cancer cell motility and tumorigenesis. Mol. Ther., 2014, 22(9), 1653-1664.
[http://dx.doi.org/10.1038/mt.2014.105] [PMID: 24909917]
[23]
You, C.; Jin, L.; Xu, Q.; Shen, B.; Jiao, X.; Huang, X. Expression of miR-21 and miR-138 in colon cancer and its effect on cell proliferation and prognosis. Oncol. Lett., 2019, 17(2), 2271-2277.
[http://dx.doi.org/10.3892/ol.2018.9864] [PMID: 30675293]
[24]
López-Novoa, J.M.; Nieto, M.A. Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol. Med., 2009, 1(6-7), 303-314.
[http://dx.doi.org/10.1002/emmm.200900043] [PMID: 20049734]
[25]
Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature, 2008, 454(7203), 436-444.
[http://dx.doi.org/10.1038/nature07205] [PMID: 18650914]
[26]
Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 178-196.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[27]
Zavadil, J.; Böttinger, E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 2005, 24(37), 5764-5774.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[28]
Moustakas, A.; Heldin, C.H. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci., 2007, 98(10), 1512-1520.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00550.x] [PMID: 17645776]
[29]
Ahmed, I.; Roy, B.C.; Rao Jakkula, L.U.M.; Subramaniam, D.; Dandawate, P.; Anant, S.; Sampath, V.; Umar, S. Infection-induced signals generated at the plasma membrane epigenetically regulate Wnt signaling in vitro and in vivo. J. Biol. Chem., 2020, 295(4), 1021-1035.
[http://dx.doi.org/10.1074/jbc.RA119.010285] [PMID: 31836665]
[30]
Ramachandran, I.; Ganapathy, V.; Gillies, E.; Fonseca, I.; Sureban, S.M.; Houchen, C.W.; Reis, A.; Queimado, L. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis., 2014, 5(5)e1246
[http://dx.doi.org/10.1038/cddis.2014.219] [PMID: 24853424]
[31]
Kim, T.; Veronese, A.; Pichiorri, F.; Lee, T.J.; Jeon, Y.J.; Volinia, S.; Pineau, P.; Marchio, A.; Palatini, J.; Suh, S.S.; Alder, H.; Liu, C.G.; Dejean, A.; Croce, C.M. p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J. Exp. Med., 2011, 208(5), 875-883.
[http://dx.doi.org/10.1084/jem.20110235] [PMID: 21518799]
[32]
Sun, Y.; Shen, S.; Liu, X.; Tang, H.; Wang, Z.; Yu, Z.; Li, X.; Wu, M. MiR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol. Cell. Biochem., 2014, 390(1-2), 19-30.
[http://dx.doi.org/10.1007/s11010-013-1950-x] [PMID: 24402783]
[33]
Baltruskeviciene, E.; Schveigert, D.; Stankevicius, V.; Mickys, U.; Zvirblis, T.; Bublevic, J.; Suziedelis, K.; Aleknavicius, E. Down-regulation of miRNA-148a and miRNA-625-3p in colorectal cancer is associated with tumor budding. BMC Cancer, 2017, 17(1), 607.
[http://dx.doi.org/10.1186/s12885-017-3575-z] [PMID: 28863773]
[34]
Shen, Z.; Zhou, R.; Liu, C.; Wang, Y.; Zhan, W.; Shao, Z.; Liu, J.; Zhang, F.; Xu, L.; Zhou, X.; Qi, L.; Bo, F.; Ding, Y.; Zhao, L. MicroRNA-105 is involved in TNF-α-related tumor microenvironment enhanced colorectal cancer progression. Cell Death Dis., 2017, 8(12), 3213.
[http://dx.doi.org/10.1038/s41419-017-0048-x] [PMID: 29238068]
[35]
Chen, Y.; Jiang, J.; Zhao, M.; Luo, X.; Liang, Z.; Zhen, Y.; Fu, Q.; Deng, X.; Lin, X.; Li, L.; Luo, R.; Liu, Z.; Fang, W. microRNA-374a suppresses colon cancer progression by directly reducing CCND1 to inactivate the PI3K/AKT pathway. Oncotarget, 2016, 7(27), 41306-41319.
[http://dx.doi.org/10.18632/oncotarget.9320] [PMID: 27191497]
[36]
Zhang, X.; Ai, F.; Li, X.; Tian, L.; Wang, X.; Shen, S.; Liu, F. MicroRNA-34a suppresses colorectal cancer metastasis by regulating Notch signaling. Oncol. Lett., 2017, 14(2), 2325-2333.
[http://dx.doi.org/10.3892/ol.2017.6444] [PMID: 28781671]
[37]
Maihöfner, C.; Charalambous, M.P.; Bhambra, U.; Lightfoot, T.; Geisslinger, G.; Gooderham, N.J. Colorectal Cancer Group. Expression of cyclooxygenase-2 parallels expression of interleukin-1beta, interleukin-6 and NF-kappaB in human colorectal cancer. Carcinogenesis, 2003, 24(4), 665-671.
[http://dx.doi.org/10.1093/carcin/bgg006] [PMID: 12727794]
[38]
Patel, S.A.; Bhambra, U.; Charalambous, M.P.; David, R.M.; Edwards, R.J.; Lightfoot, T.; Boobis, A.R.; Gooderham, N.J. Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br. J. Cancer, 2014, 111(12), 2287-2296.
[http://dx.doi.org/10.1038/bjc.2014.540] [PMID: 25333344]
[39]
Wang, X.; Bu, J.; Liu, X.; Wang, W.; Mai, W.; Lv, B.; Zou, J.; Mo, X.; Li, X.; Wang, J.; Niu, B.; Fan, Y.; Hou, B. miR-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer. Oncotarget, 2017, 8(38), 63935-63948.
[http://dx.doi.org/10.18632/oncotarget.19212] [PMID: 28969042]
[40]
Takahashi, M.; Cuatrecasas, M.; Balaguer, F.; Hur, K.; Toiyama, Y.; Castells, A.; Boland, C.R.; Goel, A. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One, 2012, 7(10)e46684
[http://dx.doi.org/10.1371/journal.pone.0046684] [PMID: 23056401]
[41]
Qian, J.; Zeng, L.; Jiang, X.; Zhang, Z.; Luo, X. Novel multiple miRNA-based signatures for predicting overall survival and recurrence-free survival of colorectal cancer patients. Med. Sci. Monit., 2019, 25, 7258-7271.
[http://dx.doi.org/10.12659/MSM.916948] [PMID: 31560680]
[42]
Moriasi, C.; Subramaniam, D.; Awasthi, S.; Ramalingam, S.; Anant, S. Prevention of colitis-associated cancer: natural compounds that target the IL-6 soluble receptor. Anticancer. Agents Med. Chem., 2012, 12(10), 1221-1238.
[http://dx.doi.org/10.2174/187152012803833080] [PMID: 22583410]
[43]
Schetter, A.J.; Heegaard, N.H.; Harris, C.C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 2010, 31(1), 37-49.
[http://dx.doi.org/10.1093/carcin/bgp272] [PMID: 19955394]
[44]
Feng, Y.; Dong, Y.W.; Song, Y.N.; Xiao, J.H.; Guo, X.Y.; Jiang, W.L.; Lu, L.G. MicroRNA 449a is a potential predictor of colitis associated colorectal cancer progression. Oncol. Rep., 2018, 40(3), 1684-1694.
[http://dx.doi.org/10.3892/or.2018.6566] [PMID: 30015944]
[45]
Bakirtzi, K.; Hatziapostolou, M.; Karagiannides, I.; Polytarchou, C.; Jaeger, S.; Iliopoulos, D.; Pothoulakis, C. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology, 2011, 141(5), 1749-1761.
[http://dx.doi.org/10.1053/j.gastro.2011.07.038] [PMID: 21806946]
[46]
Castagliuolo, I.; Wang, C.C.; Valenick, L.; Pasha, A.; Nikulasson, S.; Carraway, R.E.; Pothoulakis, C. Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J. Clin. Invest., 1999, 103(6), 843-849.
[http://dx.doi.org/10.1172/JCI4217] [PMID: 10079105]
[47]
Maoret, J.J.; Anini, Y.; Rouyer-Fessard, C.; Gully, D.; Laburthe, M. Neurotensin and a non-peptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Int. J. Cancer, 1999, 80(3), 448-454.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990129)80:3<448:AID-IJC19>3.0.CO;2-N] [PMID: 9935189]
[48]
Zhao, D.; Keates, A.C.; Kuhnt-Moore, S.; Moyer, M.P.; Kelly, C.P.; Pothoulakis, C. Signal transduction pathways mediating neurotensin-stimulated interleukin-8 expression in human colonocytes. J. Biol. Chem., 2001, 276(48), 44464-44471.
[http://dx.doi.org/10.1074/jbc.M104942200] [PMID: 11574537]
[49]
Qiu, S.; Pellino, G.; Fiorentino, F.; Rasheed, S.; Darzi, A.; Tekkis, P.; Kontovounisios, C. A review of the role of neurotensin and its receptors in colorectal cancer. Gastroenterol. Res. Pract., 2017, 20176456257
[http://dx.doi.org/10.1155/2017/6456257] [PMID: 28316623]
[50]
Schneider, Y.; Duranton, B.; Gossé, F.; Schleiffer, R.; Seiler, N.; Raul, F. Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr. Cancer, 2001, 39(1), 102-107.
[http://dx.doi.org/10.1207/S15327914nc391_14] [PMID: 11588890]
[51]
Yao, J.; Wang, J.Y.; Liu, L.; Li, Y.X.; Xun, A.Y.; Zeng, W.S.; Jia, C.H.; Wei, X.X.; Feng, J.L.; Zhao, L.; Wang, L.S. Anti-oxidant effects of resveratrol on mice with DSS-induced ulcerative colitis. Arch. Med. Res., 2010, 41(4), 288-294.
[http://dx.doi.org/10.1016/j.arcmed.2010.05.002] [PMID: 20637373]
[52]
Szekeres, T.; Saiko, P.; Fritzer-Szekeres, M.; Djavan, B.; Jäger, W. Chemopreventive effects of resveratrol and resveratrol derivatives. Ann. N. Y. Acad. Sci., 2011, 1215, 89-95.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05864.x] [PMID: 21261645]
[53]
Altamemi, I.; Murphy, E.A.; Catroppo, J.F.; Zumbrun, E.E.; Zhang, J.; McClellan, J.L.; Singh, U.P.; Nagarkatti, P.S.; Nagarkatti, M. Role of microRNAs in resveratrol-mediated mitigation of colitis-associated tumorigenesis in Apc(Min/+) mice. J. Pharmacol. Exp. Ther., 2014, 350(1), 99-109.
[http://dx.doi.org/10.1124/jpet.114.213306] [PMID: 24817032]
[54]
Strillacci, A.; Griffoni, C.; Sansone, P.; Paterini, P.; Piazzi, G.; Lazzarini, G.; Spisni, E.; Pantaleo, M.A.; Biasco, G.; Tomasi, V. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp. Cell Res., 2009, 315(8), 1439-1447.
[http://dx.doi.org/10.1016/j.yexcr.2008.12.010] [PMID: 19133256]
[55]
Yang, C.H.; Yue, J.; Fan, M.; Pfeffer, L.M. IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN-induced apoptosis. Cancer Res., 2010, 70(20), 8108-8116.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2579] [PMID: 20813833]
[56]
Löffler, D.; Brocke-Heidrich, K.; Pfeifer, G.; Stocsits, C.; Hackermüller, J.; Kretzschmar, A.K.; Burger, R.; Gramatzki, M.; Blumert, C.; Bauer, K.; Cvijic, H.; Ullmann, A.K.; Stadler, P.F.; Horn, F. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood, 2007, 110(4), 1330-1333.
[http://dx.doi.org/10.1182/blood-2007-03-081133] [PMID: 17496199]
[57]
Iliopoulos, D.; Jaeger, S.A.; Hirsch, H.A.; Bulyk, M.L.; Struhl, K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell, 2010, 39(4), 493-506.
[http://dx.doi.org/10.1016/j.molcel.2010.07.023] [PMID: 20797623]
[58]
Wu, F.; Zikusoka, M.; Trindade, A.; Dassopoulos, T.; Harris, M.L.; Bayless, T.M.; Brant, S.R.; Chakravarti, S.; Kwon, J.H. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology, 2008, 135(5), 1624-1635.
[http://dx.doi.org/10.1053/j.gastro.2008.07.068] [PMID: 18835392]
[59]
Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut, 2009, 58(10), 1375-1381.
[http://dx.doi.org/10.1136/gut.2008.167817] [PMID: 19201770]
[60]
Xu, N.; Papagiannakopoulos, T.; Pan, G.; Thomson, J.A.; Kosik, K.S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 2009, 137(4), 647-658.
[http://dx.doi.org/10.1016/j.cell.2009.02.038] [PMID: 19409607]
[61]
Ganapathy, A.; Ezekiel, U. Phytochemical modulation of miRNAs in colorectal cancer. Medicines (Basel), 2019, 6(2)E48
[http://dx.doi.org/10.3390/medicines6020048] [PMID: 30959836]
[62]
Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta, 2014, 1843(11), 2563-2582.
[http://dx.doi.org/10.1016/j.bbamcr.2014.05.014] [PMID: 24892271]
[63]
Voronov, E.; Apte, R.N. IL-1 in colon inflammation, colon carcinogenesis and invasiveness of colon cancer. Cancer Microenviron., 2015, 8(3), 187-200.
[http://dx.doi.org/10.1007/s12307-015-0177-7] [PMID: 26686225]
[64]
Kurzrock, R.; Hickish, T.; Wyrwicz, L.; Saunders, M.; Wu, Q.; Stecher, M.; Mohanty, P.; Dinarello, C.A.; Simard, J. Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1α antibody, in a phase III randomized study of advanced colorectal cancer. OncoImmunology, 2018, 8(3)1551651
[http://dx.doi.org/10.1080/2162402X.2018.1551651] [PMID: 30723583]
[65]
Yan, H.; Sun, R.; Pan, X.; Li, Z.; Guo, X.; Gao, L. Lack of association between an insertion/deletion polymorphism in IL1A and risk of colorectal cancer. Genet. Mol. Res., 2015, 14(3), 8490-8495.
[http://dx.doi.org/10.4238/2015.July.28.17] [PMID: 26345777]
[66]
Gao, Y.; He, Y.; Ding, J.; Wu, K.; Hu, B.; Liu, Y.; Wu, Y.; Guo, B.; Shen, Y.; Landi, D.; Landi, S.; Zhou, Y.; Liu, H. An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis, 2009, 30(12), 2064-2069.
[http://dx.doi.org/10.1093/carcin/bgp283] [PMID: 19917630]
[67]
Ma, Q.; Mao, Z.; Du, J.; Liao, S.; Zheng, Y.; Zhi, M.; Zhang, J.; Wang, Y. Association between an insertion/deletion polymorphism in the interleukin-1α gene and the risk of colorectal cancer in a Chinese population. Int. J. Biol. Markers, 2018.1724600818785069
[http://dx.doi.org/10.1177/1724600818785069] [PMID: 30016900]
[68]
Xia, H.; Chen, Y.; Meng, J.; Liang, C. Effect of polymorphism on IL1A to cancer susceptibility: Evidence based on 34,016 subjects. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3138-3152.
[http://dx.doi.org/10.1080/21691401.2019.1646750] [PMID: 31359795]
[69]
Sartor, R.B. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology, 1994, 106(2), 533-539.
[http://dx.doi.org/10.1016/0016-5085(94)90614-9] [PMID: 8299918]
[70]
Elson, C.O.; Sartor, R.B.; Tennyson, G.S.; Riddell, R.H. Experimental models of inflammatory bowel disease. Gastroenterology, 1995, 109(4), 1344-1367.
[http://dx.doi.org/10.1016/0016-5085(95)90599-5] [PMID: 7557106]
[71]
Műzes, G.; Molnár, B.; Tulassay, Z.; Sipos, F. Changes of the cytokine profile in inflammatory bowel diseases. World J. Gastroenterol., 2012, 18(41), 5848-5861.
[http://dx.doi.org/10.3748/wjg.v18.i41.5848] [PMID: 23139600]
[72]
Ho, G.Y.; Wang, T.; Zheng, S.L.; Tinker, L.; Xu, J.; Rohan, T.E.; Wassertheil-Smoller, S.; Xue, X.; Augenlicht, L.H.; Peters, U.; Phipps, A.I.; Strickler, H.D.; Gunter, M.J.; Cushman, M. Circulating soluble cytokine receptors and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev., 2014, 23(1), 179-188.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-0545] [PMID: 24192010]
[73]
Wang, S.; Liu, Z.; Wang, L.; Zhang, X. NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell. Mol. Immunol., 2009, 6(5), 327-334.
[http://dx.doi.org/10.1038/cmi.2009.43] [PMID: 19887045]
[74]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[75]
Ramachandran, I.; Thavathiru, E.; Ramalingam, S.; Natarajan, G.; Mills, W.K.; Benbrook, D.M.; Zuna, R.; Lightfoot, S.; Reis, A.; Anant, S.; Queimado, L. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 2012, 31(22), 2725-2737.
[http://dx.doi.org/10.1038/onc.2011.455] [PMID: 22002305]
[76]
Zhan, T.; Rindtorff, N.; Boutros, M. Wnt signaling in cancer. Oncogene, 2017, 36(11), 1461-1473.
[http://dx.doi.org/10.1038/onc.2016.304] [PMID: 27617575]
[77]
Miyamoto, S.; Rosenberg, D.W. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci., 2011, 102(11), 1938-1942.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02049.x] [PMID: 21801279]
[78]
Jana, A.; Krett, N.L.; Guzman, G.; Khalid, A.; Ozden, O.; Staudacher, J.J.; Bauer, J.; Baik, S.H.; Carroll, T.; Yazici, C.; Jung, B. NFkB is essential for activin-induced colorectal cancer migration via upregulation of PI3K-MDM2 pathway. Oncotarget, 2017, 8(23), 37377-37393.
[http://dx.doi.org/10.18632/oncotarget.16343] [PMID: 28418896]
[79]
Yao, J.; Zhao, L.; Zhao, Q.; Zhao, Y.; Sun, Y.; Zhang, Y.; Miao, H.; You, Q.D.; Hu, R.; Guo, Q.L. NF-κB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis., 2014, 5(6)e1283
[http://dx.doi.org/10.1038/cddis.2014.221] [PMID: 24901054]
[80]
Tian, F.; Yuan, C.; Hu, L.; Shan, S. MicroRNA-93 inhibits inflammatory responses and cell apoptosis after cerebral ischemia reperfusion by targeting interleukin-1 receptor-associated kinase 4. Exp. Ther. Med., 2017, 14(4), 2903-2910.
[http://dx.doi.org/10.3892/etm.2017.4874] [PMID: 28912849]
[81]
Li, Q.; Chen, Y.; Zhang, D.; Grossman, J.; Li, L.; Khurana, N.; Jiang, H.; Grierson, P.M.; Herndon, J.; DeNardo, D.G.; Challen, G.A.; Liu, J.; Ruzinova, M.B.; Fields, R.C.; Lim, K.H. IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer. JCI Insight, 2019, 4(19)130867
[http://dx.doi.org/10.1172/jci.insight.130867] [PMID: 31527315]
[82]
Wei, J.; Huang, X.; Zhang, Z.; Jia, W.; Zhao, Z.; Zhang, Y.; Liu, X.; Xu, G. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells. Mol. Immunol., 2013, 55(3-4), 303-309.
[http://dx.doi.org/10.1016/j.molimm.2013.03.004] [PMID: 23522925]
[83]
Li, Y.; Li, C.; Li, D.; Yang, L.; Jin, J.; Zhang, B. lncRNA KCNQ1OT1 enhances the chemoresistance of oxaliplatin in colon cancer by targeting the miR-34a/ATG4B pathway. OncoTargets Ther., 2019, 12, 2649-2660.
[http://dx.doi.org/10.2147/OTT.S188054] [PMID: 31040703]
[84]
Hai, Ping P.; Feng Bo, T.; Li, L.; Nan Hui, Y.; Hong, Z. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch. Biochem. Biophys., 2016, 604, 20-26.
[http://dx.doi.org/10.1016/j.abb.2016.06.001] [PMID: 27264420]
[85]
Ferlito, M.; Romanenko, O.G.; Ashton, S.; Squadrito, F.; Halushka, P.V.; Cook, J.A. Effect of cross-tolerance between endotoxin and TNF-alpha or IL-1beta on cellular signaling and mediator production. J. Leukoc. Biol., 2001, 70(5), 821-829.
[PMID: 11698503]
[86]
Nahid, M.A.; Satoh, M.; Chan, E.K. Interleukin 1beta-responsive microRNA-146a is critical for the cytokine-induced tolerance and cross-tolerance to Toll-like receptor ligands. J. Innate Immun., 2015, 7(4), 428-440.
[http://dx.doi.org/10.1159/000371517] [PMID: 25896300]
[87]
Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[88]
Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 2004, 118(3), 285-296.
[http://dx.doi.org/10.1016/j.cell.2004.07.013] [PMID: 15294155]
[89]
Kisseleva, T.; Song, L.; Vorontchikhina, M.; Feirt, N.; Kitajewski, J.; Schindler, C. NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Invest., 2006, 116(11), 2955-2963.
[http://dx.doi.org/10.1172/JCI27392] [PMID: 17053836]
[90]
Baranwal, S.; Rawat, S.G.; Gupta, P. miR-301, pleiotropic microRNA in regulation of inflammatory bowel disease and colitis-associated cancer. Front. Immunol., 2018, 9, 522.
[http://dx.doi.org/10.3389/fimmu.2018.00522] [PMID: 29599779]
[91]
He, C.; Yu, T.; Shi, Y.; Ma, C.; Yang, W.; Fang, L.; Sun, M.; Wu, W.; Xiao, F.; Guo, F.; Chen, M.; Yang, H.; Qian, J.; Cong, Y.; Liu, Z. MicroRNA 301a promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology, 2017, 152(6), 1434-1448.
[http://dx.doi.org/10.1053/j.gastro.2017.01.049] [PMID: 28193514]
[92]
Zhang, J.; Lian, B.; Shang, Y.; Li, C.; Meng, Q. miR-135a protects dextran sodium sulfate-induced inflammation in human colorectal cell lines by activating STAT3 signal. Cell. Physiol. Biochem., 2018, 51(3), 1001-1012.
[http://dx.doi.org/10.1159/000495481] [PMID: 30476915]
[93]
Xiao, C.; Hong, H.; Yu, H.; Yuan, J.; Guo, C.; Cao, H.; Li, W. MiR-340 affects gastric cancer cell proliferation, cycle, and apoptosis through regulating SOCS3/JAK-STAT signaling pathway. Immunopharmacol. Immunotoxicol., 2018, 40(4), 278-283.
[http://dx.doi.org/10.1080/08923973.2018.1455208] [PMID: 29658372]
[94]
Arivazhagan, R.; Lee, J.; Bayarsaikhan, D.; Kwak, P.; Son, M.; Byun, K.; Salekdeh, G.H.; Lee, B. MicroRNA-340 inhibits the proliferation and promotes the apoptosis of colon cancer cells by modulating REV3L. Oncotarget, 2017, 9(4), 5155-5168.
[http://dx.doi.org/10.18632/oncotarget.23703] [PMID: 29435169]
[95]
Tu, J.; Xing, Y.; Guo, Y.; Tang, F.; Guo, L.; Xi, T. Tanshinone IIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155. Int. Immunopharmacol., 2012, 14(4), 353-361.
[http://dx.doi.org/10.1016/j.intimp.2012.08.015] [PMID: 22982040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy