[1]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658. [http://dx.doi.org/10.2147/IDR.S173867]. [PMID: 30349322].
[3]
Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenström, T.A. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules, 2016, 22(1), 29. [http://dx.doi.org/10.3390/molecules22010029]. [PMID: 28035988].
[4]
Quinn, R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am. J. Public Health, 2013, 103(3), 426-434. [http://dx.doi.org/10.2105/AJPH.2012.300693]. [PMID: 22698031].
[6]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 2017, 9(6)e1403 [http://dx.doi.org/10.7759/cureus.1403]. [PMID: 28852600].
[7]
Calhoun, C.; Hall, G.A. Antibiotics.StatPearls; StatPearls Publishing: Treasure Island, FL, 2019.
[8]
Doi, Y.; Wachino, J-I.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. North Am., 2016, 30(2), 523-537. [http://dx.doi.org/10.1016/j.idc.2016.02.011]. [PMID: 27208771].
[9]
González-Bello, C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, 27(18), 4221-4228. [http://dx.doi.org/10.1016/j.bmcl.2017.08.027]. [PMID: 28827113].
[10]
Cosgrove, S.E.; Kaye, K.S.; Eliopoulous, G.M.; Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med., 2002, 162(2), 185-190. [http://dx.doi.org/10.1001/archinte.162.2.185]. [PMID: 11802752].
[11]
Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30(10), 972-976. [http://dx.doi.org/10.1086/605922]. [PMID: 19712030].
[12]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51. [http://dx.doi.org/10.1038/nrmicro3380]. [PMID: 25435309].
[13]
Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr., 2016, 4(2) [http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015]. [PMID: 27227291].
[14]
Boehr, D.D.; Draker, K.A.; Koteva, K.; Bains, M.; Hancock, R.E.; Wright, G.D. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol., 2003, 10(2), 189-196. [http://dx.doi.org/10.1016/S1074-5521(03)00026-7]. [PMID: 12618191].
[15]
Eidam, O.; Romagnoli, C.; Dalmasso, G.; Barelier, S.; Caselli, E.; Bonnet, R.; Shoichet, B.K.; Prati, F. Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17448-17453. [http://dx.doi.org/10.1073/pnas.1208337109]. [PMID: 23043117].
[17]
Alkasaby, N.M.; El Sayed Zaki, M. Molecular Study of Acinetobacter
baumannii Isolates for Metallo-β-Lactamases and Extended-
Spectrum-β-Lactamases Genes in Intensive Care Unit, Mansoura
University Hospital, Egypt. Int. J. Microbiol., 2017, 20173925868 [http://dx.doi.org/10.1155/2017/3925868][PMID: 28567057]
[18]
Papp-Wallace, K.M.; Taracila, M.A.; Gatta, J.A.; Ohuchi, N.; Bonomo, R.A.; Nukaga, M. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J. Biol. Chem., 2013, 288(26), 19090-19102. [http://dx.doi.org/10.1074/jbc.M113.458315]. [PMID: 23658015].
[19]
Bajaj, P.; Singh, N.S.; Virdi, J.S. Escherichia coli β-Lactamases: What Really Matters. Front. Microbiol., 2016, 7, 417. [http://dx.doi.org/10.3389/fmicb.2016.00417]. [PMID: 27065978].
[20]
Wang, G.; Huang, T.; Surendraiah, P.K.M.; Wang, K.; Komal, R.; Zhuge, J.; Chern, C-R.; Kryszuk, A.A.; King, C.; Wormser, G.P. CTX-M β-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA. Emerg. Infect. Dis., 2013, 19(11), 1803-1810. [http://dx.doi.org/10.3201/eid1911.121470]. [PMID: 24188126].
[21]
Khorvash, F.; Yazdani, M.; Shabani, S.; Soudi, A. Pseudomonas aeruginosa-producing Metallo-β-lactamases (VIM, IMP, SME, and AIM) in the Clinical Isolates of Intensive Care Units, a University Hospital in Isfahan, Iran. Adv. Biomed. Res., 2017, 6, 147. [http://dx.doi.org/10.4103/2277-9175.219412]. [PMID: 29285477].
[22]
Ivanova, D.; Markovska, R.; Hadjieva, N.; Schneider, I.; Mitov, I.; Bauernfeind, A. Extended-spectrum beta-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J. Hosp. Infect., 2008, 70(1), 60-65. [http://dx.doi.org/10.1016/j.jhin.2008.04.033]. [PMID: 18602186].
[24]
Okamoto, R.; Okubo, T.; Inoue, M. Detection of genes regulating beta-lactamase production in Enterococcus faecalis and Staphylococcus aureus. Antimicrob. Agents Chemother., 1996, 40(11), 2550-2554. [http://dx.doi.org/10.1128/AAC.40.11.2550]. [PMID: 8913462].
[25]
Markovska, R.D.; Stoeva, T.J.; Bojkova, K.D.; Mitov, I.G. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital. Microb. Drug Resist., 2014, 20(2), 131-137. [http://dx.doi.org/10.1089/mdr.2013.0102]. [PMID: 24171449].
[26]
Morris, D.; Whelan, M.; Corbett-Feeney, G.; Cormican, M.; Hawkey, P.; Li, X.; Doran, G. First report of extended-spectrum-beta-lactamase-producing Salmonella enterica isolates in Ireland. Antimicrob. Agents Chemother., 2006, 50(4), 1608-1609. [http://dx.doi.org/10.1128/AAC.50.4.1608-1609.2006]. [PMID: 16569897].
[27]
Chong, Y.; Shimoda, S.; Yakushiji, H.; Ito, Y.; Miyamoto, T.; Kamimura, T.; Shimono, N.; Akashi, K. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J. Med. Microbiol., 2013, 62(Pt 7), 1038-1043. [http://dx.doi.org/10.1099/jmm.0.059279-0]. [PMID: 23538565].
[28]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171. [http://dx.doi.org/10.1016/j.drup.2010.08.003]. [PMID: 20833577].
[29]
Tenover, F.C.; Elvrum, P.M. Detection of two different kanamycin resistance genes in naturally occurring isolates of Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother., 1988, 32(8), 1170-1173. [http://dx.doi.org/10.1128/AAC.32.8.1170]. [PMID: 3190204].
[30]
Miró, E.; Mirelis, B.; Navarro, F.; Matas, L.; Giménez, M.; Rabaza, C. Escherichia coli producing an ACC-1 class C β-lactamase isolated in Barcelona, Spain. Antimicrob. Agents Chemother., 2005, 49(2), 866-867. [http://dx.doi.org/10.1128/AAC.49.2.866-867.2005]. [PMID: 15673793].
[31]
Lovering, A.M.; White, L.O.; Reeves, D.S. AAC(1): a new aminoglycoside-acetylating enzyme modifying the Cl aminogroup of apramycin. J. Antimicrob. Chemother., 1987, 20(6), 803-813. [http://dx.doi.org/10.1093/jac/20.6.803]. [PMID: 3326872].
[32]
Macinga, D.R.; Paradise, M.R.; Parojcic, M.M.; Rather, P.N. Activation of the 2′-N-acetyltransferase gene [aac(2′)-Ia] in Providencia stuartii by an interaction of AarP with the promoter region. Antimicrob. Agents Chemother., 1999, 43(7), 1769-1772. [http://dx.doi.org/10.1128/AAC.43.7.1769]. [PMID: 10390241].
[33]
Rather, P.N.; Parojcic, M.M.; Paradise, M.R. An extracellular factor regulating expression of the chromosomal aminoglycoside 2′-N-acetyltransferase of Providencia stuartii. Antimicrob. Agents Chemother., 1997, 41(8), 1749-1754. [http://dx.doi.org/10.1128/AAC.41.8.1749]. [PMID: 9257754].
[34]
Aínsa, J.A.; Martin, C.; Gicquel, B.; Gomez-Lus, R. Characterization of the chromosomal aminoglycoside 2′-N-acetyltransferase gene from Mycobacterium fortuitum. Antimicrob. Agents Chemother., 1996, 40(10), 2350-2355. [http://dx.doi.org/10.1128/AAC.40.10.2350]. [PMID: 8891143].
[35]
Aínsa, J.A.; Pérez, E.; Pelicic, V.; Berthet, F.X.; Gicquel, B.; Martín, C. Aminoglycoside 2′-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol. Microbiol., 1997, 24(2), 431-441. [http://dx.doi.org/10.1046/j.1365-2958.1997.3471717.x]. [PMID: 9159528].
[36]
Smith, C.A.; Baker, E.N. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr. Drug Targets Infect. Disord., 2002, 2(2), 143-160. [http://dx.doi.org/10.2174/1568005023342533]. [PMID: 12462145].
[37]
Schwocho, L.R.; Schaffner, C.P.; Miller, G.H.; Hare, R.S.; Shaw, K.J. Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1995, 39(8), 1790-1796. [http://dx.doi.org/10.1128/AAC.39.8.1790]. [PMID: 7486920].
[38]
Riccio, M.L.; Docquier, J-D.; Dell’Amico, E.; Luzzaro, F.; Amicosante, G.; Rossolini, G.M. Novel 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob. Agents Chemother., 2003, 47(5), 1746-1748. [http://dx.doi.org/10.1128/AAC.47.5.1746-1748.2003]. [PMID: 12709352].
[39]
Levings, R.S.; Partridge, S.R.; Lightfoot, D.; Hall, R.M.; Djordjevic, S.P. New integron-associated gene cassette encoding a 3-N-aminoglycoside acetyltransferase. Antimicrob. Agents Chemother., 2005, 49(3), 1238-1241. [http://dx.doi.org/10.1128/AAC.49.3.1238-1241.2005]. [PMID: 15728939].
[40]
Galimand, M.; Fishovitz, J.; Lambert, T.; Barbe, V.; Zajicek, J.; Mobashery, S.; Courvalin, P. AAC(3)-XI, a new aminoglycoside 3-N-acetyltransferase from Corynebacterium striatum. Antimicrob. Agents Chemother., 2015, 59(9), 5647-5653. [http://dx.doi.org/10.1128/AAC.01203-15]. [PMID: 26149994].
[41]
Ishikawa, J.; Sunada, A.; Oyama, R.; Hotta, K. Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob. Agents Chemother., 2000, 44(2), 437-440. [http://dx.doi.org/10.1128/AAC.44.2.437-440.2000]. [PMID: 10639379].
[42]
Vakulenko, S.B.; Mobashery, S. Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev., 2003, 16(3), 430-450. [http://dx.doi.org/10.1128/CMR.16.3.430-450.2003]. [PMID: 12857776].
[43]
Tada, T.; Miyoshi-Akiyama, T.; Shimada, K.; Shimojima, M.; Kirikae, T. novel 6′-n-aminoglycoside acetyltransferase AAC(6′)-Iaj from a clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2013, 57(1), 96-100. [http://dx.doi.org/10.1128/AAC.01105-12]. [PMID: 23070167].
[44]
Toth, M.; Frase, H.; Antunes, N.T.; Smith, C.A.; Vakulenko, S.B. Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2′'-IVa. Protein Sci., 2010, 19(8), 1565-1576. [http://dx.doi.org/10.1002/pro.437]. [PMID: 20556826].
[45]
Woegerbauer, M.; Kuffner, M.; Domingues, S.; Nielsen, K.M. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front. Microbiol., 2015, 6, 442. [http://dx.doi.org/10.3389/fmicb.2015.00442]. [PMID: 26042098].
[46]
Fong, D.H.; Berghuis, A.M. Structural basis of APH(3′)-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Antimicrob. Agents Chemother., 2009, 53(7), 3049-3055. [http://dx.doi.org/10.1128/AAC.00062-09]. [PMID: 19433564].
[47]
Herbert, C.J.; Giles, I.G.; Akhtar, M. The sequence of an antibiotic resistance gene from an antibiotic-producing bacterium. Homologies with transposon genes. FEBS Lett., 1983, 160(1-2), 67-71. [http://dx.doi.org/10.1016/0014-5793(83)80937-5]. [PMID: 6193008].
[48]
Nie, L.; Lv, Y.; Yuan, M.; Hu, X.; Nie, T.; Yang, X.; Li, G.; Pang, J.; Zhang, J.; Li, C.; Wang, X.; You, X. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm. Sin. B, 2014, 4(4), 295-300. [http://dx.doi.org/10.1016/j.apsb.2014.06.004]. [PMID: 26579398].
[49]
Lyutzkanova, D.; Distler, J.; Altenbuchner, J. A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus. Microbiology, 1997, 143(Pt 7), 2135-2143. [http://dx.doi.org/10.1099/00221287-143-7-2135]. [PMID: 9245803].
[50]
Berthold, P.; Schmitt, R.; Mages, W. An engineered Streptomyces hygroscopicus aph 7” gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 2002, 153(4), 401-412. [http://dx.doi.org/10.1078/14344610260450136]. [PMID: 12627869].
[51]
Hirsch, D.R.; Cox, G.; D’Erasmo, M.P.; Shakya, T.; Meck, C.; Mohd, N.; Wright, G.D.; Murelli, R.P. Inhibition of the ANT(2”)-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorg. Med. Chem. Lett., 2014, 24(21), 4943-4947. [http://dx.doi.org/10.1016/j.bmcl.2014.09.037]. [PMID: 25283553].
[52]
Hollingshead, S.; Vapnek, D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid, 1985, 13(1), 17-30. [http://dx.doi.org/10.1016/0147-619X(85)90052-6]. [PMID: 2986186].
[53]
Chen, Y-G.; Qu, T-T.; Yu, Y-S.; Zhou, J-Y.; Li, L-J. Insertion sequence ISEcp1-like element connected with a novel aph(2′') allele [aph(2′')-Ie] conferring high-level gentamicin resistance and a novel streptomycin adenylyltransferase gene in Enterococcus. J. Med. Microbiol., 2006, 55(Pt 11), 1521-1525. [http://dx.doi.org/10.1099/jmm.0.46702-0]. [PMID: 17030911].
[54]
Gopegui, E.R.; Juan, C.; Zamorano, L.; Pérez, J.L.; Oliver, A. Transferable multidrug resistance plasmid carrying cfr associated with tet(L), ant(4′)-Ia, and dfrK genes from a clinical methicillin-resistant Staphylococcus aureus ST125 strain. Antimicrob. Agents Chemother., 2012, 56(4), 2139-2142. [http://dx.doi.org/10.1128/AAC.06042-11]. [PMID: 22214776].
[55]
Hormeño, L.; Ugarte-Ruiz, M.; Palomo, G.; Borge, C.; Florez-Cuadrado, D.; Vadillo, S.; Píriz, S.; Domínguez, L.; Campos, M.J.; Quesada, A. ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Front. Microbiol., 2018, 9(9), 2515. [http://dx.doi.org/10.3389/fmicb.2018.02515]. [PMID: 30405573].
[56]
Mahbub Alam, M.; Kobayashi, N.; Ishino, M.; Sumi, A.; Kobayashi, K.; Uehara, N.; Watanabe, N. Detection of a novel aph(2”) allele (aph[2”]-Ie) conferring high-level gentamicin resistance and a spectinomycin resistance gene ant(9)-Ia (aad 9) in clinical isolates of enterococci. Microb. Drug Resist., 2005, 11(3), 239-247. [http://dx.doi.org/10.1089/mdr.2005.11.239]. [PMID: 16201926].
[57]
Wu, P.J.; Shannon, K.; Phillips, I. Mechanisms of hyperproduction of TEM-1 beta-lactamase by clinical isolates of Escherichia coli. J. Antimicrob. Chemother., 1995, 36(6), 927-939. [http://dx.doi.org/10.1093/jac/36.6.927]. [PMID: 8821592].
[58]
Jacoby, G.A.; Medeiros, A.A. More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother., 1991, 35(9), 1697-1704. [http://dx.doi.org/10.1128/AAC.35.9.1697]. [PMID: 1952834].
[59]
Ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int., 2018, 20189519718 [http://dx.doi.org/10.1155/2018/9519718]. [PMID: 29780833].
[60]
Ramdani-Bouguessa, N.; Manageiro, V.; Jones-Dias, D.; Ferreira, E.; Tazir, M.; Caniça, M. Role of SHV β-lactamase variants in resistance of clinical Klebsiella pneumoniae strains to β-lactams in an Algerian hospital. J. Med. Microbiol., 2011, 60(Pt 7), 983-987. [http://dx.doi.org/10.1099/jmm.0.030577-0]. [PMID: 21415202].
[61]
Huletsky, A.; Couture, F.; Levesque, R.C. Nucleotide sequence and phylogeny of SHV-2 beta-lactamase. Antimicrob. Agents Chemother., 1990, 34(9), 1725-1732. [http://dx.doi.org/10.1128/AAC.34.9.1725]. [PMID: 2285285].
[62]
Poirel, L.; Menuteau, O.; Agoli, N.; Cattoen, C.; Nordmann, P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J. Clin. Microbiol., 2003, 41(8), 3542-3547. [http://dx.doi.org/10.1128/JCM.41.8.3542-3547.2003]. [PMID: 12904353].
[63]
Po, K.H.L.; Chan, E.W.C.; Chen, S. Functional Characterization of CTX-M-14 and CTX-M-15 β-Lactamases by In vitro DNA Shuffling. Antimicrob. Agents Chemother., 2017, 61(12), e00891-e17. [http://dx.doi.org/10.1128/AAC.00891-17]. [PMID: 28971870].
[64]
Prinarakis, E.E.; Miriagou, V.; Tzelepi, E.; Gazouli, M.; Tzouvelekis, L.S. Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob. Agents Chemother., 1997, 41(4), 838-840. [http://dx.doi.org/10.1128/AAC.41.4.838]. [PMID: 9087500].
[65]
Ahamed, J.; Kundu, M. Molecular characterization of the SHV-11 beta-lactamase of Shigella dysenteriae. Antimicrob. Agents Chemother., 1999, 43(8), 2081-2083. [http://dx.doi.org/10.1128/AAC.43.8.2081]. [PMID: 10428943].
[66]
Queenan, A.M.; Torres-Viera, C.; Gold, H.S.; Carmeli, Y.; Eliopoulos, G.M.; Moellering, R.C., Jr; Quinn, J.P.; Hindler, J.; Medeiros, A.A.; Bush, K. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains. Antimicrob. Agents Chemother., 2000, 44(11), 3035-3039. [http://dx.doi.org/10.1128/AAC.44.11.3035-3039.2000]. [PMID: 11036019].
[67]
Rasmussen, B.A.; Bush, K.; Keeney, D.; Yang, Y.; Hare, R.; O’Gara, C.; Medeiros, A.A. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother., 1996, 40(9), 2080-2086. [http://dx.doi.org/10.1128/AAC.40.9.2080]. [PMID: 8878585].
[68]
Margate, E.; Magalhães, V.; Fehlberg, L.C.C.; Gales, A.C.; Lopes, A.C.S. Kpc-Producing Serratia marcescens A Home-Care Patient from Recife, Brazil. Rev. Inst. Med. Trop., 2015, 57(4), 359.
[69]
Queenan, A.M.; Bush, K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458. [http://dx.doi.org/10.1128/CMR.00001-07]. [PMID: 17630334].
[70]
Miriagou, V.; Tzouvelekis, L.S.; Rossiter, S.; Tzelepi, E.; Angulo, F.J.; Whichard, J.M. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother., 2003, 47(4), 1297-1300. [http://dx.doi.org/10.1128/AAC.47.4.1297-1300.2003]. [PMID: 12654661].
[71]
Melano, R.; Petroni, A.; Garutti, A.; Saka, H.A.; Mange, L.; Pasterán, F.; Rapoport, M.; Rossi, A.; Galas, M. New carbenicillin-hydrolyzing beta-lactamase (CARB-7) from Vibrio cholerae non-O1, non-O139 strains encoded by the VCR region of the V. cholerae genome. Antimicrob. Agents Chemother., 2002, 46(7), 2162-2168. [http://dx.doi.org/10.1128/AAC.46.7.2162-2168.2002]. [PMID: 12069969].
[72]
Ghamgosha, M.; Shahrekizahedani, S.; Kafilzadeh, F.; Bameri, Z.; Taheri, R.A.; Farnoosh, G. Metallo-beta-Lactamase VIM-1, SPM-1, and IMP-1 Genes Among Clinical Pseudomonas aeruginosa Species Isolated in Zahedan, Iran. Jundishapur J. Microbiol., 2015, 8(4)e17489 [http://dx.doi.org/10.5812/jjm.8(4)2015.17489]. [PMID: 26034547].
[75]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277, 91-104. [http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x]. [PMID: 23163348].
[76]
Yang, Y.; Rasmussen, B.A.; Bush, K. Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother., 1992, 36(5), 1155-1157. [http://dx.doi.org/10.1128/AAC.36.5.1155]. [PMID: 1510410].
[77]
Carfi, A.; Pares, S.; Duée, E.; Galleni, M.; Duez, C.; Frère, J.M.; Dideberg, O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J., 1995, 14(20), 4914-4921. [http://dx.doi.org/10.1002/j.1460-2075.1995.tb00174.x]. [PMID: 7588620].
[78]
Massidda, O.; Rossolini, G.M.; Satta, G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J. Bacteriol., 1991, 173(15), 4611-4617. [http://dx.doi.org/10.1128/JB.173.15.4611-4617.1991]. [PMID: 1856163].
[79]
Ullah, J.H.; Walsh, T.R.; Taylor, I.A.; Emery, D.C.; Verma, C.S.; Gamblin, S.J.; Spencer, J. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J. Mol. Biol., 1998, 284(1), 125-136. [http://dx.doi.org/10.1006/jmbi.1998.2148]. [PMID: 9811546].
[81]
Chika, E.; Charles, E.; Ifeanyichukwu, I.; Michael, A. First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. Oman Med. J., 2018, 33(3), 243-249. [http://dx.doi.org/10.5001/omj.2018.44]. [PMID: 29896333].
[82]
Papanicolaou, G.A.; Medeiros, A.A.; Jacoby, G.A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother., 1990, 34(11), 2200-2209. [http://dx.doi.org/10.1128/AAC.34.11.2200]. [PMID: 1963529].
[83]
Ahmed, A.M.; Shimamoto, T. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC beta-lactamase, CMY-37. Int. J. Antimicrob. Agents, 2008, 32(3), 256-261. [http://dx.doi.org/10.1016/j.ijantimicag.2008.04.019]. [PMID: 18619820].
[84]
Hall, L.M.; Livermore, D.M.; Gur, D.; Akova, M.; Akalin, H.E. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1993, 37(8), 1637-1644. [http://dx.doi.org/10.1128/AAC.37.8.1637]. [PMID: 8215276].
[85]
Danel, F.; Hall, L.M.; Gur, D.; Livermore, D.M. OXA-15, an extended-spectrum variant of OXA-2 beta-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob. Agents Chemother., 1997, 41(4), 785-790. [http://dx.doi.org/10.1128/AAC.41.4.785]. [PMID: 9087490].
[86]
Danel, F.; Hall, L.M.; Duke, B.; Gur, D.; Livermore, D.M. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1999, 43(6), 1362-1366. [http://dx.doi.org/10.1128/AAC.43.6.1362]. [PMID: 10348753].
[87]
Ploy, M-C.; Denis, F.; Courvalin, P.; Lambert, T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob. Agents Chemother., 2000, 44(10), 2684-2688. [http://dx.doi.org/10.1128/AAC.44.10.2684-2688.2000]. [PMID: 10991844].
[88]
Vila, J.; Navia, M.; Ruiz, J.; Casals, C. Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived beta-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother., 1997, 41(12), 2757-2759. [http://dx.doi.org/10.1128/AAC.41.12.2757]. [PMID: 9420053].
[89]
Donald, H.M.; Scaife, W.; Amyes, S.G.; Young, H.K. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother., 2000, 44(1), 196-199. [http://dx.doi.org/10.1128/AAC.44.1.196-199.2000]. [PMID: 10602749].
[90]
Poirel, L.; Marqué, S.; Héritier, C.; Segonds, C.; Chabanon, G.; Nordmann, P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother., 2005, 49(1), 202-208. [http://dx.doi.org/10.1128/AAC.49.1.202-208.2005]. [PMID: 15616297].
[91]
Rello, J.; Bunsow, E.; Perez, A. What if there were no new antibiotics? A look at alternatives. Expert Rev. Clin. Pharmacol., 2016, 9(12), 1547-1555. [http://dx.doi.org/10.1080/17512433.2016.1241141]. [PMID: 27678160].
[92]
Conly, J.; Johnston, B. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol., 2005, 16(3), 159-160. [http://dx.doi.org/10.1155/2005/892058]. [PMID: 18159536].
[93]
Spellberg, B. The future of antibiotics. Crit. Care, 2014, 18(3), 228. [http://dx.doi.org/10.1186/cc13948]. [PMID: 25043962].
[94]
Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother., 2014, 58(4), 1835-1846. [http://dx.doi.org/10.1128/AAC.00826-13]. [PMID: 24379206].
[95]
Melander, R.J.; Melander, C. The Challenge of Overcoming Antibiotic Resistance: An Adjuvant Approach? ACS Infect. Dis., 2017, 3(8), 559-563. [http://dx.doi.org/10.1021/acsinfecdis.7b00071]. [PMID: 28548487].
[96]
Georgopapadakou, N.H. Beta-lactamase inhibitors: evolving compounds for evolving resistance targets. Expert Opin. Investig. Drugs, 2004, 13(10), 1307-1318. [http://dx.doi.org/10.1517/13543784.13.10.1307]. [PMID: 15461559].
[97]
Papp-Wallace, K.M.; Bonomo, R.A. New β-Lactamase Inhibitors in the Clinic. Infect. Dis. Clin. North Am., 2016, 30(2), 441-464. [http://dx.doi.org/10.1016/j.idc.2016.02.007]. [PMID: 27208767].
[98]
Labby, K.J.; Garneau-Tsodikova, S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med. Chem., 2013, 5(11), 1285-1309. [http://dx.doi.org/10.4155/fmc.13.80]. [PMID: 23859208].
[99]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201. [http://dx.doi.org/10.1128/CMR.00037-09]. [PMID: 20065329].
[100]
Lee, J-K.; Luchian, T.; Park, Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget, 2018, 9(21), 15616-15634. [http://dx.doi.org/10.18632/oncotarget.24582]. [PMID: 29643997].
[101]
Bush, K.; Miller, G.H. Bacterial enzymatic resistance: beta-lactamases and aminoglycoside-modifying enzymes. Curr. Opin. Microbiol., 1998, 1(5), 509-515. [http://dx.doi.org/10.1016/S1369-5274(98)80082-9]. [PMID: 10066532].
[102]
Azucena, E.; Mobashery, S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist. Updat., 2001, 4(2), 106-117. [http://dx.doi.org/10.1054/drup.2001.0197]. [PMID: 11512519].
[103]
Llano-Sotelo, B.; Azucena, E.F., Jr; Kotra, L.P.; Mobashery, S.; Chow, C.S. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol., 2002, 9(4), 455-463. [http://dx.doi.org/10.1016/S1074-5521(02)00125-4]. [PMID: 11983334].
[104]
Zárate, S.G.; De la Cruz Claure, M.L.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules, 2018, 23(2), 284. [http://dx.doi.org/10.3390/molecules23020284]. [PMID: 29385736].
[105]
Tolmasky, M.E. Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics.Enzyme-mediated resistance to antibiotics: mechanisms, dissemination, and prospects for inhibition; Bonomo RA; Tolmasky ME: Washington, DC, 2007. [http://dx.doi.org/10.1128/9781555815615.ch16]
[106]
Fong, D.H.; Burk, D.L.; Berghuis, A.M. Aminoglycoside Kinases
181 and Antibiotic Resistance. Inhibitors of Protein Kinases and Protein Phosphates; Pinna, L.A.; Cohen, P.T.W., Eds.; Handbook of Experimental PharmacologySpringer Berlin Heidelberg: Berlin, Heidelberg, 2005, pp. 157-188. http://dx.doi.org/10.1007/3-540-26670-4_7
[107]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(6)a02702 [http://dx.doi.org/10.1101/cshperspect.a027029]. [PMID: 27252397].
[108]
Houghton, J.L.; Green, K.D.; Chen, W.; Garneau-Tsodikova, S. The future of aminoglycosides: the end or renaissance? ChemBioChem, 2010, 11(7), 880-902. [http://dx.doi.org/10.1002/cbic.200900779]. [PMID: 20397253].
[110]
Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother., 1999, 43(4), 727-737. [http://dx.doi.org/10.1128/AAC.43.4.727]. [PMID: 10103173].
[111]
Tsai, A.; Uemura, S.; Johansson, M.; Puglisi, E.V.; Marshall, R.A.; Aitken, C.E.; Korlach, J.; Ehrenberg, M.; Puglisi, J.D. The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep., 2013, 3(2), 497-508. [http://dx.doi.org/10.1016/j.celrep.2013.01.027]. [PMID: 23416053].
[112]
Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother., 2000, 44(12), 3249-3256. [http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000]. [PMID: 11083623].
[113]
Kim, C.; Mobashery, S. Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorg. Chem., 2005, 33(3), 149-158. [http://dx.doi.org/10.1016/j.bioorg.2004.11.001]. [PMID: 15888308].
[114]
Magnet, S.; Blanchard, J.S. Molecular insights into aminoglycoside action and resistance. Chem. Rev., 2005, 105(2), 477-498. [http://dx.doi.org/10.1021/cr0301088]. [PMID: 15700953].
[115]
Hon, W-C.; McKay, G.A.; Thompson, P.R.; Sweet, R.M.; Yang, D.S.C.; Wright, G.D.; Berghuis, A.M. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell, 1997, 89(6), 887-895. [http://dx.doi.org/10.1016/S0092-8674(00)80274-3]. [PMID: 9200607].
[116]
Cox, G.; Stogios, P.J.; Savchenko, A.; Wright, G.D. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia. MBio, 2015, 6(1), e02180-e14. [http://dx.doi.org/10.1128/mBio.02180-14]. [PMID: 25564464].
[117]
Kumar, P.; Serpersu, E.H.; Cuneo, M.J. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. Sci. Adv., 2018, 4(4)eaas8667 [http://dx.doi.org/10.1126/sciadv.aas8667]. [PMID: 29632894].
[118]
Williams, J.W.; Northrop, D.B. Synthesis of a tight-binding, multisubstrate analog inhibitor of gentamicin acetyltransferase I. J. Antibiot. (Tokyo), 1979, 32(11), 1147-1154. [http://dx.doi.org/10.7164/antibiotics.32.1147]. [PMID: 393684].
[119]
Baym, M.; Stone, L.K.; Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 2016, 351(6268)aad3292 [http://dx.doi.org/10.1126/science.aad3292]. [PMID: 26722002].
[120]
Therrien, C.; Levesque, R.C. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol. Rev., 2000, 24(3), 251-262. [http://dx.doi.org/10.1016/S0168-6445(99)00039-X]. [PMID: 10841972].
[121]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050. [http://dx.doi.org/10.1016/j.cell.2007.03.004]. [PMID: 17382878].
[122]
D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G.B.; Poinar, H.N.; Wright, G.D. Antibiotic resistance is ancient. Nature, 2011, 477(7365), 457-461. [http://dx.doi.org/10.1038/nature10388]. [PMID: 21881561].
[123]
Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother., 1995, 39(6), 1211-1233. [http://dx.doi.org/10.1128/AAC.39.6.1211]. [PMID: 7574506].
[124]
Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1980, 289(1036), 321-331. [http://dx.doi.org/10.1098/rstb.1980.0049]. [PMID: 6109327].
[125]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976. [http://dx.doi.org/10.1128/AAC.01009-09]. [PMID: 19995920].
[126]
Cag, Y.; Caskurlu, H.; Fan, Y.; Cao, B.; Vahaboglu, H. Resistance mechanisms. Ann. Transl. Med., 2016, 4(17), 326-334. [http://dx.doi.org/10.21037/atm.2016.09.14]. [PMID: 27713884].
[127]
Silva, O.N.; Franco, O.L.; Porto, W.F. β-Lactamase inhibitor peptides as the new strategies to overcome bacterial resistance. Drugs Today (Barc), 2018, 54(12), 737-746. [http://dx.doi.org/10.1358/dot.2018.54.12.2895652]. [PMID: 30596392].
[128]
Džidić, S.; Šušković, J.; Kos, B. Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects. Food Technol. Biotechnol., 2008, 46, 11-21.
[129]
Jacoby, G.A.; Munoz-Price, L.S. The new beta-lactamases. N. Engl. J. Med., 2005, 352(4), 380-391. [http://dx.doi.org/10.1056/NEJMra041359]. [PMID: 15673804].
[130]
Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 2009, 9(4), 228-236. [http://dx.doi.org/10.1016/S1473-3099(09)70054-4]. [PMID: 19324295].
[131]
Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev., 2005, 18(4), 657-686. [http://dx.doi.org/10.1128/CMR.18.4.657-686.2005]. [PMID: 16223952].
[132]
Queenan, A.M.; Bush, K. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458. [http://dx.doi.org/10.1128/CMR.00001-07]. [PMID: 17630334].
[133]
Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int., 2016, 20162475067 [http://dx.doi.org/10.1155/2016/2475067]. [PMID: 27274985].
[134]
Bonomo, R.A. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1)a025239 [http://dx.doi.org/10.1101/cshperspect.a025239]. [PMID: 27742735].
[135]
Jacoby, G.A.; Amp, C. AmpC beta-lactamases. Clin. Microbiol. Rev., 2009, 22(1), 161-182. [http://dx.doi.org/10.1128/CMR.00036-08]. [PMID: 19136439].
[136]
Evans, B.A.; Amyes, S.G.B. OXA β-lactamases. Clin. Microbiol. Rev., 2014, 27(2), 241-263. [http://dx.doi.org/10.1128/CMR.00117-13]. [PMID: 24696435].
[137]
Kuzin, A.P.; Nukaga, M.; Nukaga, Y.; Hujer, A.M.; Bonomo, R.A.; Knox, J.R. Structure of the SHV-1 beta-lactamase. Biochemistry, 1999, 38(18), 5720-5727. [http://dx.doi.org/10.1021/bi990136d]. [PMID: 10231522].
[138]
Pegg, K.M.; Liu, E.M.; George, A.C.; LaCuran, A.E.; Bethel, C.R.; Bonomo, R.A.; Oelschlaeger, P. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Protein Sci., 2014, 23(10), 1451-1460. [http://dx.doi.org/10.1002/pro.2530]. [PMID: 25131397].
[139]
Yamaguchi, Y.; Sato, G.; Yamagata, Y.; Doi, Y.; Wachino, J.; Arakawa, Y.; Matsuda, K.; Kurosaki, H. Structure of AmpC β-lactamase (AmpCD) from an Escherichia coli clinical isolate with a tripeptide deletion (Gly286-Ser287-Asp288) in the H10 helix. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2009, 65(Pt 6), 540-543. [http://dx.doi.org/10.1107/S1744309109014249]. [PMID: 19478427].
[140]
Schneider, K.D.; Bethel, C.R.; Distler, A.M.; Hujer, A.M.; Bonomo, R.A.; Leonard, D.A. Mutation of the active site carboxy-lysine (K70) of OXA-1 β-lactamase results in a deacylation-deficient enzyme. Biochemistry, 2009, 48(26), 6136-6145. [http://dx.doi.org/10.1021/bi900448u]. [PMID: 19485421].
[141]
Chen, J.; Shang, X.; Hu, F.; Lao, X.; Gao, X.; Zheng, H.; Yao, W. β-Lactamase inhibitors: an update. Mini Rev. Med. Chem., 2013, 13(13), 1846-1861. [http://dx.doi.org/10.2174/13895575113139990074]. [PMID: 23895190].
[142]
Keating, T.A.; Lister, T.; Verheijen, J.C. New antibacterial agents: patent applications published in 2011. Pharm. Pat. Anal., 2014, 3(1), 87-112. [http://dx.doi.org/10.4155/ppa.13.65]. [PMID: 24354981].
[143]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201. [http://dx.doi.org/10.1128/CMR.00037-09]. [PMID: 20065329].
[144]
Reading, C.; Cole, M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother., 1977, 11(5), 852-857. [http://dx.doi.org/10.1128/AAC.11.5.852]. [PMID: 879738].
[145]
Silva, O.N.; Alves, E.S.F.; de la Fuente-Núñez, C.; Ribeiro, S.M.; Mandal, S.M.; Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B.; Andrade, C.A.S.; Nascimento, J.M.; Fensterseifer, I.C.; Porto, W.F.; Correa, J.R.; Hancock, R.E.; Korpole, S.; Oliveira, A.L.; Liao, L.M.; Franco, O.L. Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity. Sci. Rep., 2016, 6, 27128. [http://dx.doi.org/10.1038/srep27128]. [PMID: 27292548].
[147]
Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Molecules that Inhibit Bacterial Resistance Enzymes. Molecules, 2018, 24(1), 43. [http://dx.doi.org/10.3390/molecules24010043]. [PMID: 30583527].
[148]
English, A.R.; Retsema, J.A.; Girard, A.E.; Lynch, J.E.; Barth, W.E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob. Agents Chemother., 1978, 14(3), 414-419. [http://dx.doi.org/10.1128/AAC.14.3.414]. [PMID: 309306].
[149]
Fisher, J.; Belasco, J.G.; Charnas, R.L.; Khosla, S.; Knowles, J.R. Beta-lactamase inactivation by mechanism-based reagents. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1980, 289(1036), 309-319. [http://dx.doi.org/10.1098/rstb.1980.0048]. [PMID: 6109326].
[150]
Watkins, R.R.; Papp-Wallace, K.M.; Drawz, S.M.; Bonomo, R.A. Novel β-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Front. Microbiol., 2013, 4, 392. [http://dx.doi.org/10.3389/fmicb.2013.00392]. [PMID: 24399995].
[151]
Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(7), 1303-1308. [http://dx.doi.org/10.1007/s10096-015-2375-0]. [PMID: 25864193].
[152]
Rudgers, G.W.; Huang, W.; Palzkill, T. Binding properties of a peptide derived from β-lactamase inhibitory protein. Antimicrob. Agents Chemother., 2001, 45(12), 3279-3286. [http://dx.doi.org/10.1128/AAC.45.12.3279-3286.2001]. [PMID: 11709298].
[153]
Doran, J.L.; Leskiw, B.K.; Aippersbach, S.; Jensen, S.E. Isolation and characterization of a beta-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bacteriol., 1990, 172(9), 4909-4918. [http://dx.doi.org/10.1128/JB.172.9.4909-4918.1990]. [PMID: 2203736].
[154]
Yribarren, A-S.; Thomas, D.; Friboulet, A.; Avalle, B. Selection of peptides inhibiting a beta-lactamase-like activity. Eur. J. Biochem., 2003, 270(13), 2789-2795. [http://dx.doi.org/10.1046/j.1432-1033.2003.03651.x]. [PMID: 12823549].
[155]
Phichith, D.; Bun, S.; Padiolleau-Lefevre, S.; Guellier, A.; Banh, S.; Galleni, M.; Frere, J-M.; Thomas, D.; Friboulet, A.; Avalle, B. Novel peptide inhibiting both TEM-1 β-lactamase and penicillin-binding proteins. FEBS J., 2010, 277(23), 4965-4972. [http://dx.doi.org/10.1111/j.1742-4658.2010.07906.x]. [PMID: 21044268].
[156]
Huang, W.; Beharry, Z.; Zhang, Z.; Palzkill, T. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng., 2003, 16(11), 853-860. [http://dx.doi.org/10.1093/protein/gzg108]. [PMID: 14631075].
[157]
Sanschagrin, F.; Levesque, R.C. A specific peptide inhibitor of the class B metallo-beta-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. J. Antimicrob. Chemother., 2005, 55(2), 252-255. [http://dx.doi.org/10.1093/jac/dkh550]. [PMID: 15659541].
[158]
Zou, Q.; Yang, K-L. Identification of peptide inhibitors of penicillinase using a phage display library. Anal. Biochem., 2016, 494, 4-9. [http://dx.doi.org/10.1016/j.ab.2015.10.009]. [PMID: 26521981].
[159]
Rotondo, C.M.; Marrone, L.; Goodfellow, V.J.; Ghavami, A.; Labbé, G.; Spencer, J.; Dmitrienko, G.I.; Siemann, S. Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochim. Biophys. Acta, 2015, 1850(11), 2228-2238. [http://dx.doi.org/10.1016/j.bbagen.2015.07.012]. [PMID: 26238337].
[160]
Shen, B.; Zhu, C.; Gao, X.; Liu, G.; Song, J.; Yu, Y. Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors. PLoS One, 2017, 12(5)e0177293 [http://dx.doi.org/10.1371/journal.pone.0177293]. [PMID: 28542279].
[161]
Mandal, S.M.; Migliolo, L.; Silva, O.N.; Fensterseifer, I.C.M.; Faria-Junior, C.; Dias, S.C.; Basak, A.; Hazra, T.K.; Franco, O.L. Controlling resistant bacteria with a novel class of β-lactamase inhibitor peptides: from rational design to in vivo analyses. Sci. Rep., 2014, 4, 6015. [http://dx.doi.org/10.1038/srep06015]. [PMID: 25109311].
[162]
Alaybeyoglu, B.; Akbulut, B.S.; Ozkirimli, E. A novel chimeric peptide with antimicrobial activity. J. Pept. Sci., 2015, 21(4), 294-301. [http://dx.doi.org/10.1002/psc.2739]. [PMID: 25597294].