Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Marine Algae as a Potential Source for Anti-diabetic Compounds - A Brief Review

Author(s): Lavanya Rayapu, Kajal Chakraborty* and Lokanatha Valluru*

Volume 27, Issue 6, 2021

Published on: 09 September, 2020

Page: [789 - 801] Pages: 13

DOI: 10.2174/1381612826666200909124526

Price: $65

Abstract

Background: Diabetes Mellitus (DM) is a major chronic metabolic disorder characterized by hyperglycemia that leads to several complications such as retinopathy, atherosclerosis, nephropathy, etc. In 2019, it was estimated that about 463 million people had diabetes, and it may increase up to 700 million in 2045. Marine macroalgae are the rich source of bioactive compounds for the treatment of diabetes mellitus.

Objective: This review summarizes the recent epidemiology and possible use of marine macroalgae-derived bioactive compounds for the protection against chronic metabolic disease, diabetes mellitus and marine macroalgae as a nutraceutical supplement.

Conclusion: The present therapies available for diabetes treatment are oral medicines and insulin injections. But continuous use of synthetic medicines provides low therapeutic with many side effects. In continuing search of anti-diabetic drugs, marine macroalgae remain as a promising source with potent bioactivity. Among existing marine algae, red and brown algae are reported to show anti-diabetic activity. Hence, the present review focuses on the epidemiology, diabetes biomarkers and different secondary bioactive compounds present in marine macroalgae to treat diabetes mellitus.

Keywords: Diabetes mellitus, brown marine algae, red marine algae, metabolic disorder, hyperglycemia, anti-diabetic drugs.

[1]
International Diabetes Federation. IDF Diabetes Atlas. 8th ed. Brussels, Belgium: International Diabetes Federation 2017.
[2]
American Diabetes Association. A Diagnosing Diabetes and Learning about Prediabetes 2017 Available at:.https://www.diabetes.org/diabetes-risk/prediabetes
[3]
Khawandanah J. Double or hybrid diabetes: A systematic review on disease prevalence, characteristics and risk factors. Nutr Diabetes 2019; 9(1): 33.
[http://dx.doi.org/10.1038/s41387-019-0101-1] [PMID: 31685799]
[4]
Sharaf El Din UAA, Salem MM, Abdulazim DO. Diabetic nephropathy: Time to withhold development and progression - A review. J Adv Res 2017; 8(4): 363-73.
[http://dx.doi.org/10.1016/j.jare.2017.04.004] [PMID: 28540086]
[5]
Hershey DS. Diabetic peripheral neuropathy: evaluation and management. J Nurse Pract 2017; 13: 199-204.
[http://dx.doi.org/10.1016/j.nurpra.2016.08.034]
[6]
WHO. Diabetes 2017 Available at.: http://www.who.int/diabetes/en/
[7]
Almdal TP, Handlos LN, Valerius M, et al. Glycaemic threshold for diabetes-specific retinopathy among individuals from Saudi Arabia, Algeria and Portugal. Diabetes Res Clin Pract 2014; 103(3): e44-6.
[http://dx.doi.org/10.1016/j.diabres.2013.12.023] [PMID: 24485346]
[8]
Basulaiman M, El Bcheraoui C, Tuffaha M, et al. Hypercholesterolemia and its associated risk factors-Kingdom of Saudi Arabia, 2013. Ann Epidemiol 2014; 24(11): 801-8.
[http://dx.doi.org/10.1016/j.annepidem.2014.08.001] [PMID: 25281531]
[9]
Simić I, Pećin I, Tedeschi-Reiner E, Zrinsćak O, Sućur N, Reiner Z. Risk factors for microvascular atherosclerotic changes in patients with type 2 diabetes mellitus. Coll Antropol 2013; 37(3): 783-7.
[PMID: 24308217]
[10]
Sicree R, Shaw J, Zimmet P. The Global Burden Diabetes and Impaired Glucose Tolerance Prevalence and ProjectionsDiabetes Atlas. 3rd ed. Brussels: Int Diabet Fed 2006; pp. 16-103.
[11]
Votey SR, Peters AL. Diabetes mellitus type 2. A review 2006. Available at:. http://www.emedicine.com/emerg/topic133.html
[12]
Drinking H. Psychology and Diabetes. Psychosocial Factors in Management and Control. By RW Shilli-toe. Chapman and Hall: London. 1988. Clinical psychologists have entered the arena of..
[13]
Chauhan A, Semwal DK, Mishra SP, Semwal RB. Ayurvedic research and methodology: Present status and future strategies. Ayu 2015; 36(4): 364-9.
[http://dx.doi.org/10.4103/0974-8520.190699] [PMID: 27833362]
[14]
Revathi P, Jeyaseelan ST, Thirumalaikolundusubramanian P, Prabhu N. Medicinal properties of mangrove plants - An overview. Int J Bioassays 2013; 2: 1597-600.
[15]
Hamed I, Fatih O, Yesim O, Joe M. Regenstein. Marine Bioactive Compounds and Their Health Benefits: A Review. Compreh Revi. Food Sci Food Saf 2015; 14: 446-65.
[http://dx.doi.org/10.1111/1541-4337.12136]
[16]
Hill RA. Marine natural products. Ann Rep Prog Chem Sect 2011; 107: 138-56.
[http://dx.doi.org/10.1039/c1oc90008k]
[17]
Kim JK, Yarish C, Hwang EK, Park M, Kim Y. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. Algae 2017; 32: 1-13.
[http://dx.doi.org/10.4490/algae.2017.32.3.3]
[18]
Kokabi M, Yousefzadi M, Ali Ahmadi A, Feghhi MA, Keshavarze M. Antioxidant activity of extracts of selected algae from the Persian Gulf. Iran J Pers Gulf 2013; 4: 45-50.
[19]
Chakraborty K, Lipton AP, Paulraj R, Chakraborty RD. Guaiane sesquiterpenes from seaweed Ulva fasciata Delile and their antibacterial properties. Eur J Med Chem 2010; 45(6): 2237-44. [a
[http://dx.doi.org/10.1016/j.ejmech.2010.01.065 PMID: 20163893]
[20]
Chakraborty K, Lipton AP, Paulraj R, Vijayan KK. Antibacterial labdane diterpenoids of Ulva fasciata Delile from the southwestern coast of Indian Peninsula. Food Chem 2010; 119: 1399-408. [b
[http://dx.doi.org/10.1016/j.foodchem.2009.09.019]
[21]
Mahmoud AM, Germoush MO, Elgebaly HA, Elsayed KNM, Hassan S, Mousa NM. Antidiabetic and insulin sensitizing effects of Padina pavonia and Turbenaria ornata in streptozotocin/nicotinamide diabetic rats. Asian J Pharm Clin Res 2014; 7: 74-8.
[22]
Chakraborty K, Joseph D, Praveen NK. Antioxidant activities and phenolic contents of three red seaweeds (Division: Rhodophyta) harvested from the Gulf of Mannar of Peninsular India. J Food Sci Technol 2015; 52(4): 1924-35.
[http://dx.doi.org/10.1007/s13197-013-1189-2] [PMID: 25829573]
[23]
Bajpai VB. Antimicrobial bioactive compounds from marine algae: A review. Indian J Geo-Mar Sci 2016; 45: 1076-85.
[24]
Lavanya R, Fasina M, Suresh KA, Anusree M. Kajal Chakraborty, Lokanatha V. Protective role of marine macroalgae extracts against STZ induced diabetic rats. J Coast Life Med 2017; 5: 521-30.
[http://dx.doi.org/10.12980/jclm.5.2017J7-153]
[25]
Bhattacharjee R, Mitra A, Baishakhi D, Abhisek P. Exploration of antidiabetic potentials among marine species - A mini review. Indo Glob J Pharm Sci 2014; 4: 65-73.
[26]
Kim KY, Nguyen TH, Kurihara H, Kim SM. α-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 2010; 75(5): H145-50.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01629.x] [PMID: 20629879]
[27]
Arif JM, Al-Hazzani AA, Kunhi M, Al-Khodairy F. Novel marine compounds: Anticancer or genotoxic? J Biomed Biotechnol 2004; 2004(2): 93-8.
[http://dx.doi.org/10.1155/S1110724304307060] [PMID: 15240919]
[28]
Ahmed AM. History of diabetes mellitus. Saudi Med J 2002; 23(4): 373-8.
[PMID: 11953758]
[29]
Patlak M. New weapons to combat an ancient disease: treating diabetes. FASEB J 2002; 16(14): 1853-7.
[http://dx.doi.org/10.1096/fj.02-0974bkt] [PMID: 12468446]
[30]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol 2011; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[31]
Siddiqui AA, Siddiqui SA, Suhail A, Seemi S, Iftikhar A, Sahu K. Diabetes: Mechanism, Pathophysiology and Management-A Review. Int J Drug Develop Res 2013; 5: 1-23.
[32]
International Diabetes Federation. IDF Diabetes Atlas. 4th ed. Brussels, Belgium: International Diabetes Federation 2009.
[33]
International Diabetes Federation. IDF Diabetes Atlas. 5th ed. Brussels, Belgium: International Diabetes Federation 2011.
[34]
International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation 2013.
[35]
International Diabetes Federation. IDF Diabetes Atlas. 7th ed. Brussels, Belgium: International Diabetes Federation 2015.
[36]
Ferrannini E. Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr Rev 1998; 19(4): 477-90.
[http://dx.doi.org/10.1210/edrv.19.4.0336] [PMID: 9715376]
[37]
Lillioja S, Mott DM, Spraul M, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 1993; 329(27): 1988-92.
[http://dx.doi.org/10.1056/NEJM199312303292703] [PMID: 8247074]
[38]
Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43(12): 1498-506.
[http://dx.doi.org/10.1007/s001250051560] [PMID: 11151758]
[39]
Axelsen M, Arvidsson Lenner R, Lönnroth P, Smith U. Breakfast glycaemic response in patients with type 2 diabetes: effects of bedtime dietary carbohydrates. Eur J Clin Nutr 1999; 53(9): 706-10.
[http://dx.doi.org/10.1038/sj.ejcn.1600837] [PMID: 10509766]
[40]
Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: a cross-sectional study. Diabetes 1997; 46(6): 1001-9.
[http://dx.doi.org/10.2337/diab.46.6.1001] [PMID: 9166672]
[41]
Stern MP, Mitchell BD. Genetics of Insulin Resistance Insulin Resistance Part of the Contemporary Endocrinology book series 1999 ; 12: 3-18..
[42]
Fagan JJ, Collins B, Barnes L, D’Amico F, Myers EN, Johnson JT. Perineural invasion in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 1998; 124(6): 637-40.
[http://dx.doi.org/10.1001/archotol.124.6.637] [PMID: 9639472]
[43]
Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97(12): 2859-65.
[http://dx.doi.org/10.1172/JCI118742] [PMID: 8675698]
[44]
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1(7285): 785-9.
[http://dx.doi.org/10.1016/S0140-6736(63)91500-9] [PMID: 13990765]
[45]
Basit A, Fawwad A, Qureshi H, Shera AS, Members NDSP. NDSP Members. Prevalence of diabetes, pre-diabetes and associated risk factors: second National Diabetes Survey of Pakistan (NDSP), 2016-2017. BMJ Open 2018; 8(8)e020961
[http://dx.doi.org/10.1136/bmjopen-2017-020961] [PMID: 30082350]
[46]
Saeedi P, Petersohn I, Salpea P, et al. On behalf of the IDF Diabetes Atlas CommitteeGlobal and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. 9th ed. Diabet Res Cli Prac 2019; pp. 1-10.
[47]
Herder C, Karakas M, Koenig W. Biomarkers for the prediction of type 2 diabetes and cardiovascular disease. Clin Pharmacol Ther 2011; 90(1): 52-66.
[http://dx.doi.org/10.1038/clpt.2011.93] [PMID: 21654741]
[48]
Rhee EP, Gerszten RE. Metabolomics and cardiovascular biomarker discovery. Clin Chem 2012; 58(1): 139-47.
[http://dx.doi.org/10.1373/clinchem.2011.169573] [PMID: 22110018]
[49]
McKillop AM, Flatt PR. Emerging applications of metabolomic and genomic profiling in diabetic clinical medicine. Diabetes Care 2011; 34(12): 2624-30.
[http://dx.doi.org/10.2337/dc11-0837] [PMID: 22110171]
[50]
Diwaker A, Kishore D, Singh V, Mahapatra SP. The Novel Biomarkers in Diabetes. J Assoc Physicians India 2019; 67(7): 65-9.
[PMID: 31559772]
[51]
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[52]
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016; 387(10027): 1513-30.
[http://dx.doi.org/10.1016/S0140-6736(16)00618-8] [PMID: 27061677]
[53]
Costantino V, Fattorusso E, Imperatore C, Mangoni A. Glycolipids from sponges. 20. J-Coupling analysis for stereochemical assignments in furanosides: structure elucidation of vesparioside B, a glycosphingolipid from the marine sponge Spheciospongia vesparia. J Org Chem 2008; 73(16): 6158-65.
[http://dx.doi.org/10.1021/jo800837k] [PMID: 18651774]
[54]
Costantino V, Fattorusso E, Imperatore C, Mangoni A. Ectyoceramide, the First Natural Hexofuranosylceramide from the Marine Sponge Ectyoplasia ferox. Eur J Org Chem 2003; 1433-7.
[http://dx.doi.org/10.1002/ejoc.200390202]
[55]
Sharifuddin Y, Chin YX, Lim PE, Phang SM. Potential bioactive compounds from seaweed for diabetes management. Mar Drugs 2015; 13(8): 5447-91.
[http://dx.doi.org/10.3390/md13085447] [PMID: 26308010]
[56]
Shi D, Guo S, Jiang B, et al. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar Drugs 2013; 11(2): 350-62.
[http://dx.doi.org/10.3390/md11020350] [PMID: 23364683]
[57]
Liu X, Li X, Gao L, et al. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula. Chin J Oceanology Limnol 2011; 29: 686-90.
[http://dx.doi.org/10.1007/s00343-011-0136-1]
[58]
Shi D, Li J, Jiang B, Guo S, Su H, Wang T. Bromophenols as inhibitors of protein tyrosine phosphatase 1B with antidiabetic properties. Bioorg Med Chem Lett 2012; 22(8): 2827-32.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.074] [PMID: 22444684]
[59]
Kim KY, Nam KA, Kurihara H, Kim SM. Potent α-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008; 69(16): 2820-5.
[http://dx.doi.org/10.1016/j.phytochem.2008.09.007] [PMID: 18951591]
[60]
Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem 2003; 10(15): 1329-52.
[http://dx.doi.org/10.2174/0929867033457377] [PMID: 12871133]
[61]
Wang W, Okada Y, Shi H, Wang Y, Okuyama T. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J Nat Prod 2005; 68(4): 620-2.
[http://dx.doi.org/10.1021/np040199j] [PMID: 15844965]
[62]
Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011; 126: 1006-12.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.111]
[63]
Harnedy PA, FitzGerald RJ. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates. J Appl Phycol 2013; 25: 1793-803.
[http://dx.doi.org/10.1007/s10811-013-0017-4]
[64]
Kang C, Jin YB, Lee H, et al. Brown alga Ecklonia cava attenuates type 1 diabetes by activating AMPK and Akt signaling pathways. Food Chem Toxicol 2010; 48(2): 509-16.
[http://dx.doi.org/10.1016/j.fct.2009.11.004] [PMID: 19913068]
[65]
Lee YS, Shin KH, Kim BK, Lee S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 2004; 27(11): 1120-2.
[http://dx.doi.org/10.1007/BF02975115] [PMID: 15595413]
[66]
Iwai K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 2008; 63(4): 163-9.
[http://dx.doi.org/10.1007/s11130-008-0098-4] [PMID: 18958624]
[67]
Jung HA, Yoon NY, Woo MH, Choi JS. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci 2008; 74: 1363-5.
[http://dx.doi.org/10.1111/j.1444-2906.2008.01670.x]
[68]
Thomas NV, Kim SK. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 2011; 32(3): 325-35.
[http://dx.doi.org/10.1016/j.etap.2011.09.004] [PMID: 22004951]
[69]
Okada Y, Ishimaru A, Suzuki R, Okuyama T. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J Nat Prod 2004; 67(1): 103-5.
[http://dx.doi.org/10.1021/np030323j] [PMID: 14738398]
[70]
Heo SJ, Hwang JY, Choi JI, Han JS, Kim HJ, Jeon YJ. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent alpha-glucosidase and alpha-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice. Eur J Pharmacol 2009; 615(1-3): 252-6.
[http://dx.doi.org/10.1016/j.ejphar.2009.05.017] [PMID: 19482018]
[71]
Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol 2009; 47(8): 1837-40.
[http://dx.doi.org/10.1016/j.fct.2009.04.039] [PMID: 19422873]
[72]
Gokce G, Haznedaroglu MZ. Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. J Ethnopharmacol 2008; 115(1): 122-30.
[http://dx.doi.org/10.1016/j.jep.2007.09.016] [PMID: 17977678]
[73]
Popov AM, Krivoshapko ON. Protective effects of polar lipids and redox-active compounds from marine organisms at modeling of hyperlipidemia and diabetes. J Biomed Sci Eng 2013; 6: 543-50.
[http://dx.doi.org/10.4236/jbise.2013.65069]
[74]
Krish S, Das A. In-vitro bioactivity of marine seaweed, Cladophora rupestris. Int J Pharma Bio Sci 2014; 5: 898-908.
[75]
Lee HJ, Kim YA, Lee JI, Lee BJ, Seo YW. Screening of Korean marine plants extracts for inhibitory activity on protein tyrosine phosphatase 1B. J Appl Biol Chem 2007; 50: 74-7.
[76]
Kimura Y, Watanabe K, Okuda H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats. J Ethnopharmacol 1996; 54(1): 47-54.
[http://dx.doi.org/10.1016/0378-8741(96)01449-3] [PMID: 8941868]
[77]
D’Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Mar Drugs 2012; 10(4): 812-33.
[http://dx.doi.org/10.3390/md10040812] [PMID: 22690145]
[78]
Lavanya R, Fasina M, Anusree M. Kajal Chakraborty, Lokanatha V. Sulphated galactopyran derived from Gracilaria opuntia, a marine macroalgae restores the antioxidant. J Coast Life Med 2017; 5: 59-65. [b
[http://dx.doi.org/10.12980/jclm.5.2017J6-278]
[79]
Lee SH, Li Y, Karadeniz F, Kim MM, Kim SK. α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 2009; 89: 1552-8.
[http://dx.doi.org/10.1002/jsfa.3623]
[80]
Moon HE, Islam N, Ahn BR, et al. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci Biotechnol Biochem 2011; 75(8): 1472-80.
[http://dx.doi.org/10.1271/bbb.110137] [PMID: 21821954]
[81]
Lee SH, Jeon YJ. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013; 86: 129-36.
[http://dx.doi.org/10.1016/j.fitote.2013.02.013] [PMID: 23466874]
[82]
Lee SH, Kang SM, Ko SC, Lee DH, Jeon YJ. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochem Biophys Res Commun 2012; 420(3): 576-81.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.036] [PMID: 22445752]
[83]
Jung HA, Islam MN, Lee CM, et al. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem Biol Interact 2013; 206(1): 55-62.
[http://dx.doi.org/10.1016/j.cbi.2013.08.013] [PMID: 23994501]
[84]
Shaden AM. Khalifa, Nizar Elias, Mohamed A. et al. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar Drugs 2019; 491: 1-31.
[85]
FAO Global Aquaculture Production database updated to 2013-Summary information. Rome: FAO 2015; 225..
[86]
FAO. The state of the world fisheries and aquaculture 2014. Rome: FAO 2014; p. 223.
[87]
Bagchi D. Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology 2006; 221(1): 1-3.
[http://dx.doi.org/10.1016/j.tox.2006.01.001] [PMID: 16487648]
[88]
Hafting JT, Craigie JS, Stengel DB, et al. Prospects and challenges for industrial production of seaweed bioactives. J Phycol 2015; 51(5): 821-37.
[http://dx.doi.org/10.1111/jpy.12326] [PMID: 26986880]
[89]
Borowitzka MA. High-value products from microalgae-their development and commercialisation. J Appl Phycol 2013; 25: 743-56.
[http://dx.doi.org/10.1007/s10811-013-9983-9]
[90]
Finley JW, Finley JW, Ellwood K, Hoadley J. Launching a new food product or dietary supplement in the United States: industrial, regulatory, and nutritional considerations. Annu Rev Nutr 2014; 34: 421-47.
[http://dx.doi.org/10.1146/annurev-nutr-071813-105817] [PMID: 24850389]
[91]
Harnedy PA, FitzGerald RJ. Bioactive proteins, peptides, and amino acids from macroalgae. J Phycol 2011; 47(2): 218-32.
[http://dx.doi.org/10.1111/j.1529-8817.2011.00969.x] [PMID: 27021854]
[92]
Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011; 23: 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[93]
Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 2011; 9(6): 1056-100.
[http://dx.doi.org/10.3390/md9061056] [PMID: 21747748]
[94]
Cornish ML, Critchley AT, Mouritsen OG. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia 2015; 54: 649-66.
[http://dx.doi.org/10.2216/15-77.1]
[95]
Zhao C, Yang C, Liu B, et al. Bioactive compounds from marine macroalgae and their hypoglycemic benefits. Trends Food Sci Technol 2017; 72: 1-12.
[http://dx.doi.org/10.1016/j.tifs.2017.12.001]
[96]
Kadam SU, Tiwari BK, O’Donnell CP. Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 2013; 61(20): 4667-75.
[http://dx.doi.org/10.1021/jf400819p] [PMID: 23634989]
[97]
Meenakshi S, Umayaparvathi S, Saravanan R, Manivasagam T, Balasubramanian T. Hepatoprotective effect of fucoidan isolated from the seaweed Turbinaria decurrens in ethanol intoxicated rats. Int J Biol Macromol 2014; 67: 367-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.03.042] [PMID: 24731788]
[98]
Heeba GH, Morsy MA. Fucoidan ameliorates steatohepatitis and insulin resistance by suppressing oxidative stress and inflammatory cytokines in experimental non-alcoholic fatty liver disease. Environ Toxicol Pharmacol 2015; 40(3): 907-14.
[http://dx.doi.org/10.1016/j.etap.2015.10.003] [PMID: 26498267]
[99]
Zhong Q. BinWei, SijiaWang, Songze Ke, Jianwei Chen, Huawei Zhang, Hong Wang. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar Drugs 2019; 17: 1-34. http://dx.doi.org/10.3390/md17120674.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy