Abstract
A simple, efficient, and cheap strategy has been developed for N-arylation of indoles with hexafloro benzene (1) via incorporating sulfolane as an eco-friendly solvent. NMonopentafluoroarylindole (3) at ambient conditions and N, N-bistetrafluoroaryl indole (4) at elevated temperatures were conveniently obtained by simple nucleophilic substitution using NaOH as the base and sulfolane as a reaction medium to obtain in moderately good yields, respectively. Subsequently, 3-chloro, 3-bromo, and 3-iodomono-pentafluoroarylindoles and 3, 3’-dichloro, 3, 3’-dibromo and 3, 3’-diIodobistetrafluoroaryl indoles were prepared in good yields by using respective halogenating reagents and solvents. All the chemical transformations were confirmed by analytical tools such as 1HNMR, FR-IR and HRMS analysis.
Keywords: 2-Methyl-6-fluoro-indole, hexafluorobezene, indole derivative, mono fluoroaryl indoles and bisfluoroaryl indoles, nucleophilic substitution, 1HNMR.
Graphical Abstract
[http://dx.doi.org/10.1021/ja063063b] [PMID: 16819863]
(b) Balraju, V.; Iqbal, J. Synthesis of cyclic peptides constrained with biarylamine linkers using Buchwald-Hartwig C-N coupling. J. Org. Chem. 2006, 71(23), 8954-8956.
[http://dx.doi.org/10.1021/jo061366i ] [PMID: 17081028]
(c) Djakovitch, L.; Dufaud, V.; Zaidi, R. Heterogeneous palladium catalysts applied to the synthesis of 2- and 2,3-functionalised indoles. Adv. Synth. Catal. 2006, 348, 715-724.
[http://dx.doi.org/10.1002/adsc.200505283 ]
(d) Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem. Rev., 2005, 105(7), 2873-2920.
[http://dx.doi.org/10.1021/cr040639b ] [PMID: 16011327]
(e) Buchwald, S.L.; Mauger, C.; Mignani, G.; Scholz, U. Industrial-scale palladium-catalyzed coupling of aryl halides and amines –a personal account. Adv. Synth. Catal., 2006, 348, 23-39.
[http://dx.doi.org/10.1002/adsc.200505158]
(b) Newer, M. Organic-Chemical Drugs and their synonyms: An International Survey, 7th ed; Akademic: Berlin, 1994.
(c) Ontgomery, J.H. Agrochemicals Desk Reference: Environmental Data; Lewis Publishers: Chelsea, 1993.
(d) Kundu, N.G.; Mahanty, J.S.; Chowdhurry, C.; Dasgupta, S.K.; Das, B.; Spears, C.P.; Balzarini, J.; De Clercq, E. 5-(Acylethynyl)uracils, 5- (Acylethynyl)-2'-deoxyuridines and 5-(Acylethynyl)-1-(2-hydroxyethoxy)- methyluracils. Their synthesis, antiviral and cytotoxic activities. Eur. J. Med. Chem., 1999, 34, 389-398.
[http://dx.doi.org/10.1016/S0223-5234(99)80088-9]
(e) Almansa, C.; Bartrolí, J.; Belloc, J.; Cavalcanti, F.L.; Ferrando, R.; Gómez, L.A.; Ramis, I.; Carceller, E.; Merlos, M.; García-Rafanell, J. New water-soluble sul-fonylphosphoramidic acid derivatives of the COX-2 selective inhibitor cimicoxib. A novel approach to sulfonamide prodrugs. J. Med. Chem., 2004, 47(22), 5579-5582.
[http://dx.doi.org/10.1021/jm040844j] [PMID: 15481993]
[http://dx.doi.org/10.1021/jm00384a022] [PMID: 3806590]
[http://dx.doi.org/10.1021/jm00379a014] [PMID: 3965715]
[http://dx.doi.org/10.1021/jm00378a017] [PMID: 6150113]
(b) Unangst, P.C.; Connor, D.T.; Stabler, S.R.; Weikert, R.J.; Carethers, M.E.; Kennedy, J.A.; Thueson, D.O.; Chestnut, J.C.; Adolphson, R.L.; Conroy, M.C. Novel indole-carboxamidotetrazoles as potential antiallergy agents. J. Med. Chem., 1989, 32(6), 1360-1366.
[http://dx.doi.org/10.1021/jm00126a036] [PMID: 2470904]
[http://dx.doi.org/10.1021/jm00084a014] [PMID: 1348090]
(b) Andersen, K.; Liljefors, T.; Hyttel, J.; Perregaard, J. Serotonin 5-HT2 receptor, dopamine D2 receptor, and alpha 1 adrenoceptor antagonists. Conformationally flexible analogues of the atypical antipsychotic sertindole. J. Med. Chem., 1996, 39(19), 3723-3738.
[http://dx.doi.org/10.1021/jm960159f] [PMID: 8809161]
[http://dx.doi.org/10.1021/jm970721h] [PMID: 9733487]
[http://dx.doi.org/10.1016/j.bmcl.2006.02.021] [PMID: 16513348]
[http://dx.doi.org/10.1016/j.tetasy.2008.03.021]
(b) Cheedrala, R.K.; Vijaya, S.; Park, J.W. Facile synthesis of second-generation dendrons with an orthogonal functional group at the focal point. Synth. Commun., 2009, 39, 1966-1980.
[http://dx.doi.org/10.1080/00397910802627076]
(c) Cheedrala, R.K.; Kim, G.H.; Cho, S.; Lee, J.H.; Kim, J.; Song, H.K.; Kim, J.Y.; Yang, C. Ladder-type heteroacene polymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. J. Mater. Chem., 2011, 21, 843-850.
[http://dx.doi.org/10.1039/C0JM01897J]
(d) Cheedarala, R.K.; Park, E.J.; Kong, K.; Park, Y.B.; Park, H.W. Experimental study on critical heat flux of highly efficient soft hydrophilic CuO–chitosan nanofluid templates. Int. J. Heat Mass Trasfer, , 2016, 100, 396-406.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.04.096]
(e) Cheedarala, R.K.; Duy, L.C.; Ahn, K.K. Double characteristic BNO-SPITENGs for robust contact electrification by vertical contact separation mode through ion and electron charge transfer. Nano Energy 2018, 44, 430-437.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.019]
(f) Cheedarala, R.K.; Parvez, A.N.; Ahn, K.K. Electric impulse spring-assisted contact separation mode triboelectric nanogenerator fabricated from polyaniline emeraldine salt and woven carbon fibers. Nano Energy,, 2018, 53, 362-372.
[http://dx.doi.org/10.1016/j.nanoen.2018.08.066]
(g) Cheedarala, R.K.; Shahriar, M.; Ahn, J.H.; Hwang, J.Y.; Ahn, K.K. Harvesting liquid stream energy from unsteady peristaltic flow induced pulsatile Flow-TENG (PF-TENG) using slipping polymeric surface inside elastomeric tubing. Nano Energy, 2019, 65, 104017.
[http://dx.doi.org/10.1016/j.nanoen.2019.104017]
(h) Cheedarala, R.K.; Song, J.L. In situ generated hydrophobic micro ripples via π–π stacked pop-up reduced graphene oxide nanoflakes for extended critical heat flux and thermal conductivities. RSC Adv., 2019, 9, 31735-31746.
[http://dx.doi.org/10.1039/C9RA04563E]
(i) Cheedarala, R.K.; Kee, C.D.; Oh, I.K. Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater., 2013, 23, 6007-6018.
[http://dx.doi.org/10.1002/adfm.201203550]
(j) Cheedarala, R.K.; Jeon, J.J.; Kee, C.D.; Oh, I.K. Bio-inspired all-organic soft actuator based on a π–π stacked 3D ionic network membrane and ultrafast solution processing. Adv. Funct. Mater. 2014, 24, 6005-6015.
[http://dx.doi.org/10.1002/adfm.201401136]
(k) Rao, T.N.; Cheedarala, R.K. Determination of dithiocarbamate mancozeb residues in milk samples using GC-MS method. Analyt. Chem. Lett., 2019, 9(6), 845-852.
[http://dx.doi.org/10.1080/22297928.2019.1710563]
(l) Cheedarala, R.K.; Park, E.J.; Park, Y.B.; Park, H.W. Highly wettable CuO: graphene oxide core–shell porous nanocomposites for enhanced critical heat flux. Phys. Status Solidi (a), 2015, 212, 1756-1766.
[http://dx.doi.org/10.1016/j.bmc.2005.03.002] [PMID: 15809144]
[http://dx.doi.org/10.1248/cpb.56.720] [PMID: 18451566]
[http://dx.doi.org/10.1021/ol070475w ] [PMID: 17407300]
(b) Xie, C.; Zhang, Y.; Huang, Z.; Xu, P. Synthesis of indolo[1,2-f]phenanthridines from palladium-catalyzed reactions of arynes. J. Org. Chem., 2007, 72(14), 5431-5434.
[http://dx.doi.org/10.1021/jo070625g] [PMID: 17555357]
[http://dx.doi.org/10.1002/cber.190303602174]
(b) Ullmann, F. Ueber eine neue Darstellungsweise von Phenyläthersalicylsäure. Ber. Dtsch. Chem. Ges., 1904, 37, 853-854.
[http://dx.doi.org/10.1002/cber.190403701141]
[http://dx.doi.org/10.1021/jo990408i ] [PMID: 11674624 ]
(b) Yadav, D.K.T.; Rajak, S.S.; Bhanage, B.M. N-arylation of indoles with aryl halides using copper/glycerol as a mild and highly efficient recyclable catalytic system. Tetrahedron Lett., 2014, 55, 931-935.
[http://dx.doi.org/10.1016/j.tetlet.2013.12.053]
[http://dx.doi.org/10.1021/ja027433h] [PMID: 12296734]
[http://dx.doi.org/10.1021/ja973524g]
(b) Old, D.W.; Harris, M.C.; Buchwald, S.L. Efficient palladium-catalyzed N-arylation of indoles. Org. Lett. 2000, 2(10), 1403-1406.
[http://dx.doi.org/10.1021/ol005728z] [PMID: 10814458]
(c) Watanabe, M.; Nishiyama, M.; Yamamoto, T.; Koie, Y. Palladium/P(t- Bu)3-catalyzed synthesis of N-aryl azoles and application to the synthesis of 4,4′,4′′-tris(N-azolyl)triphenylamines. Tetrahedron Lett 2000, 41, 481-483.
[http://dx.doi.org/10.1016/S0040-4039(99)02096-1]
(d) Grasa, G.A.; Viciu, M.S.; Huang, J.; Nolan, S.P. Amination reactions of aryl halides with nitrogen-containing reagents mediated by palladium/imidazolium salt systems. J. Org. Chem., 2001, 66(23), 7729-7737.
[http://dx.doi.org/10.1021/jo010613+] [PMID: 11701028]
[http://dx.doi.org/10.1002/anie.200461598]]
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
(b) Mederski, W.W.K.R.; Lefort, M.; Germann, M.; Kux, D. N-aryl heterocycles via coupling reactions with arylboronic acids. Tetrahedron, 1999, 55, 12757-12770.
[http://dx.doi.org/10.1016/S0040-4020(99)00752-8]
(c) Collman, J.P.; Zhong, M. An efficient diamine.copper complex-catalyzed coupling of arylboronic acids with imidazoles. Org. Lett., 2000, 2(9), 1233-1236.
[http://dx.doi.org/10.1021/ol000033j ] [PMID: 10810715]
(d) Yu, S.; Saenz, J.; Srirangam, K.J. Facile synthesis of N-aryl pyrroles via Cu(II)-mediated cross coupling of electron deficient pyrroles and arylboronic acids. Org. Chem., 2002, 5, 1699-1702.
[http://dx.doi.org/10.1021/jo016131f]
[http://dx.doi.org/10.1016/S0040-4039(00)86664-2]
(b) Sorenson, R.J. Selective N-arylation of aminobenzanilides under mild conditions using triarylbismuthanes. J. Org. Chem., 2000, 65(23), 7747-7749.
[http://dx.doi.org/10.1021/jo000614m] [PMID: 11073575]
[http://dx.doi.org/10.1021/jo00122a060]
(b) Elliott, G.I.; Konopelski, J.P. Complete N-1 regiocontrol in the formation of N-arylimidazoles. Synthesis of the active site His-Tyr side chain coupled dipeptide of cytochrome C oxidase. Org. Lett., 2000, 2(20), 3055-3057.
[http://dx.doi.org/10.1021/ol006271w] [PMID: 11009344]
[http://dx.doi.org/10.1016/0040-4039(95)02157-4]
(b) Maiorana, S.; Baldoli, C.; Del Buttero, P.; Di Ciolo, M.; Papagni, A. Aromatic nucleophilic substitution on haloarene chromium tricarbonyl complexes: mild N-arylation of indoles. Synthesis, 1998, 1998(5), 735-738.
[http://dx.doi.org/10.1002/chin.199835160]
(c) Smith, W.J. Sawyer. J.S. An SnAr-based preparation of 1-(2-, 3-, and 4-pyridyl) indoles using potassium fluoride/alumina. Heterocycles, 1999, 51, 157-160.
[http://dx.doi.org/10.1016/j.tet.2013.05.027]
[http://dx.doi.org/10.1021/op300108w]
Tetrahedron Lett, 2018, 59, 3242-3248.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.049]
[http://dx.doi.org/10.1016/j.tetlet.2014.02.071]
[http://dx.doi.org/10.1016/j.tetlet.2015.05.078]
[http://dx.doi.org/10.1016/j.jfluchem.2018.05.012]
[http://dx.doi.org/10.1021/acs.orglett.6b00356] [PMID: 26998615]
[http://dx.doi.org/10.1055/s-0036-1588890]