Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Herbal Drugs and Natural Products in the light of Nanotechnology and Nanomedicine for Developing Drug Formulations

Author(s): Hiwa M. Ahmed*, Seyed Nabavi and Sahar Behzad

Volume 21, Issue 3, 2021

Published on: 16 September, 2020

Page: [302 - 313] Pages: 12

DOI: 10.2174/1389557520666200916143240

Price: $65

Abstract

Natural products and medicinal plants have played a vital role in providing healthcare and ensuring well-being for many civilizations since antiquity. It is estimated that around 50% of drugs in the market have a natural product origin especially medicinal plants and herbal drugs, animals, fungi, and marine organisms. Some of these biologically active constituents of extracts have low absorption and distribution which, as a result, lead to loss of bioavailability and efficacy and might hamper their applications in the clinic. To overcome these impediments for the formulation of herbal drugs, food supplements, and essential oils, several nanomedical approaches such as liposomes, microemulsions, polymeric nanoparticles, solid lipid nanoparticles (SLNs), liquid crystal systems (LC), and precursor systems for liquid crystals (PSLCs) have been proposed. Nanoparticles have been used to modify and ameliorate the pharmacokinetic and pharmacodynamic properties of different drugs, thus incorporating biotechnological systems may be useful to enhance the bioavailability and bioactivity of herbal drug formulations. Consequently, essential for any natural compounds is the extent of its absorption after being ingested and its ability to be distributed in various tissues or organs of the body. The present review article aims to give an overview of the recent advancements in developing herbal drug formulations based on nanoparticle technologies.

Keywords: Bioavailability, bioactivity, nanomedicine, phytomedicine, drug delivery, natural products.

Graphical Abstract

[1]
Füllbeck, M.; Michalsky, E.; Dunkel, M.; Preissner, R. Natural products: Sources and databases. Nat. Prod. Rep., 2006, 23(3), 347-356.
[http://dx.doi.org/10.1039/B513504B] [PMID: 16741583]
[2]
Verma, S.; Singh, S.P. Current and future status of herbal medicines. Vet. World, 2008, 1, 347.
[http://dx.doi.org/10.5455/vetworld.2008.347-350]
[3]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomed, 2014, 9, 1-15.
[PMID: 24363556]
[4]
Ahmed, H.M. Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq. J. Ethnobiol. Ethnomed., 2016, 12(12), 8.
[http://dx.doi.org/10.1186/s13002-016-0081-3] [PMID: 26821541]
[5]
World Health Organization. WHO traditional medicine strategy: 2014-2023; World Health Organization, 2013.
[6]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[7]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[8]
Kingston, D.G. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod., 2011, 74(3), 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[9]
Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites, 2012, 2(2), 303-336.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[10]
Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell, 2014, 25(18), 2677-2681.
[http://dx.doi.org/10.1091/mbc.e14-04-0916] [PMID: 25213191]
[11]
Stringham, R.W.; Pennell, M.; Cabri, W.; Carzana, G.; Giorgi, F.; Lalli, S.; Marazzi, G.; Torri, M. Identification of impurities in artemisinin, their behavior in high performance liquid chromatography and implications for the quality of derived anti-malarial drugs. J. Chromatogr. A, 2011, 1218(38), 6838-6842.
[http://dx.doi.org/10.1016/j.chroma.2011.07.069] [PMID: 21855882]
[12]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[13]
Ajazuddin; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[14]
Chen, M.; Wang, S.; Tan, M.; Wang, Y. Applications of nanoparticles in herbal medicine: Zedoary turmeric oil and its active compound β-elemene. Am. J. Chin. Med., 2011, 39(6), 1093-1102.
[http://dx.doi.org/10.1142/S0192415X11009421] [PMID: 22083983]
[15]
Jia, L.; Zhao, Y. Current evaluation of the millennium phytomedicine--ginseng (I): Etymology, pharmacognosy, phytochemistry, market and regulations. Curr. Med. Chem., 2009, 16(19), 2475-2484.
[http://dx.doi.org/10.2174/092986709788682146] [PMID: 19601793]
[16]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X PMID: 23620848]
[17]
Singh, V.K.; Arora, D.; Ansari, M.I.; Sharma, P.K. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother. Res., 2019, 33(12), 3064-3089.
[http://dx.doi.org/10.1002/ptr.6508] [PMID: 31515899]
[18]
Sarker, S.D.; Nahar, L. Application of nanotechnology in phytochemical research. Pharm. Sci., 2017, 23, 170-171.
[http://dx.doi.org/10.15171/PS.2017.25]
[19]
Ambwani, S.; Tandon, R.; Ambwani, T.K.; Malik, Y.S. Current knowledge on nanodelivery systems and their beneficial applications in enhancing the efficacy of herbal drugs. J. Exp. Biol. Agric. Sci., 2018, 6, 87-107.
[http://dx.doi.org/10.18006/2018.6(1).87.107]
[20]
Venugopal, J.; Prabhakaran, M.P.; Low, S.; Choon, A.T.; Deepika, G.; Dev, V.R.; Ramakrishna, S. Continuous nanostructures for the controlled release of drugs. Curr. Pharm. Des., 2009, 15(15), 1799-1808.
[http://dx.doi.org/10.2174/138161209788186344] [PMID: 19442191]
[21]
Sintov, A.C.; Shapiro, L. New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J. Control. Release, 2004, 95(2), 173-183.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.004] [PMID: 14980766]
[22]
Pestana, K.C.; Formariz, T.P.; Franzini, C.M.; Sarmento, V.H.V.; Chiavacci, L.A.; Scarpa, M.V.; Egito, E.S.; Oliveira, A.G. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Coll. Surf. B Biointerfaces, 2008, 66(2), 253-259.
[http://dx.doi.org/10.1016/j.colsurfb.2008.06.016] [PMID: 18676122]
[23]
Chen, Y.; Lin, X.; Park, H.; Greever, R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine (Lond.), 2009, 5(3), 316-322.
[http://dx.doi.org/10.1016/j.nano.2008.12.005] [PMID: 19523432]
[24]
Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Coll. Surf. B Biointerfaces, 2013, 105, 152-157.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.009] [PMID: 23357738]
[25]
Rajendran, R.; Radhai, R.; Kotresh, T.M.; Csiszar, E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr. Polym., 2013, 91(2), 613-617.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.064] [PMID: 23121954]
[26]
Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, 59(1), 161-168.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.005] [PMID: 15567314]
[27]
Andrade, C.A.; Correia, M.T.; Coelho, L.C.; Nascimento, S.C.; Santos-Magalhães, N.S. Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. Int. J. Pharm., 2004, 278(2), 435-445.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.028] [PMID: 15196647]
[28]
Priprem, A.; Watanatorn, J.; Sutthiparinyanont, S.; Phachonpai, W.; Muchimapura, S. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine (Lond.), 2008, 4(1), 70-78.
[http://dx.doi.org/10.1016/j.nano.2007.12.001] [PMID: 18249157]
[29]
El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm., 2006, 319(1-2), 121-129.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.023] [PMID: 16837151]
[30]
Zhong, H.; Deng, Y.; Wang, X.; Yang, B. Multivesicular liposome formulation for the sustained delivery of breviscapine. Int. J. Pharm., 2005, 301(1-2), 15-24.
[http://dx.doi.org/10.1016/j.ijpharm.2005.04.001] [PMID: 16023316]
[31]
Yao, C.H.; Yeh, J.Y.; Chen, Y.S.; Li, M.H.; Huang, C.H. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J. Tissue Eng. Regen. Med., 2017, 11(3), 905-915.
[http://dx.doi.org/10.1002/term.1992] [PMID: 25711743]
[32]
Mukerjee, A.; Vishwanatha, J.K. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res., 2009, 29(10), 3867-3875.
[PMID: 19846921]
[33]
Bitencourt, P.E.; Ferreira, L.M.; Cargnelutti, L.O.; Denardi, L.; Boligon, A.; Fleck, M. A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: Phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Ind. Crops Prod., 2016, 83, 400-407.
[http://dx.doi.org/10.1016/j.indcrop.2016.01.007]
[34]
Campos, D.A.; Madureira, A.R.; Sarmento, B.; Gomes, A.M.; Pintado, M.M. Stability of bioactive solid lipid nanoparticles loaded with herbal extracts when exposed to simulated gastrointestinal tract conditions. Food Res. Int., 2015, 78, 131-140.
[http://dx.doi.org/10.1016/j.foodres.2015.10.025] [PMID: 28433274]
[35]
Min, K.H.; Park, K.; Kim, Y.S.; Bae, S.M.; Lee, S.; Jo, H.G.; Park, R.W.; Kim, I.S.; Jeong, S.Y.; Kim, K.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release, 2008, 127(3), 208-218.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.013] [PMID: 18336946]
[36]
Chaudhary, H.; Kohli, K.; Kumar, V. A novel nano-carrier transdermal gel against inflammation. Int. J. Pharm., 2014, 465(1-2), 175-186.
[http://dx.doi.org/10.1016/j.ijpharm.2014.02.023] [PMID: 24548719]
[37]
Man, D.K.; Casettari, L.; Cespi, M.; Bonacucina, G.; Palmieri, G.F.; Sze, S.C.; Leung, G.P.; Lam, J.K.; Kwok, P.C. Oleanolic acid loaded PEGylated PLA and PLGA nanoparticles with enhanced cytotoxic activity against cancer cells. Mol. Pharm., 2015, 12(6), 2112-2125.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00085] [PMID: 25881668]
[38]
Yen, F.L.; Wu, T.H.; Tzeng, C.W.; Lin, L.T.; Lin, C.C. Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J. Agric. Food Chem., 2010, 58(12), 7376-7382.
[http://dx.doi.org/10.1021/jf100135h] [PMID: 20486686]
[39]
Tian, M.; Yan, H.; Row, K.H. Extraction of glycyrrhizic acid and glabridin from licorice. Int. J. Mol. Sci., 2008, 9(4), 571-577.
[http://dx.doi.org/10.3390/ijms9040571] [PMID: 19325770]
[40]
Ibrahim, S.; Tagami, T.; Kishi, T.; Ozeki, T. Curcumin marinosomes as promising nano-drug delivery system for lung cancer. Int. J. Pharm., 2018, 540(1-2), 40-49.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.051] [PMID: 29408473]
[41]
Pivetta, T.P.; Simões, S.; Araújo, M.M.; Carvalho, T.; Arruda, C.; Marcato, P.D. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Coll. Surf. B Biointerfaces, 2018, 164, 281-290.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.053] [PMID: 29413607]
[42]
Chen, J.G.; Liu, Y.F.; Gao, T.W. Preparation and anti-inflammatory activity of triptolide ethosomes in an erythema model. J. Liposome Res., 2010, 20(4), 297-303.
[http://dx.doi.org/10.3109/08982100903544144] [PMID: 20102297]
[43]
Zhaowu, Z.; Xiaoli, W.; Yangde, Z.; Nianfeng, L. Preparation of matrine ethosome, its percutaneous permeation in vitro and anti-inflammatory activity in vivo in rats. J. Liposome Res., 2009, 19(2), 155-162.
[http://dx.doi.org/10.1080/08982100902722381] [PMID: 19241204]
[44]
Hadisoewignyo, L.; Hartono, S.B.; Kresnamurti, A.; Soeliono, I.; Nataline, Y.; Prakoso, G.A.; Aulia, D.A.R.E. Evaluation of anti-inflammatory activity and biocompatibility of curcumin loaded mesoporous silica nanoparticles as an oral drug delivery system. Adv. Nat. Sci.: Nanosci. Nanotechnol., 2018, 9(3)035007
[http://dx.doi.org/10.1088/2043-6254/aad5d5]
[45]
Wei, Y.; Guo, J.; Zheng, X.; Wu, J.; Zhou, Y.; Yu, Y.; Ye, Y.; Zhang, L.; Zhao, L. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int. J. Nanomed, 2014, 9, 3623-3630.
[PMID: 25120360]
[46]
Huang, Y.B.; Tsai, M.J.; Wu, P.C.; Tsai, Y.H.; Wu, Y.H.; Fang, J.Y. Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J. Drug Target., 2011, 19(8), 709-718.
[http://dx.doi.org/10.3109/1061186X.2010.551402 PMID: 21303222]
[47]
Tsai, Y.M.; Chien, C.F.; Lin, L.C.; Tsai, T.H. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood-brain barrier penetration. Int. J. Pharm., 2011, 416(1), 331-338.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[48]
Yallapu, M.M.; Gupta, B.K.; Jaggi, M.; Chauhan, S.C. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Coll Interface Sci., 2010, 351(1), 19-29.
[http://dx.doi.org/10.1016/j.jcis.2010.05.022] [PMID: 20627257]
[49]
Yekollu, S.K.; Thomas, R.; O’Sullivan, B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes, 2011, 60(11), 2928-2938.
[http://dx.doi.org/10.2337/db11-0275] [PMID: 21885868]
[50]
Wang, W.; Zhu, R.; Xie, Q.; Li, A.; Xiao, Y.; Li, K.; Liu, H.; Cui, D.; Chen, Y.; Wang, S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomed, 2012, 7, 3667-3677.
[http://dx.doi.org/10.2147/IJN.S30428] [PMID: 22888226]
[51]
Doggui, S.; Sahni, J.K.; Arseneault, M.; Dao, L.; Ramassamy, C. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis., 2012, 30(2), 377-392.
[http://dx.doi.org/10.3233/JAD-2012-112141] [PMID: 22426019]
[52]
Shao, J.; Li, X.; Lu, X.; Jiang, C.; Hu, Y.; Li, Q.; You, Y.; Fu, Z. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Coll. Surf. B Biointerfaces, 2009, 72(1), 40-47.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.010] [PMID: 19395246]
[53]
Liu, Y.; Jia, Z.; Akhter, M.P.; Gao, X.; Wang, X.; Wang, X.; Zhao, G.; Wei, X.; Zhou, Y.; Wang, X.; Hartman, C.W.; Fehringer, E.V.; Cui, L.; Wang, D. Bone-targeting liposome formulation of Salvianic acid A accelerates the healing of delayed fracture Union in Mice. Nanomedicine (Lond.), 2018, 14(7), 2271-2282.
[http://dx.doi.org/10.1016/j.nano.2018.07.011] [PMID: 30076934]
[54]
Kheiri Manjili, H.; Sharafi, A.; Attari, E.; Danafar, H. Pharmacokinetics and in vitro and in vivo delivery of sulforaphane by PCL-PEG-PCL copolymeric-based micelles. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1728-1739.
[http://dx.doi.org/10.1080/21691401.2017.1282501] [PMID: 28147711]
[55]
Li, H.; Pan, T.; Cui, Y.; Li, X.; Gao, J.; Yang, W.; Shen, S. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int. J. Nanomed, 2016, 11, 3777-3788.
[http://dx.doi.org/10.2147/IJN.S105419] [PMID: 27540291]
[56]
Lin, Y.H.; Tsai, M.J.; Fang, Y.P.; Fu, Y.S.; Huang, Y.B.; Wu, P.C. Microemulsion formulation design and evaluation for hydrophobic compound: Catechin topical application. Coll. Surf. B Biointerfaces, 2018, 161, 121-128.
[http://dx.doi.org/10.1016/j.colsurfb.2017.10.015] [PMID: 29055864]
[57]
Chen, Y.C.; Chen, B.H. Preparation of curcuminoid microemulsions from Curcuma longa L. to enhance inhibition effects on growth of colon cancer cells HT-29. RSC Advances, 2018, 8(5), 2323-2337.
[http://dx.doi.org/10.1039/C7RA12297G]
[58]
de Oliveira Neves, J.K.; Apolinário, A.C.; Saraiva, K.L.A.; da Silva, D.T.C.; Reis, M.Y.D.F.A.; de Lima Damasceno, B.P.G. Microemulsions containing Copaifera multijuga Hayne oil-resin: Challenges to achieve an efficient system for β-caryophyllene delivery. Ind. Crops Prod., 2018, 111, 185-192.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.025]
[59]
Nagavarma, B.V.N.; Yadav, H.K.; Ayaz, A.V.L.S.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res, 2012, 5(3), 16-23.
[60]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[61]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Coll. Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[62]
Alexis, F.; Pridgen, E.; Molnar, L.K.; Farokhzad, O.C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 2008, 5(4), 505-515.
[http://dx.doi.org/10.1021/mp800051m] [PMID: 18672949]
[63]
Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem., 2011, 59(5), 2056-2061.
[http://dx.doi.org/10.1021/jf104402t] [PMID: 21322563]
[64]
Brewer, E.; Coleman, J.; Lowman, A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J. Nanomater., 2011, 2011, 1.
[http://dx.doi.org/10.1155/2011/408675]
[65]
Das, J.; Das, S.; Samadder, A.; Bhadra, K.; Khuda-Bukhsh, A.R. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur. J. Pharm. Sci., 2012, 47(2), 313-324.
[http://dx.doi.org/10.1016/j.ejps.2012.06.018] [PMID: 22771545]
[66]
Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnology, 2007, 5(1), 3.
[http://dx.doi.org/10.1186/1477-3155-5-3] [PMID: 17439648]
[67]
Martins, S.; Costa-Lima, S.; Carneiro, T.; Cordeiro-da-Silva, A.; Souto, E.B.; Ferreira, D.C. Solid lipid nanoparticles as intracellular drug transporters: An investigation of the uptake mechanism and pathway. Int. J. Pharm., 2012, 430(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.032] [PMID: 22465548]
[68]
Üner, M.; Yener, G. Importance of Solid Lipid Nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomedicine, 2007, 2(3), 289-300.
[PMID: 18019829]
[69]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[70]
Naahidi, S.; Jafari, M.; Edalat, F.; Raymond, K.; Khademhosseini, A.; Chen, P. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release, 2013, 166(2), 182-194.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[71]
Kolenyak dos Santos, F.; Helena Oyafuso, M.; Priscila Kiill, C.; Palmira Daflon-Gremiao, M.; Chorilli, M. Nanotechnology-based drug delivery systems for treatment of hyperproliferative skin diseases-a review. Curr. Nanosci., 2013, 9(1), 159-167.
[72]
Souto, E.B.; Severino, P.; Santana, M.H.A.; Pinho, S.C. Solid lipid nanoparticles: Classical methods of lab production. Quim. Nova, 2011, 34(10), 1762-1769.
[73]
Fathi, H.A.; Allam, A.; Elsabahy, M.; Fetih, G.; El-Badry, M. Nanostructured lipid carriers for improved oral delivery and prolonged antihyperlipidemic effect of simvastatin. Coll. Surf. B Biointerfaces, 2018, 162, 236-245.
[http://dx.doi.org/10.1016/j.colsurfb.2017.11.064] [PMID: 29197789]
[74]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[75]
Li, H.; Zhao, X.; Ma, Y.; Zhai, G.; Li, L.; Lou, H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control. Release, 2009, 133(3), 238-244.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[76]
Chen-yu, G.; Chun-fen, Y.; Qi-lu, L.; Qi, T.; Yan-wei, X.; Wei-na, L.; Guang-xi, Z. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int. J. Pharm., 2012, 430(1-2), 292-298.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.042] [PMID: 22486962]
[77]
Bose, S.; Michniak-Kohn, B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur. J. Pharm. Sci., 2013, 48(3), 442-452.
[http://dx.doi.org/10.1016/j.ejps.2012.12.005] [PMID: 23246734]
[78]
Kakkar, V.; Singh, S.; Singla, D.; Kaur, I.P. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol. Nutr. Food Res., 2011, 55(3), 495-503.
[http://dx.doi.org/10.1002/mnfr.201000310] [PMID: 20938993]
[79]
Rossetti, F.C.; Fantini, M.C.; Carollo, A.R.H.; Tedesco, A.C.; Bentley, M.V.L.B. Analysis of liquid crystalline nanoparticles by small angle X-ray diffraction: Evaluation of drug and pharmaceutical additives influence on the internal structure. J. Pharm. Sci., 2011, 100(7), 2849-2857.
[http://dx.doi.org/10.1002/jps.22522] [PMID: 21337546]
[80]
Müller-Goymann, C.C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm., 2004, 58(2), 343-356.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.028] [PMID: 15296960]
[81]
Farkas, E.; Zelkó, R.; Török, G.; Rácz, I.; Marton, S. Influence of chlorhexidine species on the liquid crystalline structure of vehicle. Int. J. Pharm., 2001, 213(1-2), 1-5.
[http://dx.doi.org/10.1016/S0378-5173(00)00575-5] [PMID: 11165088]
[82]
Jain, S.; Heeralal, B.; Swami, R.; Swarnakar, N.K.; Kushwah, V. Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech, 2018, 19(1), 460-469.
[http://dx.doi.org/10.1208/s12249-017-0851-9] [PMID: 28785860]
[83]
Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J. Nanobiotechnology, 2011, 9(1), 44.
[http://dx.doi.org/10.1186/1477-3155-9-44] [PMID: 21952107]
[84]
Masson, D.S.; Morais, G.G.; de Morais, J.M.; de Andrade, F.F.; Dos Santos, O.D.; de Oliveira, W.P.; Rocha Filho, P.A. Polyhydroxy alcohols and peach oil addition influence on liquid crystal formation and rheological behavior of o/w emulsions. J. Dispers. Sci. Technol., 2005, 26(4), 463-468.
[http://dx.doi.org/10.1081/DIS-200054579]
[85]
Ahmed, H.M. Ethnomedicinal, phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules, 2018, 24(1), 102.
[http://dx.doi.org/10.3390/molecules24010102] [PMID: 30597896]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy