Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Microwave-assisted Amination Reactions: An Overview

Author(s): Sankaran Radhika, Mohan Neetha, Thaipparambil Aneeja and Gopinathan Anilkumar*

Volume 24, Issue 19, 2020

Page: [2235 - 2255] Pages: 21

DOI: 10.2174/1385272824999200914111246

Price: $65

Abstract

C-N coupling reactions were found to be attractive among researchers owing to the importance of C-N bond formation in heterocyclic synthesis. Hence C-N bond formation via amination reaction with the assistance of microwave radiations gained significant attraction recently. Microwave-assisted reactions are greener, faster and generally efficient compared to the conventional thermal reactions offering better purity of the product with enhancement in the yield. It was surprisingly revealed that several new advancements in amination reactions were highly influenced by this greener technology. This first review on microwave-assisted amination reaction focuses on the novel amination strategies that emerged with the help of microwave methodology, and covers literature up to 2019.

Keywords: Microwave-assisted reaction, amination, C-N bond, substitution, amines, catalyst, green chemistry.

Graphical Abstract

[1]
Hemmati, S.; Kamangar, A.S.; Yousefi, M.; Salehi, M.H.; Hekmati, M. Cu(I)-anchored polyvinyl alcohol coated-magnetic nanoparticles as heterogeneous nanocatalyst in Ullmann-type C–N coupling reactions. Appl. Organomet. Chem., 2020, 34e5611
[http://dx.doi.org/10.1002/aoc.5611]
[2]
Agrawal, T.; Sieber, J.D. Recent developments in C-C bond formation using catalytic reductive coupling strategies. Synthesis, 2020, 52(18), 2623-2638.
[http://dx.doi.org/10.1055/s-0040-1707128]
[3]
Wang, E.; Zhang, J.; Zhong, Z.; Chen, K.; Chen, M. Shuttling catalyst: facilitating C−C bond formation via cross-couplings with a thermoresponsive polymeric ligand. Isr. J. Chem., 2020, 60, 419-423.
[http://dx.doi.org/10.1002/ijch.201900143]
[4]
Sellars, J.D.; Steel, P.G. Transition metal-catalysed cross-coupling reactions of P-activated enols. Chem. Soc. Rev., 2011, 40(10), 5170-5180.
[http://dx.doi.org/10.1039/c1cs15100b] [PMID: 21731959]
[5]
Sarmah, G.; Mondal, M.; Bora, U. Alcoholic solvent-assisted ligand-free room temperature Suzuki–Miyauracross-coupling reaction. Appl. Organomet. Chem., 2015, 29, 495-498.
[http://dx.doi.org/10.1002/aoc.3320]
[6]
Tao, C.; Sun, L.; Wang, B.; Liu, Z.; Zhai, Y.; Zhang, X.; Shi, D.; Liu, W. Copper-catalyzed cross-coupling reactions of non-activated primary, secondary or tertiary alkyl chlorides with phenylmagnesium bromide. Tetrahedron Lett., 2017, 58, 305-308.
[http://dx.doi.org/10.1016/j.tetlet.2016.12.013]
[7]
Weires, N.A.; Baker, E.L.; Garg, N.K. Nickel-catalysed Suzuki-Miyaura coupling of amides. Nat. Chem., 2016, 8(1), 75-79.
[http://dx.doi.org/10.1038/nchem.2388] [PMID: 26673267]
[8]
Dirocco, D.A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D.V.; Tudge, M. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(19), 4802-4806.
[http://dx.doi.org/10.1002/anie.201402023] [PMID: 24677697]
[9]
Haji, M. Multicomponent reactions: a simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121] [PMID: 27559377]
[10]
Zhou, L.; Lokman Hossain, M.; Xiao, T. Synthesis of N-containing heterocyclic compounds using visible-light photoredox catalysis. Chem. Rec., 2016, 16(1), 319-334.
[http://dx.doi.org/10.1002/tcr.201500228] [PMID: 26751828]
[11]
Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657.
[http://dx.doi.org/10.1039/C3CS60015G] [PMID: 24676061]
[12]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[13]
Marcantoni, E.; Petrini, M. Recent developments in the stereoselective synthesis of nitrogen-containing heterocycles using N-acylimines as reactive substrates. Adv. Synth. Catal., 2016, 358, 3657-3682.
[http://dx.doi.org/10.1002/adsc.201600644]
[14]
Naret, T.; Bzeih, T.; Retailleau, P.; Alami, M.; Hamze, A. One-pot selective functionalization of nitrogen-containing heterocycles with N-tosylhydrazones and amines. Adv. Synth. Catal., 2017, 360, 584-594.
[http://dx.doi.org/10.1002/adsc.201701374]
[15]
Masdeu, C.; Fuertes, M.; Martin-Encinas, E.; Selas, A.; Rubiales, G.; Palacios, F.; Alonso, C. Fused 1,5-naphthyridines: synthetic tools and applications. Molecules, 2020, 25(15), 3508-3561.
[http://dx.doi.org/10.3390/molecules25153508] [PMID: 32752070]
[16]
Kaur, N. Synthesis of five-membered N,N,N- and N,N,N,N-heterocyclic compounds: applications of microwaves. Synth. Commun., 2015, 45, 1711-1742.
[http://dx.doi.org/10.1080/00397911.2013.828756]
[17]
Majumder, A.; Gupta, R.; Jain, A. Microwave-assisted synthesis of nitrogen-containing heterocycles. Green Chem. Lett. Rev., 2013, 6, 151-182.
[http://dx.doi.org/10.1080/17518253.2012.733032]
[18]
Yin, G.; Liu, Q.; Maa, J.; She, N. Solvent- and catalyst-free synthesis of new hydroxylated trisubstituted pyridines under microwave irradiation. Green Chem., 2012, 14, 1796-1798.
[http://dx.doi.org/10.1039/c2gc35243e]
[19]
Shi, F.; Li, C.; Xia, M.; Miao, K.; Zhao, Y.; Tu, S.; Zheng, W.; Zhang, G.; Ma, N. Green chemoselective synthesis of thiazolo[3,2-a]pyridine derivatives and evaluation of their antioxidant and cytotoxic activities. Bioorg. Med. Chem. Lett., 2009, 19(19), 5565-5568.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.046] [PMID: 19729303]
[20]
Bartoli, G.; Dalpozzo, R.; Nardi, M. Applications of Bartoli indole synthesis. Chem. Soc. Rev., 2014, 43(13), 4728-4750.
[http://dx.doi.org/10.1039/C4CS00045E] [PMID: 24718836]
[21]
Dong, Y.; Zhang, H.; Yang, J.; He, S.; Shi, Z-C.; Zhang, X-M.; Wang, J-Y.B. (C6F5)3-catalyzed C−C coupling of 1,4-naphthoquinones with the C-3 position of indole derivatives in water. ACS Omega, 2019, 4(25), 21567-21577.
[http://dx.doi.org/10.1021/acsomega.9b03328] [PMID: 31867553]
[22]
Yang, Z.; Lianghua, J.; Zhenyu, Y.; Zhimin, Y.; Xiuling, C. Rhodium(III)-catalyzed synthesis of N-(2-acetoxyalkyl)isoquinolones from oxazolines and alkynes through C-N bond formation and ring-opening. Adv. Synth. Catal., 2019, 361, 214-218.
[http://dx.doi.org/10.1002/adsc.201801217]
[23]
Tang, S.; Wang, S.; Liu, Y.; Cong, H.; Lei, A. Electrochemical oxidative C-H amination of phenols: access to triarylamine derivatives. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4737-4741.
[http://dx.doi.org/10.1002/anie.201800240] [PMID: 29498166]
[24]
Li, P.; Cao, Z. Mechanism insight into the Csp3−H amination catalyzed by the metal phthalocyanine. Organometallics, 2019, 38, 343-350.
[http://dx.doi.org/10.1021/acs.organomet.8b00747]
[25]
Zhang, M.; Wang, Q.; Peng, Y.; Chen, Z.; Wan, C.; Chen, J.; Zhao, Y.; Zhang, R.; Zhang, A.Q. Transition metal-catalyzed sp3 C-H activation and intramolecular C-N coupling to construct nitrogen heterocyclic scaffolds. Chem. Commun. (Camb.), 2019, 55(87), 13048-13065.
[http://dx.doi.org/10.1039/C9CC06609H] [PMID: 31621700]
[26]
Abrol, S.; Bodla, R.B.; Goswami, C. A comprehensive review on benzothiazole derivatives for their biological activities. Int. J. Pharm. Sci. Res., 2019, 10, 3196-3209.
[http://dx.doi.org/10.13040/ijpsr.0975-8232.10(7).3196-09]
[27]
Rescifina, A.; Zagni, C.; Varrica, M.G.; Pistarà, V.; Corsaro, A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur. J. Med. Chem., 2014, 74, 95-115.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.029] [PMID: 24448420]
[28]
Zhao, S.; Zhao, L.; Zhang, X.; Liu, C.; Hao, C.; Xie, H.; Sun, B.; Zhao, D.; Cheng, M. Design, synthesis, and structure-activity relationship studies of benzothiazole deriva-tives as antifungal agents. Eur. J. Med. Chem., 2016, 123, 514-522.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.067] [PMID: 27494168]
[29]
El-Gohary, N.S.; Shaaban, M.I. Synthesis and biological evaluation of a new series of benzimidazole derivatives as antimicrobial, antiquorum-sensing and antitumor agents. Eur. J. Med. Chem., 2017, 131, 255-262.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.018] [PMID: 28334654]
[30]
Seenaiah, D.; Reddy, P.R.; Reddy, G.M.; Padmaja, A.; Padmavathi, V.; Krishna, N.S. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzo-thiazole and benzimidazole. Eur. J. Med. Chem., 2014, 77, 1-7.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.050] [PMID: 24607584]
[31]
Drageset, A.; Bjørsvik, H-R. Synthesis of amides from alcohols and amines through a domino oxidative amidation and telescoped transamidation process. Eur. J. Org. Chem., 2018, 2018, 4436-4445.
[http://dx.doi.org/10.1002/ejoc.201800378]
[32]
Murugesan, K.; Chandrashekhar, V.G.; Senthamarai, T.; Jagadeesh, R.V.; Beller, M. Reductive amination using cobalt-based nanoparticles for synthesis of amines. Nat. Protoc., 2020, 15(4), 1313-1337.
[http://dx.doi.org/10.1038/s41596-019-0258-z] [PMID: 32203487]
[33]
Zhang, T.; Hu, X.; Wang, Z.; Yang, T.; Sun, H.; Li, G.; Lu, H. Carboxylate-ssisted iridium-catalyzed C−H amination of arenes with biologically relevant alkyl azides. Chemistry, 2016, 22(9), 2920-2924.
[http://dx.doi.org/10.1002/chem.201504880] [PMID: 26712274]
[34]
Zaumseil, J.; Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev., 2007, 107(4), 1296-1323.
[http://dx.doi.org/10.1021/cr0501543] [PMID: 17378616]
[35]
Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater., 2005, 17, 2411-2425.
[http://dx.doi.org/10.1002/adma.200501152]
[36]
Okano, K.; Tokuyama, H.; Fukuyama, T. Copper-mediated aromatic amination reaction and its application to the total synthesis of natural products. Chem. Commun. (Camb.), 2014, 50(89), 13650-13663.
[http://dx.doi.org/10.1039/C4CC03895A] [PMID: 25019171]
[37]
Afanasyev, O.I.; Kuchuk, E.; Usanov, D.L.; Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev., 2019, 119(23), 11857-11911.
[http://dx.doi.org/10.1021/acs.chemrev.9b00383] [PMID: 31633341]
[38]
Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C−H amination: scope, mechanism, and applications. Chem. Rev., 2017, 117(13), 9247-9301.
[http://dx.doi.org/10.1021/acs.chemrev.6b00644] [PMID: 28051855]
[39]
Liu, Y.; You, T.; Wang, T-T.; Che, C-M. Iron-catalyzed C–H amination and its application in organic synthesis. Tetrahedron, 2019, 75(44)130607
[http://dx.doi.org/10.1016/j.tet.2019.130607]
[40]
Liu, Y.; Yang, Y.; Zhu, R.; Zhang, D. Computational clarification of synergetic RuII/CuI-metallaphotoredox catalysis in C(sp3)−N cross-coupling reactions of alkyl redox-active esters with anilines. ACS Catal., 2020, 10, 5030-5041.
[http://dx.doi.org/10.1021/acscatal.0c00060]
[41]
Paul, F.; Patt, J.; Hartwig, J.F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc., 1994, 116, 5969-5970.
[http://dx.doi.org/10.1021/ja00092a058]
[42]
Guram, A.S.; Buchwald, S.L. Palladium-catalyzed aromatic aminations with in situ generated aminos tannanes. J. Am. Chem. Soc., 1994, 116, 7901-7902.
[http://dx.doi.org/10.1021/ja00096a059]
[43]
Ruiz-Castillo, P.; Buchwald, S.L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev., 2016, 116(19), 12564-12649.
[http://dx.doi.org/10.1021/acs.chemrev.6b00512] [PMID: 27689804]
[44]
Liu, R.Y.; Dennis, J.M.; Buchwald, S.L. The quest for the ideal base: rational design of a nickel precatalyst enables mild, homogeneous C−N cross-coupling. J. Am. Chem. Soc., 2020, 142(9), 4500-4507.
[http://dx.doi.org/10.1021/jacs.0c00286] [PMID: 32040909]
[45]
Lam, P.Y.S.; Clark, C.G.; Saubern, S.; Adams, J.; Winters, M.P.; Chan, D.M.T.; Combs, A. New aryl/heteroaryl C-N bond cross-coupling reactions via arylboronic acid/cupric acetate arylation. Tetrahedron Lett., 1998, 39, 2941-2944.
[http://dx.doi.org/10.1016/S0040-4039(98)00504-8]
[46]
Chen, J-Q.; Li, J-H.; Dong, Z-B. A Review on the latest progress of Chan-Lam coupling reaction. Adv. Synth. Catal., 2020, 362(16), 3311-3331.
[http://dx.doi.org/10.1002/adsc.202000495]
[47]
Torok, B.; Dransfield, T. Green Chemistry: An Inclusive Approach, 1st ed; Elsevier, 2017.
[48]
Lu, J-G.; Li, X.; Zhao, Y-X.; Ma, H-L.; Wang, L-F.; Wang, X-Y.; Yu, Y-F.; Shen, T-Y.; Xu, H.; Zhang, Y-T. CO2 capture by ionic liquid membrane absorption for reduc-tion of emissions of greenhouse gas. Environ. Chem. Lett., 2020, 17, 1031-1038.
[http://dx.doi.org/10.1007/s10311-018-00822-4]
[49]
Layek, S.; Agrahari, B.; Kumari, S. Anuradha; Pathak, D.D. [Zn(L-proline)2] catalyzed one-pot synthesis of propargylamines under solvent-free conditions. Catal. Lett., 2018, 148, 2675-2682.
[http://dx.doi.org/10.1007/s10562-018-2449-6]
[50]
Leadbeater, N.E.; Marco, M. Rapid and amenable suzuki coupling reaction in water using microwave and conventional heating. J. Org. Chem., 2003, 68(3), 888-892.
[http://dx.doi.org/10.1021/jo0264022] [PMID: 12558412]
[51]
Adewuyi, Y.G. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res., 2001, 40, 4681-4715.
[http://dx.doi.org/10.1021/ie010096l]
[52]
de Hoz, A. la.; Díaz-Ortiz, A.; Prieto, P.; Green synthetic methodology of (E)-2-cyano-3-aryl selective Knoevenagel adducts under microwave irradiation. Curr. Microw. Chem., 2019, 6, 54-60.
[http://dx.doi.org/10.2174/2213335606666190906123431]
[53]
Hayes, B.L. Recent advances in microwave assisted synthesis. Aldrichim Acta, 2004, 37, 66-76.
[54]
Ricciardi, L.; Verboom, W.; Lange, J-P.; Huskens, J. Local overheating explains the rate enhancement of xylose dehydration under microwave heating. ACS Sustain. Chem.& Eng., 2019, 7, 14273-14279.
[http://dx.doi.org/10.1021/acssuschemeng.9b03580]
[55]
Keglevich, G.; Greiner, I.; Mucsi, Z. Microwave- and ultrasound-assisted Suzuki-Miyaura cross-coupling reactions catalysed by Pd/PVP. Tetrahedron Lett., 2008, 49, 3895-3898.
[http://dx.doi.org/10.1016/j.tetlet.2008.04.061]
[56]
Kamanna, K.; Khatavi, S.Y.; Hiremath, P.B. Microwave-assisted one-pot synthesis of amide bond using WEB. Curr. Microw. Chem., 2020, 7, 50-59.
[http://dx.doi.org/10.2174/2213335606666190828114344]
[57]
Banik, K.B.; Bandyopadhyay, D. Advances in Microwave Chemistry, 1st ed; Taylor & Francis, 2019.
[58]
Dharavath, R.; Nagaraju, N.; Reddy, M.R.; Ashok, D.; Sarasija, M.; Vijjulatha, M.T. Vani.; Jyothi, K.; Prashanthi, G. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1,2,3-triazoles. RSC Advances, 2020, 10, 11615-11623.
[http://dx.doi.org/10.1039/D0RA01052A]
[59]
Kiss, N.Z.; Rádai, Z.; Keglevich, G. Green syntheses of potentially bioactive α-hydroxyphosphonates and related derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194, 1003-1006.
[http://dx.doi.org/10.1080/10426507.2019.1630407]
[60]
Seubert, P.; Freund, M.; Rudolf, R.; Lin, Y.; Altevogt, L.; Bilitewski, U.; Baro, A.; Laschat, S. Buchwald-Hartwig versus microwave-assisted amination of chloroquino-lines: en route to the pyoverdin chromophore. Synlett, 2020, 31, 1177-1181.
[http://dx.doi.org/10.1055/s-0040-1707810]
[61]
Wang, N.; Faber, E.B.; Georg, G.I. Synthesis and spectral properties of 8-anilinonaphthalene-1- sulfonic acid (ANS) derivatives prepared by microwave-assisted Copper(0)-catalyzed Ullmann reaction. ACS Omega, 2019, 4(19), 18472-18477.
[http://dx.doi.org/10.1021/acsomega.9b03002] [PMID: 31720551]
[62]
Chang, R.K.; Clairmont, B.P.; Lin, S.; MacArthur, A.H.R. Amidation of aryl chlorides using a Microwave-assisted, copper-catalyzed concurrent tandem catalytic method-ology. Organometallics, 2019, 38, 4448-4454.
[http://dx.doi.org/10.1021/acs.organomet.9b00561]
[63]
Zhong, Q-F.; Sun, L-P. An efficient synthesis of 6,9-disubstituted purin-8-ones via copper-catalyzed coupling/cyclization. Tetrahedron, 2010, 66, 5107-5111.
[http://dx.doi.org/10.1016/j.tet.2010.04.106]
[64]
Sarrafi, Y.; Mohadeszadeh, M.; Alimohammadi, K. Microwave-assisted chemoselective copper- catalyzed amination of o-chloro and o-bromobenzoic acids using aromatic amines under solvent free conditions. Chin. Chem. Lett., 2009, 20, 784-788.
[http://dx.doi.org/10.1016/j.cclet.2009.02.013]
[65]
Horie, M.; Luo, Y.; Morrison, J.J.; Majewski, L.A.; Song, A.; Saunders, B.R.; Turner, M.L. Triarylamine polymers by microwave-assisted polycondensation for use in organic field-effect transistors. J. Mater. Chem., 2008, 18, 5230-5236.
[http://dx.doi.org/10.1039/b808840c]
[66]
Lin, S.; Liu, Z.; Hu, Y. Microwave-enhanced efficient synthesis of diversified 3,6-disubstituted pyridazines. J. Comb. Chem., 2007, 9(5), 742-744.
[http://dx.doi.org/10.1021/cc070046p] [PMID: 17658899]
[67]
Hartung, C.G.; Backes, A.C.; Felber, B.; Missioy, A.; Philipp, A. Efficient microwave-assisted synthesis of highly functionalized pyrimidine derivatives. Tetrahedron, 2006, 62, 10055-10064.
[http://dx.doi.org/10.1016/j.tet.2006.08.065]
[68]
Poondra, R.R.; Turner, N.J. Microwave-assisted sequential amide bond formation and intramolecular amidation: a rapid entry to functionalized oxindoles. Org. Lett., 2005, 7(5), 863-866.
[http://dx.doi.org/10.1021/ol0473804] [PMID: 15727460]
[69]
Wu, T.Y.H.; Schultz, P.G.; Ding, S. One-pot two-step microwave-assisted reaction in constructing 4,5-disubstituted pyrazolopyrimidines. Org. Lett., 2003, 5(20), 3587-3590.
[http://dx.doi.org/10.1021/ol035226w] [PMID: 14507179]
[70]
Wang, T.; Magnin, D.R.; Hamann, L.G. Palladium-catalyzed microwave-assisted amination of 1-bromonaphthalenes and 5- and 8-bromoquinolines. Org. Lett., 2003, 5(6), 897-900.
[http://dx.doi.org/10.1021/ol034072h] [PMID: 12633100]
[71]
Perin, N.; Škulj, S.; Martin-Kleiner, I.; Kralj, M.; Hranjec, M. Synthesis and antiproliferative activity of novel 2-substituted N-methylated benzimidazoles and tetracyclic benzimidazo [1,2-a]quinolines. Polycycl. Aromat. Compd., 2020, 40, 343-354.
[http://dx.doi.org/10.1080/10406638.2018.1441877]
[72]
Kumar, R.U.; Dileep, K.; Reddy, K.H.; Nageswar, Y.V.D. Microwave assisted amination of 2-chloro azoles with various substituted aryl piperazines and aryl sulfonylpiperazines under neat conditions. Curr. Microw. Chem., 2018, 5, 62-72.
[http://dx.doi.org/10.2174/2213335605666180227154226]
[73]
Mbakidi, J-P.; Bouquillon, S. Glycerol-based ionic liquids: crucial microwaves-assisted synthetic step for solketal amines. J. Mol. Liq., 2018, 252, 218-224.
[http://dx.doi.org/10.1016/j.molliq.2017.12.102]
[74]
Kulk, D.; McCubbin, J.A.; Tranmer, G.K. Sonication and microwave-assisted primary amination of potassium aryltrifluoroborates and phenylboronic acids under metal-free conditions. Synthesis, 2017, 49, 2555-2561.
[http://dx.doi.org/10.1055/s-0036-1588148]
[75]
Perin, N.; Bobanović, K.; Zlatar, I.; Jelić, D.; Kelava, V.; Koštrun, S.; Marković, V.G.; Brajša, K.; Hranjec, M. Antiproliferative activity of amino substituted ben-zo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles explored by 2D and 3D cell culture system. Eur. J. Med. Chem., 2017, 125, 722-735.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.084] [PMID: 27721156]
[76]
Vušak, D.; Perin, N.; Martin-Kleiner, I.; Kralj, M.; Karminski-Zamola, G.; Hranjec, M.; Bertoša, B. Synthesis and antiproliferative activity of amino-substituted benzimidazo[1,2-α]quinolines as mesylate salts designed by 3D-QSAR analysis. Mol. Divers., 2017, 21(3), 621-636.
[http://dx.doi.org/10.1007/s11030-017-9753-8] [PMID: 28667495]
[77]
Perin, N.; Nhili, R.; Cindrić, M.; Bertoša, B.; Vušak, D.; Martin-Kleiner, I.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.H.; Hranjec, M. Amino substituted benzimidazo[1,2-a]quinolines: antiproliferative potency, 3D QSAR study and DNA binding properties. Eur. J. Med. Chem., 2016, 122, 530-545.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.007] [PMID: 27448912]
[78]
Lourenço, M.A.O.; Gomes, J.R.B.; Ferreira, P. Optimization of the time and temperature of the microwave-assisted amination of phenylene-PMO. RSC Advances, 2015, 5, 9208-9216.
[http://dx.doi.org/10.1039/C4RA12364F]
[79]
Perin, N.; Nhili, R.; Ester, K.; Laine, W.; Karminski-Zamola, G.; Kralj, M.; David-Cordonnier, M.H.; Hranjec, M. Synthesis, antiproliferative activity and DNA binding properties of novel 5-aminobenzimidazo[1,2-a]quinoline-6-carbonitriles. Eur. J. Med. Chem., 2014, 80, 218-227.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.049] [PMID: 24780599]
[80]
Perin, N.; Martin-Kleiner, I.; Nhili, R.; Laine, W.; David-Cordonnier, M-H.; Vugrek, O.; Karminski-Zamola, G.; Kralj, M.; Hranjec, M. Biological activity and DNA binding studies of 2- substituted benzimidazo[1,2-a]quinolines bearing different amino side chains. MedChemComm, 2013, 4, 1537-1550.
[http://dx.doi.org/10.1039/c3md00193h]
[81]
Meng, X.; Cai, Z.; Xiao, S.; Zhou, W. Microwave-assisted amination from fluorobenzenes without catalyst and strong base. J. Fluor. Chem., 2013, 146, 70-75.
[http://dx.doi.org/10.1016/j.jfluchem.2012.12.001]
[82]
Samadi, A.; Silva, D.; Chioua, M.; Carreiras, M. do C.; Marco-Contelles, J. Microwave irradiation–assisted amination of 2-chloropyridine derivatives with amide solvents. Synth. Commun., 2011, 41, 2859-2869.
[http://dx.doi.org/10.1080/00397911.2010.515360]
[83]
Kim, J.G.; Yang, E.H.; Youn, W.S.; Choi, J.W.; Ha, D-C.; Ha, J-D. Microwave-assisted amination of 3-bromo-2-chloropyridine with various substituted aminoethanols. Tetrahedron Lett., 2010, 51, 3886-3889.
[http://dx.doi.org/10.1016/j.tetlet.2010.05.021]
[84]
Chang, Y-C.; Chir, J-L.; Tsai, S-Y.; Juang, W-F.; Wu, A-T. Microwave-assisted synthesis of pyrrolidine derivatives. Tetrahedron Lett., 2009, 50, 4925-4929.
[http://dx.doi.org/10.1016/j.tetlet.2009.06.062]
[85]
Mont, N.; Teixidó, J.; Borrell, J.I. A diversity oriented, microwave assisted synthesis of N-substituted 2-hydro-4-amino-pyrido[2,3-d]pyrimidin-7(8H)-ones. Mol. Divers., 2009, 13(1), 39-45.
[http://dx.doi.org/10.1007/s11030-008-9096-6] [PMID: 19037737]
[86]
Quevedo, C.E.; Bavetsias, V.; McDonald, E. Microwave-assisted synthesis of 2-aminonicotinic acids by reacting 2-chloronicotinic acid with amines. Tetrahedron Lett., 2009, 50, 2481-2483.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.034]
[87]
Ashton, T.D.; Scammells, P.J. Microwave-assisted direct amination: Rapid access to multi-functionalized N6-substituted adenosines. Aust. J. Chem., 2008, 61, 49-58.
[http://dx.doi.org/10.1071/CH07340]
[88]
Ljungdahl, N.; Martikainen, L.; Kann, N. Rapid microwave-assisted preparation of amino-functionalized polymers. Tetrahedron Lett., 2008, 49, 6108-6110.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.009]
[89]
Baqi, Y.; Müller, C.E. Catalyst-free microwave-assisted amination of 2-chloro-5-nitrobenzoic acid. J. Org. Chem., 2007, 72(15), 5908-5911.
[http://dx.doi.org/10.1021/jo070731i] [PMID: 17585825]
[90]
Qu, G.; Han, S.; Zhang, Z.; Geng, M.; Xue, F. Microwave assisted synthesis of 6-substituted aminopurine analogs in water. Braz. J. Chem. Soc., 2006, 17, 915-922.
[http://dx.doi.org/10.1590/S0103-50532006000500015]
[91]
Lanver, A.; Schmalz, H.G. Microwave-assisted amination of a chloropurine derivative in the synthesis of acyclic nucleoside analogues. Molecules, 2005, 10(2), 508-515.
[http://dx.doi.org/10.3390/10020508] [PMID: 18007322]
[92]
Saulnier, M.G.; Zimmermann, K.; Struzynski, C.P.; Sang, X.; Velaparthi, U.; Wittman, M.; Frennesson, D.B. Microwave-assisted synthesis of primary amine HX salts from halides and 7M ammonia in methanol. Tetrahedron Lett., 2004, 45, 397-399.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.146]
[93]
Moore, J.E.; Spinks, D.; Harrity, J.P.A. Microwave promoted amination of 3-bromoisoxazoles. Tetrahedron Lett., 2004, 45, 3189-3191.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.135]
[94]
Xu, G.; Wang, Y.G. Microwave-assisted amination from aryl triflates without base and catalyst. Org. Lett., 2004, 6(6), 985-987.
[http://dx.doi.org/10.1021/ol049963j] [PMID: 15012081]
[95]
Shi, L.; Wang, M.; Fan, C-A.; Zhang, F-M.; Tu, Y-Q. Rapid and efficient microwave-assisted amination of electron-rich aryl halides without a transition-metal catalyst. Org. Lett., 2003, 5(19), 3515-3517.
[http://dx.doi.org/10.1021/ol0353868] [PMID: 12967313]
[96]
Reddy, P.G.; Baskaran, S. Microwave assisted amination of quinolone carboxylic acids: an expeditious synthesis of fluoroquinolone antibacterials. Tetrahedron Lett., 2001, 42, 6775-6777.
[http://dx.doi.org/10.1016/S0040-4039(01)01385-5]
[97]
Adrio, L.A.; Gimeno, J.; Vicent, C. One-pot direct C-H arylation of arenes in water catalysed by RuCl3•nH2O-NaOAc in the presence of Zn. Chem. Commun. (Camb.), 2013, 49(75), 8320-8322.
[http://dx.doi.org/10.1039/c3cc43452d] [PMID: 23801026]
[98]
Mehta, V.P.; Van der Eycken, E.V. Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chem. Soc. Rev., 2011, 40(10), 4925-4936.
[http://dx.doi.org/10.1039/c1cs15094d] [PMID: 21717007]
[99]
Patel, K.D.; Vekariya, R.H.; Patel, H.D. A one pot, solvent free and catalyst free synthesis of substituted 2-amino-5-aryl-1,3,4-oxadiazoles under microwave irradiation. Curr. Microw. Chem., 2016, 3, 24-30.
[http://dx.doi.org/10.2174/2213335602666150324233632]
[100]
Mahajan, K.; Fahmi, N.; Singh, R.V. Synthesis, characterization and antimicrobial studies of Sb(III) complexes of substituted thioimines. Indian J. Chem., 2007, 46A, 1221-1225.
[101]
Thomas, A.B.; Moharil, S.P.; Nanda, R.K.; Dhokrat, S.G.; Kothapalli, L.K.; Nanwatkar, M.V. Microwave assisted synthesis of new imines of 7-aminocephalosporinic acid as potent antibacterial agents. Curr. Microw. Chem., 2014, 1, 148-154.
[http://dx.doi.org/10.2174/2213335601666140806010137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy