Research Article

miRNA-146a改善类风湿关节炎中MSC衍生外来体的免疫调节作用。

卷 20, 期 4, 2020

页: [297 - 312] 页: 16

弟呕挨: 10.2174/1566523220666200916120708

价格: $65

摘要

背景:类风湿关节炎(RA)是一种严重的炎症性关节疾病,一些研究已经注意到microRNA(miRNA)在RA发病机理中起重要作用的可能性。 MiR-146和miR-155是主要的免疫反应调节剂。间充质干细胞(MSCs)的免疫调节功能主要受旁分泌因子(如外泌体)的调节。外来体在细胞间通讯中充当遗传信息的载体,可在细胞之间传递miRNA,并已被研究为治疗性分子递送的载体。 目的:目前的研究旨在研究miR-146a / miR-155转导的间充质干细胞(MSC)衍生的外泌体对免疫应答的治疗作用。 方法:在这里,从miR-146a / miR-155过表达的正常MSC中提取外泌体。从胶原诱导的关节炎(CIA)和对照小鼠中分离出脾细胞。然后监测表达水平miR-146a和miR-155。进行流式细胞术以评估外来体对调节性T细胞(Treg)水平的影响。一些关键的自身免疫应答基因及其蛋白产物的表达,包括视黄酸相关的孤儿受体(ROR)-γt,肿瘤坏死因子(TNF)-α,白介素(IL)-17,-6,-10和转化生长使用定量实时PCR和ELISA测定脾细胞中的TGF-β。结果表明,miR-146a主要在CIA小鼠中下调。与对照小鼠相比,用MSC来源的外来体和miR-146a / miR-155转导的MSC来源的外来体进行治疗可显着改变CIA小鼠的Treg细胞水平。 结果:最终,这种调节可促进炎症性疾病(如RA)中适当T细胞反应的恢复。 结论:miR-146a转导的MSC来源的外来体也增加了CIA小鼠的叉头盒P3(Fox-P3),TGFβ和IL-10基因的表达。 miR-155进一步增加了这些小鼠中RORγt,IL-17和IL-6的基因表达。基于此处的发现,外泌体似乎促进了miRNA在细胞之间的直接细胞内转移,并代表了RA的可能治疗策略。用抗炎miRNA操纵MSC衍生的外泌体可能会增加Treg细胞群和抗炎细胞因子。

关键词: 间充质干细胞,microRNA,外来体,类风湿性关节炎,自身免疫性疾病,关节和骨骼。

图形摘要

[1]
Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15(1): 9-17.
[http://dx.doi.org/10.1038/s41584-018-0109-2] [PMID: 30341437]
[2]
Ai R, Laragione T, Hammaker D, et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat Commun 2018; 9(1): 1921.
[http://dx.doi.org/10.1038/s41467-018-04310-9] [PMID: 29765031]
[3]
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T cell migration in rheumatoid arthritis. Front Immunol 2015; 6: 384.
[http://dx.doi.org/10.3389/fimmu.2015.00384] [PMID: 26284069]
[4]
Niu Q, Cai B, Huang ZC, Shi YY, Wang LL. Disturbed Th17/Treg balance in patients with rheumatoid arthritis. Rheumatol Int 2012; 32(9): 2731-6.
[http://dx.doi.org/10.1007/s00296-011-1984-x] [PMID: 21809006]
[5]
Abbasi M, Mousavi MJ, Jamalzehi S, et al. Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 2019; 234(7): 10018-31.
[http://dx.doi.org/10.1002/jcp.27860] [PMID: 30536757]
[6]
Coulson-Thomas VJ, Coulson-Thomas YM, Gesteira TF, Kao WW-Y. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system. Ocul Surf 2016; 14(2): 121-34.
[http://dx.doi.org/10.1016/j.jtos.2015.11.004] [PMID: 26804815]
[7]
Tavasolian F, Moghaddam AS, Rohani F, et al. Exosomes: Effectual players in rheumatoid arthritis. Autoimmun Rev 2020; 19(6): 102511.
[http://dx.doi.org/10.1016/j.autrev.2020.102511] [PMID: 32171920]
[8]
Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep 2018; 8(1): 1419.
[http://dx.doi.org/10.1038/s41598-018-19581-x] [PMID: 29362496]
[9]
Seo Y, Kim H-S, Hong I-S. Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int 2019; 20195126156
[http://dx.doi.org/10.1155/2019/5126156] [PMID: 30936922]
[10]
Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019; 20(1): 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[11]
Tavasolian F, Abdollahi E, Rezaei R, Momtazi-Borojeni AA, Henrotin Y, Sahebkar A. Altered expression of microRNAs in rheumatoid arthritis. J Cell Biochem 2018; 119(1): 478-87.
[http://dx.doi.org/10.1002/jcb.26205] [PMID: 28598026]
[12]
Maeda Y, Farina NH, Matzelle MM, Fanning PJ, Lian JB, Gravallese EM. Synovium‐derived microRNAs regulate bone pathways in rheumatoid arthritis. J Bone Miner Res 2017; 32(3): 461-72.
[http://dx.doi.org/10.1002/jbmr.3005] [PMID: 27676131]
[13]
Doody KM, Bottini N, Firestein GS. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 2017; 9(4): 479-92.
[http://dx.doi.org/10.2217/epi-2016-0151] [PMID: 28322585]
[14]
Singh A, Patro PS, Aggarwal A. MicroRNA-132, miR-146a, and miR-155 as potential biomarkers of methotrexate response in patients with rheumatoid arthritis. Clin Rheumatol 2019; 38(3): 877-84.
[http://dx.doi.org/10.1007/s10067-018-4380-z] [PMID: 30511295]
[15]
Tavasolian F, Hosseini A Z, Soudi S, Naderi M, Sahebkar A. A systems biology approach for mirna-mrna expression patterns analysis in rheumatoid arthritis. Combin Chem High Throug Screen 2020.
[http://dx.doi.org/10.2174/1386207323666200605150024] [PMID: 32503403]
[16]
Wang D, Tang M, Zong P, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol 2018; 9: 686.
[http://dx.doi.org/10.3389/fphys.2018.00686] [PMID: 29937734]
[17]
Wu Y-H, Liu W, Xue B, et al. Upregulated expression of microRNA-16 correlates with Th17/Treg cell imbalance in patients with rheumatoid arthritis. DNA Cell Biol 2016; 35(12): 853-60.
[http://dx.doi.org/10.1089/dna.2016.3349] [PMID: 27875659]
[18]
Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: two key modulators of immune response and tumor development. Noncoding RNA 2017; 3(3): 22.
[http://dx.doi.org/10.3390/ncrna3030022] [PMID: 29657293]
[19]
Puno MR, Weick E-M, Das M, Lima CD. SnapShot: The RNA Exosome. Cell 2019; 179(1): 282-282.e1.
[http://dx.doi.org/10.1016/j.cell.2019.09.005] [PMID: 31539497]
[20]
Cosenza S, Ruiz M, Toupet K, Jorgensen C, Noël D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep 2017; 7(1): 16214.
[http://dx.doi.org/10.1038/s41598-017-15376-8] [PMID: 29176667]
[21]
Takeuchi Y, Hirota K, Sakaguchi S. Impaired T cell receptor signaling and development of T cell-mediated autoimmune arthritis. Immunol Rev 2020; 294(1): 164-76.
[http://dx.doi.org/10.1111/imr.12841] [PMID: 31944330]
[22]
Guo N, Ye S, Zhang K, et al. A critical epitope in CD147 facilitates memory CD4+ T-cell hyper-activation in rheumatoid arthritis. Cell Mol Immunol 2019; 16(6): 568-79.
[http://dx.doi.org/10.1038/s41423-018-0012-4] [PMID: 29563614]
[23]
Kondo Y, Yokosawa M, Kaneko S, et al. Transcriptional regulation of CD 4+ T cell differentiation in experimentally induced arthritis and rheumatoid arthritis. Arthritis Rheumatol 2018; 70(5): 653-61.
[http://dx.doi.org/10.1002/art.40398] [PMID: 29245178]
[24]
Osiri M, Wongpiyabovorn J, Sattayasomboon Y, Thammacharoenrach N. Inflammatory cytokine levels, disease activity, and function of patients with rheumatoid arthritis treated with combined conventional disease-modifying antirheumatic drugs or biologics. Clin Rheumatol 2016; 35(7): 1673-81.
[http://dx.doi.org/10.1007/s10067-016-3306-x] [PMID: 27188857]
[25]
Reyes-Pérez IV, Sánchez-Hernández PE, Muñoz-Valle JF, et al. Cytokines (IL-15, IL-21, and IFN-γ) in rheumatoid arthritis: association with positivity to autoantibodies (RF, anti-CCP, anti-MCV, and anti-PADI4) and clinical activity. Clin Rheumatol 2019; 38(11): 3061-71.
[http://dx.doi.org/10.1007/s10067-019-04681-4] [PMID: 31312989]
[26]
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J 2017; 38(22): 1717-27.
[PMID: 27252448]
[27]
Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s disease and ulcerative colitis? Ann Rheum Dis 2018; 77(2): 175-87.
[http://dx.doi.org/10.1136/annrheumdis-2017-211555] [PMID: 28765121]
[28]
Hu X-X, Wu YJ, Zhang J, Wei W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int Immunopharmacol 2019; 70: 428-34.
[http://dx.doi.org/10.1016/j.intimp.2019.03.008] [PMID: 30856393]
[29]
Petralia MC, Mazzon E, Basile MS, et al. Effects of Treatment with the Hypomethylating Agent 5-aza-2′-deoxycytidine in Murine Type II Collagen-Induced Arthritis. Pharmaceuticals (Basel) 2019; 12(4): 174.
[http://dx.doi.org/10.3390/ph12040174] [PMID: 31783688]
[30]
Araki Y, Mimura T. Matrix metalloproteinase gene activation resulting from disordred epigenetic mechanisms in rheumatoid arthritis. Int J Mol Sci 2017; 18(5): 905.
[http://dx.doi.org/10.3390/ijms18050905] [PMID: 28441353]
[31]
Rao DA, Gurish MF, Marshall JL, et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017; 542(7639): 110-4.
[http://dx.doi.org/10.1038/nature20810] [PMID: 28150777]
[32]
Tanaka S, Tanaka Y, Ishiguro N, Yamanaka H, Takeuchi T. RANKL: A therapeutic target for bone destruction in rheumatoid arthritis. Mod Rheumatol 2018; 28(1): 9-16.
[http://dx.doi.org/10.1080/14397595.2017.1369491] [PMID: 28880683]
[33]
Downey C. Serious infection during etanercept, infliximab and adalimumab therapy for rheumatoid arthritis: A literature review. Int J Rheum Dis 2016; 19(6): 536-50.
[http://dx.doi.org/10.1111/1756-185X.12659] [PMID: 26200188]
[34]
Bahardeeen Z. Anti-TNFα biologics in the pharmacotherapy of rheumatoid arthritis: effectiveness and safety of infliximab, adalimumab and etanercept. Int J Med Rev 2019; 6: 92-100.
[http://dx.doi.org/10.29252/IJMR-060305]
[35]
Kim K-W, Kim HJ, Kim B-M, Kwon Y-R, Kim H-R, Kim Y-J. Epigenetic modification of mesenchymal stromal cells enhances their suppressive effects on the Th17 responses of cells from rheumatoid arthritis patients. Stem Cell Res Ther 2018; 9(1): 208.
[http://dx.doi.org/10.1186/s13287-018-0948-4] [PMID: 30092847]
[36]
Tavasolian F, Hosseini AZ, Mirzaei A, et al. Unfolded protein response-mediated modulation of mesenchymal stem cells. IUBMB Life 2020; 72(2): 187-97.
[http://dx.doi.org/10.1002/iub.2154] [PMID: 31444957]
[37]
Melief SM, Schrama E, Brugman MH, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 2013; 31(9): 1980-91.
[http://dx.doi.org/10.1002/stem.1432] [PMID: 23712682]
[38]
Zhang B, Yeo RWY, Lai RC, Sim EWK, Chin KC, Lim SK. Mesenchymal stromal cell exosome-enhanced regulatory T-cell production through an antigen-presenting cell-mediated pathway. Cytotherapy 2018; 20(5): 687-96.
[http://dx.doi.org/10.1016/j.jcyt.2018.02.372] [PMID: 29622483]
[39]
Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 2014; 369(1652): 20130516.
[http://dx.doi.org/10.1098/rstb.2013.0516] [PMID: 25135977]
[40]
Li J, Xue H, Li T, et al. Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE-/- mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 2019; 510(4): 565-72.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.005] [PMID: 30739785]
[41]
Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: implications for osteoarthritis treatment Seminars in cell & developmental biology. Elsevier 2017; pp. 56-64.
[42]
Bruno S, Deregibus MC, Camussi G. The secretome of mesenchymal stromal cells: Role of extracellular vesicles in immunomodulation. Immunol Lett 2015; 168(2): 154-8.
[http://dx.doi.org/10.1016/j.imlet.2015.06.007] [PMID: 26086886]
[43]
Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 2018; 8(5): 1399-410.
[http://dx.doi.org/10.7150/thno.21072] [PMID: 29507629]
[44]
Ansboro S, Roelofs AJ, De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 2017; 29(2): 201-7.
[http://dx.doi.org/10.1097/BOR.0000000000000370] [PMID: 27941390]
[45]
Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes. Biochimie 2013; 95(12): 2229-34.
[http://dx.doi.org/10.1016/j.biochi.2013.04.017] [PMID: 23685070]
[46]
Hippen KL, Loschi M, Nicholls J, MacDonald KPA, Blazar BR. Effects of microRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate graft-versus-host disease. Front Immunol 2018; 9: 57.
[http://dx.doi.org/10.3389/fimmu.2018.00057] [PMID: 29445371]
[47]
Tang X, Tang R, Xu Y, et al. MicroRNA networks in regulatory T cells. J Physiol Biochem 2014; 70(3): 869-75.
[http://dx.doi.org/10.1007/s13105-014-0348-x] [PMID: 25108555]
[48]
Song Y, Dou H, Li X, et al. Exosomal miR‐146a contributes to the enhanced therapeutic efficacy of interleukin‐1β‐primed mesenchymal stem cells against sepsis. Stem Cells 2017; 35(5): 1208-21.
[http://dx.doi.org/10.1002/stem.2564] [PMID: 28090688]
[49]
Dong C, Zhou Q, Fu T, et al. Circulating exosomes derived-miR-146a from systemic lupus erythematosus patients regulates senescence of mesenchymal stem cells. BioMed Res Int 2019; 2019: 6071308.
[http://dx.doi.org/10.1155/2019/6071308] [PMID: 31428639]
[50]
Saba R, Sorensen DL, Booth SA. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Front Immunol 2014; 5: 578.
[http://dx.doi.org/10.3389/fimmu.2014.00578] [PMID: 25484882]
[51]
Xu W-D, Lu M-M, Pan H-F, Ye D-Q. Association of MicroRNA-146a with autoimmune diseases. Inflammation 2012; 35(4): 1525-9.
[http://dx.doi.org/10.1007/s10753-012-9467-0] [PMID: 22535496]
[52]
Moghimi B, Gharibi S, Farashahi Yazd E, Taher Tahoori M, Kalantar SM. Role of miR-146a in immune system and autoimmunity. Int J Med Lab 2016; 3: 150-8.
[53]
Zhou Q, Haupt S, Kreuzer JT, et al. Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis 2015; 74(6): 1265-74.
[http://dx.doi.org/10.1136/annrheumdis-2013-204377] [PMID: 24562503]
[54]
Duan Q, Mao X, Xiao Y, et al. Super enhancers at the miR-146a and miR-155 genes contribute to self-regulation of inflammation. Biochim Biophys Acta 2016; 1859(4): 564-71.
[http://dx.doi.org/10.1016/j.bbagrm.2016.02.004] [PMID: 26855180]
[55]
Kriegsmann M, Randau TM, Gravius S, et al. Expression of miR-146a, miR-155, and miR-223 in formalin-fixed paraffin-embedded synovial tissues of patients with rheumatoid arthritis and osteoarthritis. Virchows Arch 2016; 469(1): 93-100.
[http://dx.doi.org/10.1007/s00428-016-1939-4] [PMID: 27079198]
[56]
Magilnick N, Reyes EY, Wang W-L, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci USA 2017; 114(34): E7140-9.
[http://dx.doi.org/10.1073/pnas.1706833114] [PMID: 28784800]
[57]
Su LC, Huang AF, Jia H, Liu Y, Xu WD. Role of microRNA-155 in rheumatoid arthritis. Int J Rheum Dis 2017; 20(11): 1631-7.
[http://dx.doi.org/10.1111/1756-185X.13202] [PMID: 29105307]
[58]
Elmesmari A, Fraser AR, Wood C, et al. MicroRNA-155 regulates monocyte chemokine and chemokine receptor expression in Rheumatoid Arthritis. Rheumatology (Oxford) 2016; 55(11): 2056-65.
[http://dx.doi.org/10.1093/rheumatology/kew272] [PMID: 27411480]
[59]
Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 2011; 63(6): 1582-90.
[http://dx.doi.org/10.1002/art.30321] [PMID: 21425254]
[60]
Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 2011; 108(27): 11193-8.
[http://dx.doi.org/10.1073/pnas.1019536108] [PMID: 21690378]
[61]
Yin Z, Luo X, Zhang C, Chen X, Huang J, Zhizhong Y. miR-155 facilitates the differentiation of Th17 cells by inhibiting the gene expression of Ets-1 Chinese. J Rheumatol 2015; 19: 730-4.
[http://dx.doi.org/10.1136/annrheumdis-2015-eular.4288]
[62]
Migita K, Iwanaga N, Izumi Y, et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res Notes 2017; 10(1): 403.
[http://dx.doi.org/10.1186/s13104-017-2715-5] [PMID: 28807007]
[63]
Ksiazek-Winiarek D, Szpakowski P, Turniak M, Szemraj J, Glabinski A. IL-17 exerts anti-apoptotic effect via miR-155-5p downregulation in experimental autoimmune encephalomyelitis. J Mol Neurosci 2017; 63(3-4): 320-32.
[http://dx.doi.org/10.1007/s12031-017-0981-2] [PMID: 29063445]
[64]
Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol 2016; 12(1): 25-36.
[http://dx.doi.org/10.1038/nrrheum.2015.167] [PMID: 26633291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy