Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Development of Peptides that Inhibit Aminoglycoside-Modifying Enzymes and β-Lactamases for Control of Resistant Bacteria

Author(s): Bruna O. Costa, Marlon H. Cardoso and Octávio L. Franco*

Volume 21, Issue 10, 2020

Page: [1011 - 1026] Pages: 16

DOI: 10.2174/1389203721666200915113630

Price: $65

Abstract

Aminoglycosides and β-lactams are the most commonly used antimicrobial agents in clinical practice. This occurs because they are capable of acting in the treatment of acute bacterial infections. However, the effectiveness of antibiotics has been constantly threatened due to bacterial pathogens producing resistance enzymes. Among them, the aminoglycoside-modifying enzymes (AMEs) and β-lactamase enzymes are the most frequently reported resistance mechanisms. AMEs can inactivate aminoglycosides by adding specific chemical molecules in the compound, whereas β-lactamases hydrolyze the β-lactams ring, preventing drug-target interaction. Thus, these enzymes provide a scenario of multidrug-resistance and a significant threat to public health at a global level. In response to this challenge, in recent decades, several studies have focused on the development of inhibitors that can restore aminoglycosides and β-lactams activity. In this context, peptides appear as a promising approach in the field of inhibitors for future antibacterial therapies, as multiresistant bacteria may be susceptible to these molecules. Therefore, this review focused on the most recent findings related to peptide-based inhibitors that act on AMEs and β-lactamases, and how these molecules could be used for future treatment strategies.

Keywords: Antibiotic therapy, aminoglycosides, β-lactams, resistance mechanism, resistance enzymes, enzyme inhibitor peptides.

Next »
Graphical Abstract

[1]
Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; Salamat, M.K.F.; Baloch, Z. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist., 2018, 11, 1645-1658. [http://dx.doi.org/10.2147/IDR.S173867]. [PMID: 30349322].
[2]
Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res., 2018, 36(1), 22-32.
[PMID: 28722231]
[3]
Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenström, T.A. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules, 2016, 22(1), 29. [http://dx.doi.org/10.3390/molecules22010029]. [PMID: 28035988].
[4]
Quinn, R. Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am. J. Public Health, 2013, 103(3), 426-434. [http://dx.doi.org/10.2105/AJPH.2012.300693]. [PMID: 22698031].
[5]
Lobanovska, M.; Pilla, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? Yale J. Biol. Med., 2017, 90(1), 135-145.
[PMID: 28356901]
[6]
Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 2017, 9(6)e1403 [http://dx.doi.org/10.7759/cureus.1403]. [PMID: 28852600].
[7]
Calhoun, C.; Hall, G.A. Antibiotics.StatPearls; StatPearls Publishing: Treasure Island, FL, 2019.
[8]
Doi, Y.; Wachino, J-I.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. North Am., 2016, 30(2), 523-537. [http://dx.doi.org/10.1016/j.idc.2016.02.011]. [PMID: 27208771].
[9]
González-Bello, C. Antibiotic adjuvants - A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett., 2017, 27(18), 4221-4228. [http://dx.doi.org/10.1016/j.bmcl.2017.08.027]. [PMID: 28827113].
[10]
Cosgrove, S.E.; Kaye, K.S.; Eliopoulous, G.M.; Carmeli, Y. Health and economic outcomes of the emergence of third-generation cephalosporin resistance in Enterobacter species. Arch. Intern. Med., 2002, 162(2), 185-190. [http://dx.doi.org/10.1001/archinte.162.2.185]. [PMID: 11802752].
[11]
Borer, A.; Saidel-Odes, L.; Riesenberg, K.; Eskira, S.; Peled, N.; Nativ, R.; Schlaeffer, F.; Sherf, M. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect. Control Hosp. Epidemiol., 2009, 30(10), 972-976. [http://dx.doi.org/10.1086/605922]. [PMID: 19712030].
[12]
Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51. [http://dx.doi.org/10.1038/nrmicro3380]. [PMID: 25435309].
[13]
Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr., 2016, 4(2) [http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015]. [PMID: 27227291].
[14]
Boehr, D.D.; Draker, K.A.; Koteva, K.; Bains, M.; Hancock, R.E.; Wright, G.D. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol., 2003, 10(2), 189-196. [http://dx.doi.org/10.1016/S1074-5521(03)00026-7]. [PMID: 12618191].
[15]
Eidam, O.; Romagnoli, C.; Dalmasso, G.; Barelier, S.; Caselli, E.; Bonnet, R.; Shoichet, B.K.; Prati, F. Fragment-guided design of subnanomolar β-lactamase inhibitors active in vivo. Proc. Natl. Acad. Sci. USA, 2012, 109(43), 17448-17453. [http://dx.doi.org/10.1073/pnas.1208337109]. [PMID: 23043117].
[16]
Baker, M.A.; Maloy, W.L.; Zasloff, M.; Jacob, L.S. Anticancer efficacy of Magainin2 and analogue peptides. Cancer Res., 1993, 53(13), 3052-3057.
[PMID: 8319212]
[17]
Alkasaby, N.M.; El Sayed Zaki, M. Molecular Study of Acinetobacter baumannii Isolates for Metallo-β-Lactamases and Extended- Spectrum-β-Lactamases Genes in Intensive Care Unit, Mansoura University Hospital, Egypt. Int. J. Microbiol., 2017, 20173925868 [http://dx.doi.org/10.1155/2017/3925868][PMID: 28567057]
[18]
Papp-Wallace, K.M.; Taracila, M.A.; Gatta, J.A.; Ohuchi, N.; Bonomo, R.A.; Nukaga, M. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J. Biol. Chem., 2013, 288(26), 19090-19102. [http://dx.doi.org/10.1074/jbc.M113.458315]. [PMID: 23658015].
[19]
Bajaj, P.; Singh, N.S.; Virdi, J.S. Escherichia coli β-Lactamases: What Really Matters. Front. Microbiol., 2016, 7, 417. [http://dx.doi.org/10.3389/fmicb.2016.00417]. [PMID: 27065978].
[20]
Wang, G.; Huang, T.; Surendraiah, P.K.M.; Wang, K.; Komal, R.; Zhuge, J.; Chern, C-R.; Kryszuk, A.A.; King, C.; Wormser, G.P. CTX-M β-lactamase-producing Klebsiella pneumoniae in suburban New York City, New York, USA. Emerg. Infect. Dis., 2013, 19(11), 1803-1810. [http://dx.doi.org/10.3201/eid1911.121470]. [PMID: 24188126].
[21]
Khorvash, F.; Yazdani, M.; Shabani, S.; Soudi, A. Pseudomonas aeruginosa-producing Metallo-β-lactamases (VIM, IMP, SME, and AIM) in the Clinical Isolates of Intensive Care Units, a University Hospital in Isfahan, Iran. Adv. Biomed. Res., 2017, 6, 147. [http://dx.doi.org/10.4103/2277-9175.219412]. [PMID: 29285477].
[22]
Ivanova, D.; Markovska, R.; Hadjieva, N.; Schneider, I.; Mitov, I.; Bauernfeind, A. Extended-spectrum beta-lactamase-producing Serratia marcescens outbreak in a Bulgarian hospital. J. Hosp. Infect., 2008, 70(1), 60-65. [http://dx.doi.org/10.1016/j.jhin.2008.04.033]. [PMID: 18602186].
[23]
Ranjbar, R.; Ghazi, F.M.; Farshad, S.; Giammanco, G.M.; Aleo, A.; Owlia, P.; Jonaidi, N.; Sadeghifard, N.; Mammina, C. The occurrence of extended-spectrum β-lactamase producing Shigella spp. in Tehran, Iran. Iran. J. Microbiol., 2013, 5(2), 108-112.
[PMID: 23825726]
[24]
Okamoto, R.; Okubo, T.; Inoue, M. Detection of genes regulating beta-lactamase production in Enterococcus faecalis and Staphylococcus aureus. Antimicrob. Agents Chemother., 1996, 40(11), 2550-2554. [http://dx.doi.org/10.1128/AAC.40.11.2550]. [PMID: 8913462].
[25]
Markovska, R.D.; Stoeva, T.J.; Bojkova, K.D.; Mitov, I.G. Epidemiology and molecular characterization of extended-spectrum beta-lactamase-producing Enterobacter spp., Pantoea agglomerans, and Serratia marcescens isolates from a Bulgarian hospital. Microb. Drug Resist., 2014, 20(2), 131-137. [http://dx.doi.org/10.1089/mdr.2013.0102]. [PMID: 24171449].
[26]
Morris, D.; Whelan, M.; Corbett-Feeney, G.; Cormican, M.; Hawkey, P.; Li, X.; Doran, G. First report of extended-spectrum-beta-lactamase-producing Salmonella enterica isolates in Ireland. Antimicrob. Agents Chemother., 2006, 50(4), 1608-1609. [http://dx.doi.org/10.1128/AAC.50.4.1608-1609.2006]. [PMID: 16569897].
[27]
Chong, Y.; Shimoda, S.; Yakushiji, H.; Ito, Y.; Miyamoto, T.; Kamimura, T.; Shimono, N.; Akashi, K. Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J. Med. Microbiol., 2013, 62(Pt 7), 1038-1043. [http://dx.doi.org/10.1099/jmm.0.059279-0]. [PMID: 23538565].
[28]
Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat., 2010, 13(6), 151-171. [http://dx.doi.org/10.1016/j.drup.2010.08.003]. [PMID: 20833577].
[29]
Tenover, F.C.; Elvrum, P.M. Detection of two different kanamycin resistance genes in naturally occurring isolates of Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother., 1988, 32(8), 1170-1173. [http://dx.doi.org/10.1128/AAC.32.8.1170]. [PMID: 3190204].
[30]
Miró, E.; Mirelis, B.; Navarro, F.; Matas, L.; Giménez, M.; Rabaza, C. Escherichia coli producing an ACC-1 class C β-lactamase isolated in Barcelona, Spain. Antimicrob. Agents Chemother., 2005, 49(2), 866-867. [http://dx.doi.org/10.1128/AAC.49.2.866-867.2005]. [PMID: 15673793].
[31]
Lovering, A.M.; White, L.O.; Reeves, D.S. AAC(1): a new aminoglycoside-acetylating enzyme modifying the Cl aminogroup of apramycin. J. Antimicrob. Chemother., 1987, 20(6), 803-813. [http://dx.doi.org/10.1093/jac/20.6.803]. [PMID: 3326872].
[32]
Macinga, D.R.; Paradise, M.R.; Parojcic, M.M.; Rather, P.N. Activation of the 2′-N-acetyltransferase gene [aac(2′)-Ia] in Providencia stuartii by an interaction of AarP with the promoter region. Antimicrob. Agents Chemother., 1999, 43(7), 1769-1772. [http://dx.doi.org/10.1128/AAC.43.7.1769]. [PMID: 10390241].
[33]
Rather, P.N.; Parojcic, M.M.; Paradise, M.R. An extracellular factor regulating expression of the chromosomal aminoglycoside 2′-N-acetyltransferase of Providencia stuartii. Antimicrob. Agents Chemother., 1997, 41(8), 1749-1754. [http://dx.doi.org/10.1128/AAC.41.8.1749]. [PMID: 9257754].
[34]
Aínsa, J.A.; Martin, C.; Gicquel, B.; Gomez-Lus, R. Characterization of the chromosomal aminoglycoside 2′-N-acetyltransferase gene from Mycobacterium fortuitum. Antimicrob. Agents Chemother., 1996, 40(10), 2350-2355. [http://dx.doi.org/10.1128/AAC.40.10.2350]. [PMID: 8891143].
[35]
Aínsa, J.A.; Pérez, E.; Pelicic, V.; Berthet, F.X.; Gicquel, B.; Martín, C. Aminoglycoside 2′-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2′)-Ic gene from Mycobacterium tuberculosis and the aac(2′)-Id gene from Mycobacterium smegmatis. Mol. Microbiol., 1997, 24(2), 431-441. [http://dx.doi.org/10.1046/j.1365-2958.1997.3471717.x]. [PMID: 9159528].
[36]
Smith, C.A.; Baker, E.N. Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr. Drug Targets Infect. Disord., 2002, 2(2), 143-160. [http://dx.doi.org/10.2174/1568005023342533]. [PMID: 12462145].
[37]
Schwocho, L.R.; Schaffner, C.P.; Miller, G.H.; Hare, R.S.; Shaw, K.J. Cloning and characterization of a 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ib, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1995, 39(8), 1790-1796. [http://dx.doi.org/10.1128/AAC.39.8.1790]. [PMID: 7486920].
[38]
Riccio, M.L.; Docquier, J-D.; Dell’Amico, E.; Luzzaro, F.; Amicosante, G.; Rossolini, G.M. Novel 3-N-aminoglycoside acetyltransferase gene, aac(3)-Ic, from a Pseudomonas aeruginosa integron. Antimicrob. Agents Chemother., 2003, 47(5), 1746-1748. [http://dx.doi.org/10.1128/AAC.47.5.1746-1748.2003]. [PMID: 12709352].
[39]
Levings, R.S.; Partridge, S.R.; Lightfoot, D.; Hall, R.M.; Djordjevic, S.P. New integron-associated gene cassette encoding a 3-N-aminoglycoside acetyltransferase. Antimicrob. Agents Chemother., 2005, 49(3), 1238-1241. [http://dx.doi.org/10.1128/AAC.49.3.1238-1241.2005]. [PMID: 15728939].
[40]
Galimand, M.; Fishovitz, J.; Lambert, T.; Barbe, V.; Zajicek, J.; Mobashery, S.; Courvalin, P. AAC(3)-XI, a new aminoglycoside 3-N-acetyltransferase from Corynebacterium striatum. Antimicrob. Agents Chemother., 2015, 59(9), 5647-5653. [http://dx.doi.org/10.1128/AAC.01203-15]. [PMID: 26149994].
[41]
Ishikawa, J.; Sunada, A.; Oyama, R.; Hotta, K. Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob. Agents Chemother., 2000, 44(2), 437-440. [http://dx.doi.org/10.1128/AAC.44.2.437-440.2000]. [PMID: 10639379].
[42]
Vakulenko, S.B.; Mobashery, S. Versatility of aminoglycosides and prospects for their future. Clin. Microbiol. Rev., 2003, 16(3), 430-450. [http://dx.doi.org/10.1128/CMR.16.3.430-450.2003]. [PMID: 12857776].
[43]
Tada, T.; Miyoshi-Akiyama, T.; Shimada, K.; Shimojima, M.; Kirikae, T. novel 6′-n-aminoglycoside acetyltransferase AAC(6′)-Iaj from a clinical isolate of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2013, 57(1), 96-100. [http://dx.doi.org/10.1128/AAC.01105-12]. [PMID: 23070167].
[44]
Toth, M.; Frase, H.; Antunes, N.T.; Smith, C.A.; Vakulenko, S.B. Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2′'-IVa. Protein Sci., 2010, 19(8), 1565-1576. [http://dx.doi.org/10.1002/pro.437]. [PMID: 20556826].
[45]
Woegerbauer, M.; Kuffner, M.; Domingues, S.; Nielsen, K.M. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments. Front. Microbiol., 2015, 6, 442. [http://dx.doi.org/10.3389/fmicb.2015.00442]. [PMID: 26042098].
[46]
Fong, D.H.; Berghuis, A.M. Structural basis of APH(3′)-IIIa-mediated resistance to N1-substituted aminoglycoside antibiotics. Antimicrob. Agents Chemother., 2009, 53(7), 3049-3055. [http://dx.doi.org/10.1128/AAC.00062-09]. [PMID: 19433564].
[47]
Herbert, C.J.; Giles, I.G.; Akhtar, M. The sequence of an antibiotic resistance gene from an antibiotic-producing bacterium. Homologies with transposon genes. FEBS Lett., 1983, 160(1-2), 67-71. [http://dx.doi.org/10.1016/0014-5793(83)80937-5]. [PMID: 6193008].
[48]
Nie, L.; Lv, Y.; Yuan, M.; Hu, X.; Nie, T.; Yang, X.; Li, G.; Pang, J.; Zhang, J.; Li, C.; Wang, X.; You, X. Genetic basis of high level aminoglycoside resistance in Acinetobacter baumannii from Beijing, China. Acta Pharm. Sin. B, 2014, 4(4), 295-300. [http://dx.doi.org/10.1016/j.apsb.2014.06.004]. [PMID: 26579398].
[49]
Lyutzkanova, D.; Distler, J.; Altenbuchner, J. A spectinomycin resistance determinant from the spectinomycin producer Streptomyces flavopersicus. Microbiology, 1997, 143(Pt 7), 2135-2143. [http://dx.doi.org/10.1099/00221287-143-7-2135]. [PMID: 9245803].
[50]
Berthold, P.; Schmitt, R.; Mages, W. An engineered Streptomyces hygroscopicus aph 7” gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist, 2002, 153(4), 401-412. [http://dx.doi.org/10.1078/14344610260450136]. [PMID: 12627869].
[51]
Hirsch, D.R.; Cox, G.; D’Erasmo, M.P.; Shakya, T.; Meck, C.; Mohd, N.; Wright, G.D.; Murelli, R.P. Inhibition of the ANT(2”)-Ia resistance enzyme and rescue of aminoglycoside antibiotic activity by synthetic α-hydroxytropolones. Bioorg. Med. Chem. Lett., 2014, 24(21), 4943-4947. [http://dx.doi.org/10.1016/j.bmcl.2014.09.037]. [PMID: 25283553].
[52]
Hollingshead, S.; Vapnek, D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid, 1985, 13(1), 17-30. [http://dx.doi.org/10.1016/0147-619X(85)90052-6]. [PMID: 2986186].
[53]
Chen, Y-G.; Qu, T-T.; Yu, Y-S.; Zhou, J-Y.; Li, L-J. Insertion sequence ISEcp1-like element connected with a novel aph(2′') allele [aph(2′')-Ie] conferring high-level gentamicin resistance and a novel streptomycin adenylyltransferase gene in Enterococcus. J. Med. Microbiol., 2006, 55(Pt 11), 1521-1525. [http://dx.doi.org/10.1099/jmm.0.46702-0]. [PMID: 17030911].
[54]
Gopegui, E.R.; Juan, C.; Zamorano, L.; Pérez, J.L.; Oliver, A. Transferable multidrug resistance plasmid carrying cfr associated with tet(L), ant(4′)-Ia, and dfrK genes from a clinical methicillin-resistant Staphylococcus aureus ST125 strain. Antimicrob. Agents Chemother., 2012, 56(4), 2139-2142. [http://dx.doi.org/10.1128/AAC.06042-11]. [PMID: 22214776].
[55]
Hormeño, L.; Ugarte-Ruiz, M.; Palomo, G.; Borge, C.; Florez-Cuadrado, D.; Vadillo, S.; Píriz, S.; Domínguez, L.; Campos, M.J.; Quesada, A. ant(6)-I Genes Encoding Aminoglycoside O-Nucleotidyltransferases Are Widely Spread Among Streptomycin Resistant Strains of Campylobacter jejuni and Campylobacter coli. Front. Microbiol., 2018, 9(9), 2515. [http://dx.doi.org/10.3389/fmicb.2018.02515]. [PMID: 30405573].
[56]
Mahbub Alam, M.; Kobayashi, N.; Ishino, M.; Sumi, A.; Kobayashi, K.; Uehara, N.; Watanabe, N. Detection of a novel aph(2”) allele (aph[2”]-Ie) conferring high-level gentamicin resistance and a spectinomycin resistance gene ant(9)-Ia (aad 9) in clinical isolates of enterococci. Microb. Drug Resist., 2005, 11(3), 239-247. [http://dx.doi.org/10.1089/mdr.2005.11.239]. [PMID: 16201926].
[57]
Wu, P.J.; Shannon, K.; Phillips, I. Mechanisms of hyperproduction of TEM-1 beta-lactamase by clinical isolates of Escherichia coli. J. Antimicrob. Chemother., 1995, 36(6), 927-939. [http://dx.doi.org/10.1093/jac/36.6.927]. [PMID: 8821592].
[58]
Jacoby, G.A.; Medeiros, A.A. More extended-spectrum beta-lactamases. Antimicrob. Agents Chemother., 1991, 35(9), 1697-1704. [http://dx.doi.org/10.1128/AAC.35.9.1697]. [PMID: 1952834].
[59]
Ur Rahman, S.; Ali, T.; Ali, I.; Khan, N.A.; Han, B.; Gao, J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BioMed Res. Int., 2018, 20189519718 [http://dx.doi.org/10.1155/2018/9519718]. [PMID: 29780833].
[60]
Ramdani-Bouguessa, N.; Manageiro, V.; Jones-Dias, D.; Ferreira, E.; Tazir, M.; Caniça, M. Role of SHV β-lactamase variants in resistance of clinical Klebsiella pneumoniae strains to β-lactams in an Algerian hospital. J. Med. Microbiol., 2011, 60(Pt 7), 983-987. [http://dx.doi.org/10.1099/jmm.0.030577-0]. [PMID: 21415202].
[61]
Huletsky, A.; Couture, F.; Levesque, R.C. Nucleotide sequence and phylogeny of SHV-2 beta-lactamase. Antimicrob. Agents Chemother., 1990, 34(9), 1725-1732. [http://dx.doi.org/10.1128/AAC.34.9.1725]. [PMID: 2285285].
[62]
Poirel, L.; Menuteau, O.; Agoli, N.; Cattoen, C.; Nordmann, P. Outbreak of extended-spectrum β-lactamase VEB-1-producing isolates of Acinetobacter baumannii in a French hospital. J. Clin. Microbiol., 2003, 41(8), 3542-3547. [http://dx.doi.org/10.1128/JCM.41.8.3542-3547.2003]. [PMID: 12904353].
[63]
Po, K.H.L.; Chan, E.W.C.; Chen, S. Functional Characterization of CTX-M-14 and CTX-M-15 β-Lactamases by In vitro DNA Shuffling. Antimicrob. Agents Chemother., 2017, 61(12), e00891-e17. [http://dx.doi.org/10.1128/AAC.00891-17]. [PMID: 28971870].
[64]
Prinarakis, E.E.; Miriagou, V.; Tzelepi, E.; Gazouli, M.; Tzouvelekis, L.S. Emergence of an inhibitor-resistant beta-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob. Agents Chemother., 1997, 41(4), 838-840. [http://dx.doi.org/10.1128/AAC.41.4.838]. [PMID: 9087500].
[65]
Ahamed, J.; Kundu, M. Molecular characterization of the SHV-11 beta-lactamase of Shigella dysenteriae. Antimicrob. Agents Chemother., 1999, 43(8), 2081-2083. [http://dx.doi.org/10.1128/AAC.43.8.2081]. [PMID: 10428943].
[66]
Queenan, A.M.; Torres-Viera, C.; Gold, H.S.; Carmeli, Y.; Eliopoulos, G.M.; Moellering, R.C., Jr; Quinn, J.P.; Hindler, J.; Medeiros, A.A.; Bush, K. SME-type carbapenem-hydrolyzing class A beta-lactamases from geographically diverse Serratia marcescens strains. Antimicrob. Agents Chemother., 2000, 44(11), 3035-3039. [http://dx.doi.org/10.1128/AAC.44.11.3035-3039.2000]. [PMID: 11036019].
[67]
Rasmussen, B.A.; Bush, K.; Keeney, D.; Yang, Y.; Hare, R.; O’Gara, C.; Medeiros, A.A. Characterization of IMI-1 beta-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother., 1996, 40(9), 2080-2086. [http://dx.doi.org/10.1128/AAC.40.9.2080]. [PMID: 8878585].
[68]
Margate, E.; Magalhães, V.; Fehlberg, L.C.C.; Gales, A.C.; Lopes, A.C.S. Kpc-Producing Serratia marcescens A Home-Care Patient from Recife, Brazil. Rev. Inst. Med. Trop., 2015, 57(4), 359.
[69]
Queenan, A.M.; Bush, K. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458. [http://dx.doi.org/10.1128/CMR.00001-07]. [PMID: 17630334].
[70]
Miriagou, V.; Tzouvelekis, L.S.; Rossiter, S.; Tzelepi, E.; Angulo, F.J.; Whichard, J.M. Imipenem resistance in a Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob. Agents Chemother., 2003, 47(4), 1297-1300. [http://dx.doi.org/10.1128/AAC.47.4.1297-1300.2003]. [PMID: 12654661].
[71]
Melano, R.; Petroni, A.; Garutti, A.; Saka, H.A.; Mange, L.; Pasterán, F.; Rapoport, M.; Rossi, A.; Galas, M. New carbenicillin-hydrolyzing beta-lactamase (CARB-7) from Vibrio cholerae non-O1, non-O139 strains encoded by the VCR region of the V. cholerae genome. Antimicrob. Agents Chemother., 2002, 46(7), 2162-2168. [http://dx.doi.org/10.1128/AAC.46.7.2162-2168.2002]. [PMID: 12069969].
[72]
Ghamgosha, M.; Shahrekizahedani, S.; Kafilzadeh, F.; Bameri, Z.; Taheri, R.A.; Farnoosh, G. Metallo-beta-Lactamase VIM-1, SPM-1, and IMP-1 Genes Among Clinical Pseudomonas aeruginosa Species Isolated in Zahedan, Iran. Jundishapur J. Microbiol., 2015, 8(4)e17489 [http://dx.doi.org/10.5812/jjm.8(4)2015.17489]. [PMID: 26034547].
[73]
Raghunath, D. New metallo β-lactamase NDM-1. Indian J. Med. Res., 2010, 132(5), 478-481.
[PMID: 21149994]
[74]
Bellais, S.; Léotard, S.; Poirel, L.; Naas, T.; Nordmann, P. Molecular characterization of a carbapenem-hydrolyzing beta-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol. Lett., 1999, 171(2), 127-132.
[PMID: 10077836]
[75]
Palzkill, T. Metallo-β-lactamase structure and function. Ann. N. Y. Acad. Sci., 2013, 1277, 91-104. [http://dx.doi.org/10.1111/j.1749-6632.2012.06796.x]. [PMID: 23163348].
[76]
Yang, Y.; Rasmussen, B.A.; Bush, K. Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother., 1992, 36(5), 1155-1157. [http://dx.doi.org/10.1128/AAC.36.5.1155]. [PMID: 1510410].
[77]
Carfi, A.; Pares, S.; Duée, E.; Galleni, M.; Duez, C.; Frère, J.M.; Dideberg, O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J., 1995, 14(20), 4914-4921. [http://dx.doi.org/10.1002/j.1460-2075.1995.tb00174.x]. [PMID: 7588620].
[78]
Massidda, O.; Rossolini, G.M.; Satta, G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J. Bacteriol., 1991, 173(15), 4611-4617. [http://dx.doi.org/10.1128/JB.173.15.4611-4617.1991]. [PMID: 1856163].
[79]
Ullah, J.H.; Walsh, T.R.; Taylor, I.A.; Emery, D.C.; Verma, C.S.; Gamblin, S.J.; Spencer, J. The crystal structure of the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia at 1.7 A resolution. J. Mol. Biol., 1998, 284(1), 125-136. [http://dx.doi.org/10.1006/jmbi.1998.2148]. [PMID: 9811546].
[80]
Jameel, N.U.; Ejaz, H.; Zafar, A.; Amin, H. Multidrug resistant AmpC β-lactamase producing Escherichia coli isolated from a paediatric hospital. Pak. J. Med. Sci., 2014, 30(1), 181-184.
[PMID: 24639857]
[81]
Chika, E.; Charles, E.; Ifeanyichukwu, I.; Michael, A. First Detection of FOX-1 AmpC β-lactamase Gene Expression Among Escherichia coli Isolated from Abattoir Samples in Abakaliki, Nigeria. Oman Med. J., 2018, 33(3), 243-249. [http://dx.doi.org/10.5001/omj.2018.44]. [PMID: 29896333].
[82]
Papanicolaou, G.A.; Medeiros, A.A.; Jacoby, G.A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother., 1990, 34(11), 2200-2209. [http://dx.doi.org/10.1128/AAC.34.11.2200]. [PMID: 1963529].
[83]
Ahmed, A.M.; Shimamoto, T. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC beta-lactamase, CMY-37. Int. J. Antimicrob. Agents, 2008, 32(3), 256-261. [http://dx.doi.org/10.1016/j.ijantimicag.2008.04.019]. [PMID: 18619820].
[84]
Hall, L.M.; Livermore, D.M.; Gur, D.; Akova, M.; Akalin, H.E. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1993, 37(8), 1637-1644. [http://dx.doi.org/10.1128/AAC.37.8.1637]. [PMID: 8215276].
[85]
Danel, F.; Hall, L.M.; Gur, D.; Livermore, D.M. OXA-15, an extended-spectrum variant of OXA-2 beta-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob. Agents Chemother., 1997, 41(4), 785-790. [http://dx.doi.org/10.1128/AAC.41.4.785]. [PMID: 9087490].
[86]
Danel, F.; Hall, L.M.; Duke, B.; Gur, D.; Livermore, D.M. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1999, 43(6), 1362-1366. [http://dx.doi.org/10.1128/AAC.43.6.1362]. [PMID: 10348753].
[87]
Ploy, M-C.; Denis, F.; Courvalin, P.; Lambert, T. Molecular characterization of integrons in Acinetobacter baumannii: description of a hybrid class 2 integron. Antimicrob. Agents Chemother., 2000, 44(10), 2684-2688. [http://dx.doi.org/10.1128/AAC.44.10.2684-2688.2000]. [PMID: 10991844].
[88]
Vila, J.; Navia, M.; Ruiz, J.; Casals, C. Cloning and nucleotide sequence analysis of a gene encoding an OXA-derived beta-lactamase in Acinetobacter baumannii. Antimicrob. Agents Chemother., 1997, 41(12), 2757-2759. [http://dx.doi.org/10.1128/AAC.41.12.2757]. [PMID: 9420053].
[89]
Donald, H.M.; Scaife, W.; Amyes, S.G.; Young, H.K. Sequence analysis of ARI-1, a novel OXA beta-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother., 2000, 44(1), 196-199. [http://dx.doi.org/10.1128/AAC.44.1.196-199.2000]. [PMID: 10602749].
[90]
Poirel, L.; Marqué, S.; Héritier, C.; Segonds, C.; Chabanon, G.; Nordmann, P. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother., 2005, 49(1), 202-208. [http://dx.doi.org/10.1128/AAC.49.1.202-208.2005]. [PMID: 15616297].
[91]
Rello, J.; Bunsow, E.; Perez, A. What if there were no new antibiotics? A look at alternatives. Expert Rev. Clin. Pharmacol., 2016, 9(12), 1547-1555. [http://dx.doi.org/10.1080/17512433.2016.1241141]. [PMID: 27678160].
[92]
Conly, J.; Johnston, B. Where are all the new antibiotics? The new antibiotic paradox. Can. J. Infect. Dis. Med. Microbiol., 2005, 16(3), 159-160. [http://dx.doi.org/10.1155/2005/892058]. [PMID: 18159536].
[93]
Spellberg, B. The future of antibiotics. Crit. Care, 2014, 18(3), 228. [http://dx.doi.org/10.1186/cc13948]. [PMID: 25043962].
[94]
Drawz, S.M.; Papp-Wallace, K.M.; Bonomo, R.A. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob. Agents Chemother., 2014, 58(4), 1835-1846. [http://dx.doi.org/10.1128/AAC.00826-13]. [PMID: 24379206].
[95]
Melander, R.J.; Melander, C. The Challenge of Overcoming Antibiotic Resistance: An Adjuvant Approach? ACS Infect. Dis., 2017, 3(8), 559-563. [http://dx.doi.org/10.1021/acsinfecdis.7b00071]. [PMID: 28548487].
[96]
Georgopapadakou, N.H. Beta-lactamase inhibitors: evolving compounds for evolving resistance targets. Expert Opin. Investig. Drugs, 2004, 13(10), 1307-1318. [http://dx.doi.org/10.1517/13543784.13.10.1307]. [PMID: 15461559].
[97]
Papp-Wallace, K.M.; Bonomo, R.A. New β-Lactamase Inhibitors in the Clinic. Infect. Dis. Clin. North Am., 2016, 30(2), 441-464. [http://dx.doi.org/10.1016/j.idc.2016.02.007]. [PMID: 27208767].
[98]
Labby, K.J.; Garneau-Tsodikova, S. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections. Future Med. Chem., 2013, 5(11), 1285-1309. [http://dx.doi.org/10.4155/fmc.13.80]. [PMID: 23859208].
[99]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201. [http://dx.doi.org/10.1128/CMR.00037-09]. [PMID: 20065329].
[100]
Lee, J-K.; Luchian, T.; Park, Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget, 2018, 9(21), 15616-15634. [http://dx.doi.org/10.18632/oncotarget.24582]. [PMID: 29643997].
[101]
Bush, K.; Miller, G.H. Bacterial enzymatic resistance: beta-lactamases and aminoglycoside-modifying enzymes. Curr. Opin. Microbiol., 1998, 1(5), 509-515. [http://dx.doi.org/10.1016/S1369-5274(98)80082-9]. [PMID: 10066532].
[102]
Azucena, E.; Mobashery, S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist. Updat., 2001, 4(2), 106-117. [http://dx.doi.org/10.1054/drup.2001.0197]. [PMID: 11512519].
[103]
Llano-Sotelo, B.; Azucena, E.F., Jr; Kotra, L.P.; Mobashery, S.; Chow, C.S. Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol., 2002, 9(4), 455-463. [http://dx.doi.org/10.1016/S1074-5521(02)00125-4]. [PMID: 11983334].
[104]
Zárate, S.G.; De la Cruz Claure, M.L.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules, 2018, 23(2), 284. [http://dx.doi.org/10.3390/molecules23020284]. [PMID: 29385736].
[105]
Tolmasky, M.E. Overview of Dissemination Mechanisms of Genes Coding for Resistance to Antibiotics.Enzyme-mediated resistance to antibiotics: mechanisms, dissemination, and prospects for inhibition; Bonomo RA; Tolmasky ME: Washington, DC, 2007. [http://dx.doi.org/10.1128/9781555815615.ch16]
[106]
Fong, D.H.; Burk, D.L.; Berghuis, A.M. Aminoglycoside Kinases 181 and Antibiotic Resistance. Inhibitors of Protein Kinases and Protein Phosphates; Pinna, L.A.; Cohen, P.T.W., Eds.; Handbook of Experimental PharmacologySpringer Berlin Heidelberg: Berlin, Heidelberg, 2005, pp. 157-188. http://dx.doi.org/10.1007/3-540-26670-4_7
[107]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(6)a02702 [http://dx.doi.org/10.1101/cshperspect.a027029]. [PMID: 27252397].
[108]
Houghton, J.L.; Green, K.D.; Chen, W.; Garneau-Tsodikova, S. The future of aminoglycosides: the end or renaissance? ChemBioChem, 2010, 11(7), 880-902. [http://dx.doi.org/10.1002/cbic.200900779]. [PMID: 20397253].
[109]
Wright, G.D.; Thompson, P.R. Aminoglycoside phosphotransferases: proteins, structure, and mechanism. Front. Biosci., 1999, 4, D9-D21.
[PMID: 9872733]
[110]
Mingeot-Leclercq, M.P.; Glupczynski, Y.; Tulkens, P.M. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother., 1999, 43(4), 727-737. [http://dx.doi.org/10.1128/AAC.43.4.727]. [PMID: 10103173].
[111]
Tsai, A.; Uemura, S.; Johansson, M.; Puglisi, E.V.; Marshall, R.A.; Aitken, C.E.; Korlach, J.; Ehrenberg, M.; Puglisi, J.D. The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep., 2013, 3(2), 497-508. [http://dx.doi.org/10.1016/j.celrep.2013.01.027]. [PMID: 23416053].
[112]
Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother., 2000, 44(12), 3249-3256. [http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000]. [PMID: 11083623].
[113]
Kim, C.; Mobashery, S. Phosphoryl transfer by aminoglycoside 3′-phosphotransferases and manifestation of antibiotic resistance. Bioorg. Chem., 2005, 33(3), 149-158. [http://dx.doi.org/10.1016/j.bioorg.2004.11.001]. [PMID: 15888308].
[114]
Magnet, S.; Blanchard, J.S. Molecular insights into aminoglycoside action and resistance. Chem. Rev., 2005, 105(2), 477-498. [http://dx.doi.org/10.1021/cr0301088]. [PMID: 15700953].
[115]
Hon, W-C.; McKay, G.A.; Thompson, P.R.; Sweet, R.M.; Yang, D.S.C.; Wright, G.D.; Berghuis, A.M. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell, 1997, 89(6), 887-895. [http://dx.doi.org/10.1016/S0092-8674(00)80274-3]. [PMID: 9200607].
[116]
Cox, G.; Stogios, P.J.; Savchenko, A.; Wright, G.D. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia. MBio, 2015, 6(1), e02180-e14. [http://dx.doi.org/10.1128/mBio.02180-14]. [PMID: 25564464].
[117]
Kumar, P.; Serpersu, E.H.; Cuneo, M.J. A low-barrier hydrogen bond mediates antibiotic resistance in a noncanonical catalytic triad. Sci. Adv., 2018, 4(4)eaas8667 [http://dx.doi.org/10.1126/sciadv.aas8667]. [PMID: 29632894].
[118]
Williams, J.W.; Northrop, D.B. Synthesis of a tight-binding, multisubstrate analog inhibitor of gentamicin acetyltransferase I. J. Antibiot. (Tokyo), 1979, 32(11), 1147-1154. [http://dx.doi.org/10.7164/antibiotics.32.1147]. [PMID: 393684].
[119]
Baym, M.; Stone, L.K.; Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 2016, 351(6268)aad3292 [http://dx.doi.org/10.1126/science.aad3292]. [PMID: 26722002].
[120]
Therrien, C.; Levesque, R.C. Molecular basis of antibiotic resistance and beta-lactamase inhibition by mechanism-based inactivators: perspectives and future directions. FEMS Microbiol. Rev., 2000, 24(3), 251-262. [http://dx.doi.org/10.1016/S0168-6445(99)00039-X]. [PMID: 10841972].
[121]
Alekshun, M.N.; Levy, S.B. Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007, 128(6), 1037-1050. [http://dx.doi.org/10.1016/j.cell.2007.03.004]. [PMID: 17382878].
[122]
D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; Golding, G.B.; Poinar, H.N.; Wright, G.D. Antibiotic resistance is ancient. Nature, 2011, 477(7365), 457-461. [http://dx.doi.org/10.1038/nature10388]. [PMID: 21881561].
[123]
Bush, K.; Jacoby, G.A.; Medeiros, A.A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother., 1995, 39(6), 1211-1233. [http://dx.doi.org/10.1128/AAC.39.6.1211]. [PMID: 7574506].
[124]
Ambler, R.P. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1980, 289(1036), 321-331. [http://dx.doi.org/10.1098/rstb.1980.0049]. [PMID: 6109327].
[125]
Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother., 2010, 54(3), 969-976. [http://dx.doi.org/10.1128/AAC.01009-09]. [PMID: 19995920].
[126]
Cag, Y.; Caskurlu, H.; Fan, Y.; Cao, B.; Vahaboglu, H. Resistance mechanisms. Ann. Transl. Med., 2016, 4(17), 326-334. [http://dx.doi.org/10.21037/atm.2016.09.14]. [PMID: 27713884].
[127]
Silva, O.N.; Franco, O.L.; Porto, W.F. β-Lactamase inhibitor peptides as the new strategies to overcome bacterial resistance. Drugs Today (Barc), 2018, 54(12), 737-746. [http://dx.doi.org/10.1358/dot.2018.54.12.2895652]. [PMID: 30596392].
[128]
Džidić, S.; Šušković, J.; Kos, B. Antibiotic Resistance Mechanisms in Bacteria: Biochemical and Genetic Aspects. Food Technol. Biotechnol., 2008, 46, 11-21.
[129]
Jacoby, G.A.; Munoz-Price, L.S. The new beta-lactamases. N. Engl. J. Med., 2005, 352(4), 380-391. [http://dx.doi.org/10.1056/NEJMra041359]. [PMID: 15673804].
[130]
Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis., 2009, 9(4), 228-236. [http://dx.doi.org/10.1016/S1473-3099(09)70054-4]. [PMID: 19324295].
[131]
Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: a clinical update. Clin. Microbiol. Rev., 2005, 18(4), 657-686. [http://dx.doi.org/10.1128/CMR.18.4.657-686.2005]. [PMID: 16223952].
[132]
Queenan, A.M.; Bush, K. Carbapenemases: the versatile beta-lactamases. Clin. Microbiol. Rev., 2007, 20(3), 440-458. [http://dx.doi.org/10.1128/CMR.00001-07]. [PMID: 17630334].
[133]
Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Res. Int., 2016, 20162475067 [http://dx.doi.org/10.1155/2016/2475067]. [PMID: 27274985].
[134]
Bonomo, R.A. β-Lactamases: A Focus on Current Challenges. Cold Spring Harb. Perspect. Med., 2017, 7(1)a025239 [http://dx.doi.org/10.1101/cshperspect.a025239]. [PMID: 27742735].
[135]
Jacoby, G.A.; Amp, C. AmpC beta-lactamases. Clin. Microbiol. Rev., 2009, 22(1), 161-182. [http://dx.doi.org/10.1128/CMR.00036-08]. [PMID: 19136439].
[136]
Evans, B.A.; Amyes, S.G.B. OXA β-lactamases. Clin. Microbiol. Rev., 2014, 27(2), 241-263. [http://dx.doi.org/10.1128/CMR.00117-13]. [PMID: 24696435].
[137]
Kuzin, A.P.; Nukaga, M.; Nukaga, Y.; Hujer, A.M.; Bonomo, R.A.; Knox, J.R. Structure of the SHV-1 beta-lactamase. Biochemistry, 1999, 38(18), 5720-5727. [http://dx.doi.org/10.1021/bi990136d]. [PMID: 10231522].
[138]
Pegg, K.M.; Liu, E.M.; George, A.C.; LaCuran, A.E.; Bethel, C.R.; Bonomo, R.A.; Oelschlaeger, P. Understanding the determinants of substrate specificity in IMP family metallo-β-lactamases: the importance of residue 262. Protein Sci., 2014, 23(10), 1451-1460. [http://dx.doi.org/10.1002/pro.2530]. [PMID: 25131397].
[139]
Yamaguchi, Y.; Sato, G.; Yamagata, Y.; Doi, Y.; Wachino, J.; Arakawa, Y.; Matsuda, K.; Kurosaki, H. Structure of AmpC β-lactamase (AmpCD) from an Escherichia coli clinical isolate with a tripeptide deletion (Gly286-Ser287-Asp288) in the H10 helix. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2009, 65(Pt 6), 540-543. [http://dx.doi.org/10.1107/S1744309109014249]. [PMID: 19478427].
[140]
Schneider, K.D.; Bethel, C.R.; Distler, A.M.; Hujer, A.M.; Bonomo, R.A.; Leonard, D.A. Mutation of the active site carboxy-lysine (K70) of OXA-1 β-lactamase results in a deacylation-deficient enzyme. Biochemistry, 2009, 48(26), 6136-6145. [http://dx.doi.org/10.1021/bi900448u]. [PMID: 19485421].
[141]
Chen, J.; Shang, X.; Hu, F.; Lao, X.; Gao, X.; Zheng, H.; Yao, W. β-Lactamase inhibitors: an update. Mini Rev. Med. Chem., 2013, 13(13), 1846-1861. [http://dx.doi.org/10.2174/13895575113139990074]. [PMID: 23895190].
[142]
Keating, T.A.; Lister, T.; Verheijen, J.C. New antibacterial agents: patent applications published in 2011. Pharm. Pat. Anal., 2014, 3(1), 87-112. [http://dx.doi.org/10.4155/ppa.13.65]. [PMID: 24354981].
[143]
Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201. [http://dx.doi.org/10.1128/CMR.00037-09]. [PMID: 20065329].
[144]
Reading, C.; Cole, M. Clavulanic acid: a beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother., 1977, 11(5), 852-857. [http://dx.doi.org/10.1128/AAC.11.5.852]. [PMID: 879738].
[145]
Silva, O.N.; Alves, E.S.F.; de la Fuente-Núñez, C.; Ribeiro, S.M.; Mandal, S.M.; Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B.; Andrade, C.A.S.; Nascimento, J.M.; Fensterseifer, I.C.; Porto, W.F.; Correa, J.R.; Hancock, R.E.; Korpole, S.; Oliveira, A.L.; Liao, L.M.; Franco, O.L. Structural Studies of a Lipid-Binding Peptide from Tunicate Hemocytes with Anti-Biofilm Activity. Sci. Rep., 2016, 6, 27128. [http://dx.doi.org/10.1038/srep27128]. [PMID: 27292548].
[146]
Karpiuk, I.; Tyski, S. Looking for the new preparations for antibacterial therapy. II. Clinical trials; new beta-lactam antibiotics and beta-lactamase inhibitors. Przegl. Epidemiol., 2013, 67(1), 51-56, 135-140.
[PMID: 23745376]
[147]
Liu, Y.; Li, R.; Xiao, X.; Wang, Z. Molecules that Inhibit Bacterial Resistance Enzymes. Molecules, 2018, 24(1), 43. [http://dx.doi.org/10.3390/molecules24010043]. [PMID: 30583527].
[148]
English, A.R.; Retsema, J.A.; Girard, A.E.; Lynch, J.E.; Barth, W.E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob. Agents Chemother., 1978, 14(3), 414-419. [http://dx.doi.org/10.1128/AAC.14.3.414]. [PMID: 309306].
[149]
Fisher, J.; Belasco, J.G.; Charnas, R.L.; Khosla, S.; Knowles, J.R. Beta-lactamase inactivation by mechanism-based reagents. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1980, 289(1036), 309-319. [http://dx.doi.org/10.1098/rstb.1980.0048]. [PMID: 6109326].
[150]
Watkins, R.R.; Papp-Wallace, K.M.; Drawz, S.M.; Bonomo, R.A. Novel β-lactamase inhibitors: a therapeutic hope against the scourge of multidrug resistance. Front. Microbiol., 2013, 4, 392. [http://dx.doi.org/10.3389/fmicb.2013.00392]. [PMID: 24399995].
[151]
Olsen, I. New promising β-lactamase inhibitors for clinical use. Eur. J. Clin. Microbiol. Infect. Dis., 2015, 34(7), 1303-1308. [http://dx.doi.org/10.1007/s10096-015-2375-0]. [PMID: 25864193].
[152]
Rudgers, G.W.; Huang, W.; Palzkill, T. Binding properties of a peptide derived from β-lactamase inhibitory protein. Antimicrob. Agents Chemother., 2001, 45(12), 3279-3286. [http://dx.doi.org/10.1128/AAC.45.12.3279-3286.2001]. [PMID: 11709298].
[153]
Doran, J.L.; Leskiw, B.K.; Aippersbach, S.; Jensen, S.E. Isolation and characterization of a beta-lactamase-inhibitory protein from Streptomyces clavuligerus and cloning and analysis of the corresponding gene. J. Bacteriol., 1990, 172(9), 4909-4918. [http://dx.doi.org/10.1128/JB.172.9.4909-4918.1990]. [PMID: 2203736].
[154]
Yribarren, A-S.; Thomas, D.; Friboulet, A.; Avalle, B. Selection of peptides inhibiting a beta-lactamase-like activity. Eur. J. Biochem., 2003, 270(13), 2789-2795. [http://dx.doi.org/10.1046/j.1432-1033.2003.03651.x]. [PMID: 12823549].
[155]
Phichith, D.; Bun, S.; Padiolleau-Lefevre, S.; Guellier, A.; Banh, S.; Galleni, M.; Frere, J-M.; Thomas, D.; Friboulet, A.; Avalle, B. Novel peptide inhibiting both TEM-1 β-lactamase and penicillin-binding proteins. FEBS J., 2010, 277(23), 4965-4972. [http://dx.doi.org/10.1111/j.1742-4658.2010.07906.x]. [PMID: 21044268].
[156]
Huang, W.; Beharry, Z.; Zhang, Z.; Palzkill, T. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng., 2003, 16(11), 853-860. [http://dx.doi.org/10.1093/protein/gzg108]. [PMID: 14631075].
[157]
Sanschagrin, F.; Levesque, R.C. A specific peptide inhibitor of the class B metallo-beta-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. J. Antimicrob. Chemother., 2005, 55(2), 252-255. [http://dx.doi.org/10.1093/jac/dkh550]. [PMID: 15659541].
[158]
Zou, Q.; Yang, K-L. Identification of peptide inhibitors of penicillinase using a phage display library. Anal. Biochem., 2016, 494, 4-9. [http://dx.doi.org/10.1016/j.ab.2015.10.009]. [PMID: 26521981].
[159]
Rotondo, C.M.; Marrone, L.; Goodfellow, V.J.; Ghavami, A.; Labbé, G.; Spencer, J.; Dmitrienko, G.I.; Siemann, S. Arginine-containing peptides as potent inhibitors of VIM-2 metallo-β-lactamase. Biochim. Biophys. Acta, 2015, 1850(11), 2228-2238. [http://dx.doi.org/10.1016/j.bbagen.2015.07.012]. [PMID: 26238337].
[160]
Shen, B.; Zhu, C.; Gao, X.; Liu, G.; Song, J.; Yu, Y. Oligopeptides as full-length New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors. PLoS One, 2017, 12(5)e0177293 [http://dx.doi.org/10.1371/journal.pone.0177293]. [PMID: 28542279].
[161]
Mandal, S.M.; Migliolo, L.; Silva, O.N.; Fensterseifer, I.C.M.; Faria-Junior, C.; Dias, S.C.; Basak, A.; Hazra, T.K.; Franco, O.L. Controlling resistant bacteria with a novel class of β-lactamase inhibitor peptides: from rational design to in vivo analyses. Sci. Rep., 2014, 4, 6015. [http://dx.doi.org/10.1038/srep06015]. [PMID: 25109311].
[162]
Alaybeyoglu, B.; Akbulut, B.S.; Ozkirimli, E. A novel chimeric peptide with antimicrobial activity. J. Pept. Sci., 2015, 21(4), 294-301. [http://dx.doi.org/10.1002/psc.2739]. [PMID: 25597294].

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy