Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors

Author(s): Shome S. Bhunia and Anil K. Saxena*

Volume 21, Issue 4, 2021

Published on: 08 September, 2020

Page: [269 - 294] Pages: 26

DOI: 10.2174/1568026620666200908165250

Price: $65

Abstract

Background: Molecular docking is in regular practice to assess ligand affinity on a target protein crystal structure. In the absence of protein crystal structure, the homology modeling or comparative modeling is the best alternative to elucidate the relationship details between a ligand and protein at the molecular level. The development of accurate homology modeling (HM) and its integration with molecular docking (MD) is essential for successful, rational drug discovery.

Objective: The G-protein coupled receptors (GPCRs) are attractive therapeutic targets due to their immense role in human pharmacology. The GPCRs are membrane-bound proteins with the complex constitution, and the understanding of their activation and inactivation mechanisms is quite challenging. Over the past decade, there has been a rapid expansion in the number of solved G-protein-coupled receptor (GPCR) crystal structures; however, the majority of the GPCR structures remain unsolved. In this context, HM guided MD has been widely used for structure-based drug design (SBDD) of GPCRs.

Methods: The focus of this review is on the recent (i) developments on HM supported GPCR drug discovery in the absence of GPCR crystal structures and (ii) application of HM in understanding the ligand interactions at the binding site, virtual screening, determining receptor subtype selectivity and receptor behaviour in comparison with GPCR crystal structures.

Results: The HM in GPCRs has been extremely challenging due to the scarcity in template structures. In such a scenario, it is difficult to get accurate HM that can facilitate understanding of the ligand-receptor interactions. This problem has been alleviated to some extent by developing refined HM based on incorporating active /inactive ligand information and inducing protein flexibility. In some cases, HM proteins were found to outscore crystal structures.

Conclusion: The developments in HM have been highly operative to gain insights about the ligand interaction at the binding site and receptor functioning at the molecular level. Thus, HM guided molecular docking may be useful for rational drug discovery for the GPCRs mediated diseases.

Keywords: Homology modeling, Molecular docking, G-protein, Protein crystal structure, Structure-based drug design, Drug discovery.

Graphical Abstract

[1]
Porntadavity, S.; Jeenduang, N. Structure-function relationships of ldl receptor missense mutations using homology modeling. Protein J., 2019, 38(4), 447-462.
[http://dx.doi.org/10.1007/s10930-019-09860-5] [PMID: 31401775]
[2]
Hati, S.; Bhattacharyya, S. Incorporating modeling and simulations in undergraduate biophysical chemistry course to promote understanding of structure-dynamics-function relationships in proteins. Biochem. Mol. Biol. Educ., 2016, 44(2), 140-159.
[http://dx.doi.org/10.1002/bmb.20942] [PMID: 26801683]
[3]
Patny, A.; Desai, P.V.; Avery, M.A. Homology modeling of G-protein-coupled receptors and implications in drug design. Curr. Med. Chem., 2006, 13(14), 1667-1691.
[http://dx.doi.org/10.2174/092986706777442002] [PMID: 16787212]
[4]
Vyas, V.K.; Ukawala, R.D.; Ghate, M.; Chintha, C. Homology modeling a fast tool for drug discovery: current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17.
[http://dx.doi.org/10.4103/0250-474X.102537] [PMID: 23204616]
[5]
Xiang, Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci., 2006, 7(3), 217-227.
[http://dx.doi.org/10.2174/138920306777452312] [PMID: 16787261]
[6]
Lim, V.J.Y.; Du, W.; Chen, Y.Z.; Fan, H. A benchmarking study on virtual ligand screening against homology models of human GPCRs. Proteins, 2018, 86(9), 978-989.
[http://dx.doi.org/10.1002/prot.25533] [PMID: 30051928]
[7]
Laurini, E.; Col, V.D.; Mamolo, M.G.; Zampieri, D.; Posocco, P.; Fermeglia, M.; Vio, L.; Pricl, S. Homology model and docking-based virtual screening for ligands of the σ1 receptor. ACS Med. Chem. Lett., 2011, 2(11), 834-839.
[http://dx.doi.org/10.1021/ml2001505] [PMID: 24900272]
[8]
Kang, N.; Wang, X.L.; Zhao, Y. Discovery of small molecule agonists targeting neuropeptide Y4 receptor using homology modeling and virtual screening. Chem. Biol. Drug Des., 2019, 94(6), 2064-2072.
[http://dx.doi.org/10.1111/cbdd.13611] [PMID: 31444845]
[9]
Wodak, S.J.; Janin, J. Computer analysis of protein-protein interaction. J. Mol. Biol., 1978, 124(2), 323-342.
[http://dx.doi.org/10.1016/0022-2836(78)90302-9] [PMID: 712840]
[10]
Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 2002, 47(4), 409-443.
[http://dx.doi.org/10.1002/prot.10115] [PMID: 12001221]
[11]
Grünberg, R.; Leckner, J.; Nilges, M. Complementarity of structure ensembles in protein-protein binding. Structure, 2004, 12(12), 2125-2136.
[http://dx.doi.org/10.1016/j.str.2004.09.014] [PMID: 15576027]
[12]
Bhunia, S.S.; Roy, K.K.; Saxena, A.K. Profiling the structural determinants for the selectivity of representative factor-Xa and thrombin inhibitors using combined ligand-based and structure-based approaches. J. Chem. Inf. Model., 2011, 51(8), 1966-1985.
[http://dx.doi.org/10.1021/ci200185q] [PMID: 21761917]
[13]
Saxena, A.K.; Devillers, J.; Bhunia, S.S.; Bro, E. Modelling inhibition of avian aromatase by azole pesticides. SAR QSAR Environ. Res., 2015, 26(7-9), 757-782.
[http://dx.doi.org/10.1080/1062936X.2015.1090749] [PMID: 26535448]
[14]
Azad, C.S.; Bhunia, S.S.; Krishna, A.; Shukla, P.K.; Saxena, A.K. Novel glycoconjugate of 8-fluoro norfloxacin derivatives as gentamicin-resistant staphylococcus aureus inhibitors: synthesis and molecular modelling studies. Chem. Biol. Drug Des., 2015, 86(4), 440-446.
[http://dx.doi.org/10.1111/cbdd.12503] [PMID: 25546316]
[15]
Bhunia, S.S.; Misra, A.; Khan, I.A.; Gaur, S.; Jain, M.; Singh, S.; Saxena, A.; Hohlfield, T.; Dikshit, M.; Saxena, A.K. Novel glycoprotein vi antagonists as antithrombotics: synthesis, biological evaluation, and molecular modeling studies on 2,3-disubstituted tetrahydropyrido(3,4-b)indoles. J. Med. Chem., 2017, 60(1), 322-337.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01360] [PMID: 27996269]
[16]
Bhunia, S.S.; Singh, S.; Saxena, S.; Saxena, A.K. Pharmacophore modeling, docking and molecular dynamics studies on caspase-3 activators binding at β-tubulin site. Curr Comput Aided Drug Des, 2015, 11(1), 72-83.
[http://dx.doi.org/10.2174/1573409911666150701103342] [PMID: 26126610]
[17]
Saxena, M.; Bhunia, S.S.; Saxena, A.K. Molecular modelling studies on 2-substituted octahydropyrazinopyridoindoles for histamine H2 receptor antagonism. SAR QSAR Environ. Res., 2015, 26(7-9), 739-755.
[http://dx.doi.org/10.1080/1062936X.2015.1088572] [PMID: 26461804]
[18]
Pitta, E.; Tsolaki, E.; Geronikaki, A.; Petrović, J.; Glamočlija, J.; Soković, M.; Crespan, E.; Maga, G.; Bhunia, S.S.; Saxena, A.K. 4-Thiazolidinone derivatives as potent antimicrobial agents: microwave-assisted synthesis, biological evaluation and docking studies. MedChemComm, 2015, 6(2), 319-326.
[http://dx.doi.org/10.1039/C4MD00399C]
[19]
Gupta, A.K.; Bhunia, S.S.; Balaramnavar, V.M.; Saxena, A.K. Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors. SAR QSAR Environ. Res., 2011, 22(3), 239-263.
[http://dx.doi.org/10.1080/1062936X.2010.548830] [PMID: 21400356]
[20]
Ollikainen, N.; de Jong, R.M.; Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLOS Comput. Biol., 2015, 11(9)e1004335
[http://dx.doi.org/10.1371/journal.pcbi.1004335] [PMID: 26397464]
[21]
Zhao, Q. Protein flexibility as a biosignal. Crit. Rev. Eukaryot. Gene Expr., 2010, 20(2), 157-170.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v20.i2.60] [PMID: 21133845]
[22]
Clark, J.J.; Benson, M.L.; Smith, R.D.; Carlson, H.A. Inherent versus induced protein flexibility: Comparisons within and between apo and holo structures. PLOS Comput. Biol., 2019, 15(1)e1006705
[http://dx.doi.org/10.1371/journal.pcbi.1006705] [PMID: 30699115]
[23]
Narangoda, C.; Sakipov, S.N.; Kurnikova, M.G. AMPA receptor noncompetitive inhibitors occupy a promiscuous binding site. ACS Chem. Neurosci., 2019, 10(11), 4511-4521.
[http://dx.doi.org/10.1021/acschemneuro.9b00344] [PMID: 31596070]
[24]
Masureel, M.; Zou, Y.; Picard, L.P.; van der Westhuizen, E.; Mahoney, J.P.; Rodrigues, J.P.G.L.M.; Mildorf, T.J.; Dror, R.O.; Shaw, D.E.; Bouvier, M.; Pardon, E.; Steyaert, J.; Sunahara, R.K.; Weis, W.I.; Zhang, C.; Kobilka, B.K. Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat. Chem. Biol., 2018, 14(11), 1059-1066.
[http://dx.doi.org/10.1038/s41589-018-0145-x] [PMID: 30327561]
[25]
McCorvy, J.D.; Butler, K.V.; Kelly, B.; Rechsteiner, K.; Karpiak, J.; Betz, R.M.; Kormos, B.L.; Shoichet, B.K.; Dror, R.O.; Jin, J.; Roth, B.L. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol., 2018, 14(2), 126-134.
[http://dx.doi.org/10.1038/nchembio.2527] [PMID: 29227473]
[26]
Cavasotto, C.N. Homology models in docking and high-throughput docking. Curr. Top. Med. Chem., 2011, 11(12), 1528-1534.
[http://dx.doi.org/10.2174/156802611795860951] [PMID: 21510834]
[27]
Cavasotto, C.N.; Phatak, S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today, 2009, 14(13-14), 676-683.
[http://dx.doi.org/10.1016/j.drudis.2009.04.006] [PMID: 19422931]
[28]
Dapkūnas, J.; Olechnovič, K.; Venclovas, Č. Structural modeling of protein complexes: Current capabilities and challenges. Proteins, 2019, 87(12), 1222-1232.
[http://dx.doi.org/10.1002/prot.25774] [PMID: 31294859]
[29]
Sriram, K.; Insel, P.A.G.G. Protein-coupled receptors as targets for approved drugs: how many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[30]
Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov., 2017, 16(12), 829-842.
[http://dx.doi.org/10.1038/nrd.2017.178] [PMID: 29075003]
[31]
Michino, M.; Abola, E.; Brooks, C.L., III; Dixon, J.S.; Moult, J.; Stevens, R.C. GPCR Dock 2008 participants. Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat. Rev. Drug Discov., 2009, 8(6), 455-463.
[http://dx.doi.org/10.1038/nrd2877] [PMID: 19461661]
[32]
Kufareva, I.; Rueda, M.; Katritch, V.; Stevens, R.C.; Abagyan, R. GPCR Dock 2010 participants. Status of GPCR modeling and docking as reflected by community-wide GPCR Dock 2010 assessment. Structure, 2011, 19(8), 1108-1126.
[http://dx.doi.org/10.1016/j.str.2011.05.012] [PMID: 21827947]
[33]
Kufareva, I.; Katritch, V.; Stevens, R.C.; Abagyan, R. Participants of GPCR Dock 2013. Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure, 2014, 22(8), 1120-1139.
[http://dx.doi.org/10.1016/j.str.2014.06.012] [PMID: 25066135]
[34]
Nguyen, E.D.; Norn, C.; Frimurer, T.M.; Meiler, J. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. PLoS One, 2013, 8(7)e67302
[http://dx.doi.org/10.1371/journal.pone.0067302] [PMID: 23844000]
[35]
Castleman, P.N.; Sears, C.K.; Cole, J.A.; Baker, D.L.; Parrill, A.L. GPCR homology model template selection benchmarking: global versus local similarity measures. J. Mol. Graph. Model., 2019, 86, 235-246.
[http://dx.doi.org/10.1016/j.jmgm.2018.10.016] [PMID: 30390544]
[36]
Tautermann, C.S. GPCR homology model generation for lead optimization. Methods Mol. Biol., 2018, 1705, 115-131.
[http://dx.doi.org/10.1007/978-1-4939-7465-8_5] [PMID: 29188560]
[37]
Yarnitzky, T.; Levit, A.; Niv, M.Y. Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr. Opin. Drug Discov. Devel., 2010, 13(3), 317-325.
[PMID: 20443165]
[38]
Chen, H.; Fu, W.; Wang, Z.; Wang, X.; Lei, T.; Zhu, F.; Li, D.; Chang, S.; Xu, L.; Hou, T. Reliability of docking-based virtual screening for gpcr ligands with homology modeled structures: a case study of the angiotensin ii type i receptor. ACS Chem. Neurosci., 2019, 10(1), 677-689.
[http://dx.doi.org/10.1021/acschemneuro.8b00489] [PMID: 30265513]
[39]
Arimont, M.; Sun, S-L.; Leurs, R.; Smit, M.; de Esch, I.J.P.; de Graaf, C. Structural analysis of chemokine receptor-ligand interactions. J. Med. Chem., 2017, 60(12), 4735-4779.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01309] [PMID: 28165741]
[40]
Schaller, D.; Hagenow, S.; Stark, H.; Wolber, G. Ligand-guided homology modeling drives identification of novel histamine H3 receptor ligands. PLoS One, 2019, 14(6), e0218820-e0218820.
[http://dx.doi.org/10.1371/journal.pone.0218820] [PMID: 31237914]
[41]
Coudrat, T.; Simms, J.; Christopoulos, A.; Wootten, D.; Sexton, P.M. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLOS Comput. Biol., 2017, 13(11)e1005819
[http://dx.doi.org/10.1371/journal.pcbi.1005819] [PMID: 29131821]
[42]
Freyd, T.; Warszycki, D.; Mordalski, S.; Bojarski, A.J.; Sylte, I.; Gabrielsen, M. Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One, 2017, 12(3), e0173889-e0173889.
[http://dx.doi.org/10.1371/journal.pone.0173889] [PMID: 28323850]
[43]
Feng, X.; Ambia, J.; Chen, K.M.; Young, M.; Barth, P. Computational design of ligand-binding membrane receptors with high selectivity. Nat. Chem. Biol., 2017, 13(7), 715-723.
[http://dx.doi.org/10.1038/nchembio.2371] [PMID: 28459439]
[44]
Saxena, A.K.; Bhunia, S.S.; Saxena, M. Integration on ligand and structure based approaches in GPCRs.Structure and Function of GPCRs; Lebon, G., Ed.; Springer International Publishing: Cham, 2019, pp. 101-161.
[45]
Jaiteh, M.; Rodríguez-Espigares, I.; Selent, J.; Carlsson, J. Performance of virtual screening against GPCR homology models: Impact of template selection and treatment of binding site plasticity. PLOS Comput. Biol., 2020, 16(3), e1007680-e1007680.
[http://dx.doi.org/10.1371/journal.pcbi.1007680] [PMID: 32168319]
[46]
Levoin, N.; Calmels, T.; Krief, S.; Danvy, D.; Berrebi-Bertrand, I.; Lecomte, J.M.; Schwartz, J.C.; Capet, M. Homology model versus x-ray structure in receptor-based drug design: a retrospective analysis with the dopamine d3 receptor. ACS Med. Chem. Lett., 2011, 2(4), 293-297.
[http://dx.doi.org/10.1021/ml100288q] [PMID: 24900310]
[47]
Chien, E.Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G.W.; Hanson, M.A.; Shi, L.; Newman, A.H.; Javitch, J.A.; Cherezov, V.; Stevens, R.C. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science, 2010, 330(6007), 1091-1095.
[http://dx.doi.org/10.1126/science.1197410] [PMID: 21097933]
[48]
Phatak, S.S.; Gatica, E.A.; Cavasotto, C.N. Ligand-steered modeling and docking: A benchmarking study in class A G-protein-coupled receptors. J. Chem. Inf. Model., 2010, 50(12), 2119-2128.
[http://dx.doi.org/10.1021/ci100285f] [PMID: 21080692]
[49]
Cavasotto, C.N.; Orry, A.J.; Murgolo, N.J.; Czarniecki, M.F.; Kocsi, S.A.; Hawes, B.E.; O’Neill, K.A.; Hine, H.; Burton, M.S.; Voigt, J.H.; Abagyan, R.A.; Bayne, M.L.; Monsma, F.J., Jr Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J. Med. Chem., 2008, 51(3), 581-588.
[http://dx.doi.org/10.1021/jm070759m] [PMID: 18198821]
[50]
Kooistra, A.J.; Roumen, L.; Leurs, R.; de Esch, I.J.; de Graaf, C. From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol., 2013, 522, 279-336.
[http://dx.doi.org/10.1016/B978-0-12-407865-9.00015-7] [PMID: 23374191]
[51]
Spyrakis, F. BidonChanal, A.; Barril, X.; Luque, F.J. Protein flexibility and ligand recognition: challenges for molecular modeling. Curr. Top. Med. Chem., 2011, 11(2), 192-210.
[http://dx.doi.org/10.2174/156802611794863571] [PMID: 20939788]
[52]
Erickson, J.A.; Jalaie, M.; Robertson, D.H.; Lewis, R.A.; Vieth, M. Lessons in molecular recognition: the effects of ligand and protein flexibility on molecular docking accuracy. J. Med. Chem., 2004, 47(1), 45-55.
[http://dx.doi.org/10.1021/jm030209y] [PMID: 14695819]
[53]
Diehl, C.; Engström, O.; Delaine, T.; Håkansson, M.; Genheden, S.; Modig, K.; Leffler, H.; Ryde, U.; Nilsson, U.J.; Akke, M. Protein flexibility and conformational entropy in ligand design targeting the carbohydrate recognition domain of galectin-3. J. Am. Chem. Soc., 2010, 132(41), 14577-14589.
[http://dx.doi.org/10.1021/ja105852y] [PMID: 20873837]
[54]
Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein flexibility in drug discovery: from theory to computation. ChemMedChem, 2015, 10(7), 1141-1148.
[http://dx.doi.org/10.1002/cmdc.201500086] [PMID: 25891095]
[55]
Sotriffer, C.A. Accounting for induced-fit effects in docking: what is possible and what is not? Curr. Top. Med. Chem., 2011, 11(2), 179-191.
[http://dx.doi.org/10.2174/156802611794863544] [PMID: 20939789]
[56]
Xu, M.; Lill, M.A. Induced fit docking, and the use of QM/MM methods in docking. Drug Discov. Today. Technol., 2013, 10(3), e411-e418.
[http://dx.doi.org/10.1016/j.ddtec.2013.02.003] [PMID: 24050138]
[57]
Baumgartner, M.P.; Evans, D.A. Lessons learned in induced fit docking and metadynamics in the drug design data resource grand challenge 2. J. Comput. Aided Mol. Des., 2018, 32(1), 45-58.
[http://dx.doi.org/10.1007/s10822-017-0081-y] [PMID: 29127581]
[58]
Heo, L.; Feig, M. Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proc. Natl. Acad. Sci. USA, 2018, 115(52), 13276-13281.
[http://dx.doi.org/10.1073/pnas.1811364115] [PMID: 30530696]
[59]
Lindorff-Larsen, K.; Trbovic, N.; Maragakis, P.; Piana, S.; Shaw, D.E. Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J. Am. Chem. Soc., 2012, 134(8), 3787-3791.
[http://dx.doi.org/10.1021/ja209931w] [PMID: 22339051]
[60]
Gruebele, M. Protein dynamics in simulation and experiment. J. Am. Chem. Soc., 2014, 136(48), 16695-16697.
[http://dx.doi.org/10.1021/ja510614s] [PMID: 25465034]
[61]
Verma, P.; Tiwari, M.; Tiwari, V. In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. J. Biomol. Struct. Dyn., 2018, 36(5), 1182-1194.
[http://dx.doi.org/10.1080/07391102.2017.1317025] [PMID: 28393677]
[62]
Ibrahim, M.A.A.; Hassan, A.M.A. Comparative modeling and evaluation of leukotriene b4 receptors for selective drug discovery towards the treatment of inflammatory diseases. Protein J., 2018, 37(6), 518-530.
[http://dx.doi.org/10.1007/s10930-018-9797-3] [PMID: 30267300]
[63]
Hatfield, M.P.; Lovas, S. Conformational sampling techniques. Curr. Pharm. Des., 2014, 20(20), 3303-3313.
[http://dx.doi.org/10.2174/13816128113199990603] [PMID: 23947647]
[64]
Pradeepkiran, J.A.; Kumar, K.K.; Kumar, Y.N.; Bhaskar, M. Modeling, molecular dynamics, and docking assessment of transcription factor rho: a potential drug target in Brucella melitensis 16M. Drug Des. Devel. Ther., 2015, 9, 1897-1912.
[http://dx.doi.org/10.2147/DDDT.S77020] [PMID: 25848225]
[65]
Sahay, A.; Shakya, M. Structure prediction of dihydroflavonol 4- reductase and anthocyanidin synthase from spinach. Bioinformation, 2010, 5(6), 259-263.
[http://dx.doi.org/10.6026/97320630005259] [PMID: 21364828]
[66]
Kamberaj, H. Faster protein folding using enhanced conformational sampling of molecular dynamics simulation. J. Mol. Graph. Model., 2018, 81, 32-49.
[http://dx.doi.org/10.1016/j.jmgm.2018.02.008] [PMID: 29501958]
[67]
Rao, J.; Srimal, R.; Audry, E.; Carpy, A.; Saxena, A.K. Synthesis and molecular lipophilicity potential profiles of 1-((3- methylphenyl)piperazin-1-yl)-3-(thio(4-acetamido)phenyl)propane: a potential hypotensive agent. Med. Chem. Res., 1991, 1, 95-100.
[68]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org//10.2174/092986707781058805] [PMID: 17627520]
[69]
van der Horst, E.; van der Pijl, R.; Mulder-Krieger, T.; Bender, A.; IJzerman, A.P. Substructure-based virtual screening for adenosine a2a receptor ligands. ChemMedChem, 2011, 6(12), 2302-2311.
[http://dx.doi.org/10.1002/cmdc.201100369]
[70]
Saxena, A.K.; Ram, S.; Saxena, M.; Singh, N.; Prathipati, P.; Jain, P.C.; Singh, H.K.; Anand, N. QSAR studies in substituted 1,2,3,4,6,7,12,12a-octa-hydropyrazino[2′,1′:6,1]pyrido[3,4-b]indoles--a potent class of neuroleptics. Bioorg. Med. Chem., 2003, 11(9), 2085-2090.
[http://dx.doi.org/10.1016/S0968-0896(02)00652-1] [PMID: 12670659]
[71]
Chakrabarty, R.; Rao, J.; Anand, A.; Roy, A.D.; Roy, R.; Shankar, G.; Dua, P.R.; Saxena, A.K. Rational design, synthesis and evaluation of (6aR*,11bS*)-1-(4-fluorophenyl)-4-{7-[4-(4-fluorophenyl)-4-oxobutyl]1,2,3,4,6,6a,7,11b,12,12a(RS)-decahydropyrazino[2′,1′:6,1]pyrido[3,4-b]indol-2-yl}-butan-1-one as a potential neuroleptic agent. Bioorg. Med. Chem., 2007, 15(23), 7361-7367.
[http://dx.doi.org/10.1016/j.bmc.2007.07.018] [PMID: 17869521]
[72]
Guvench, O. Computational functional group mapping for drug discovery. Drug Discov. Today, 2016, 21(12), 1928-1931.
[http://dx.doi.org/10.1016/j.drudis.2016.06.030] [PMID: 27393487]
[73]
Murray, C.W.; Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem., 2009, 1(3), 187-192.
[http://dx.doi.org/10.1038/nchem.217] [PMID: 21378847]
[74]
Erlanson, D.A.; McDowell, R.S.; O’Brien, T. Fragment-based drug discovery. J. Med. Chem., 2004, 47(14), 3463-3482.
[http://dx.doi.org/10.1021/jm040031v] [PMID: 15214773]
[75]
Erlanson, D.A.; Wells, J.A.; Braisted, A.C. Tethering: fragment-based drug discovery. Annu. Rev. Biophys. Biomol. Struct., 2004, 33(1), 199-223.
[http://dx.doi.org/10.1146/annurev.biophys.33.110502.140409] [PMID: 15139811]
[76]
Erlanson, D.A. Introduction to fragment-based drug discovery. Top. Curr. Chem., 2012, 317, 1-32.
[PMID: 21695633]
[77]
Kashyap, A.; Singh, P.K.; Silakari, O. Counting on fragment based drug design approach for drug discovery. Curr. Top. Med. Chem., 2018, 18(27), 2284-2293.
[http://dx.doi.org/10.2174/1568026619666181130134250] [PMID: 30499406]
[78]
Erlanson, D.A.; Davis, B.J.; Jahnke, W. Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol., 2019, 26(1), 9-15.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.001] [PMID: 30482678]
[79]
Tripathi, R.C.; Saxena, A.K. Structure activity-relationship studies in 1-(3/4-acetamidophenoxy)-3-(4-arylpiperazin-1-yl)propanes for their affinity for central 5HT2 and D2 receptors. Med. Chem. Res., 1994, 4(1), 259-266.
[80]
Lipinski, C.A. Bioisosterism in Drug Design.Annu. Rep. Med. Chem; Bailey, D.M., Ed.; Academic Press, 1986, Vol. 21, pp. 283-291.
[81]
Lima, L.M.; Barreiro, E.J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[82]
Rusig, I.; Léger, J.M.; Laguerre, M.; Saxena, A.K.; Carpy, A. Structure and molecular properties of (1)-centbutindole. comparison with haloperidol. J. Chem. Crystallogr., 1995, 25(8), 443-451.
[http://dx.doi.org/10.1007/BF01665699]
[83]
Rusig, I.; Laguerre, M.; Carpy, A.; Saxena, A.K. Cheminform abstract: Comparison of molecular properties of d2receptor antagonists from different chemical families of neuroleptics. ChemInform, 2010, 27(21)
[84]
Russig, I.; Laquerre, M.; Carpy, A.; Saxena, A.K. Comparison of molecular properties of D2-receptor antagonists from different chemical families of neuroleptics. Med. Chem. Res., 1995, 5(1), 631-645.
[85]
Salmas, R.E.; Yurtsever, M.; Stein, M.; Durdagi, S. Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor (D2R) and investigation of drug/receptor interactions. Mol. Divers., 2015, 19(2), 321-332.
[http://dx.doi.org/10.1007/s11030-015-9569-3] [PMID: 25652238]
[86]
Stein, A.; Kortemme, T. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One, 2013, 8(5)e63090
[http://dx.doi.org/10.1371/journal.pone.0063090] [PMID: 23704889]
[87]
Repasky, M.P.; Shelley, M.; Friesner, R.A. Flexible ligand docking with Glide. Curr. Protoc. Bioinformatics, 2007, 18(1), 8.12.1-8.12.36.
[http://dx.doi.org//10.1002/0471250953.bi0812s18]
[88]
Salmas, R.E.; Yurtsever, M.; Durdagi, S. Atomistic molecular dynamics simulations of typical and atypical antipsychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism. J. Biomol. Struct. Dyn., 2017, 35(4), 738-754.
[http://dx.doi.org/10.1080/07391102.2016.1159986] [PMID: 26923489]
[89]
Bhargava, K.; Nath, R.; Seth, P.K.; Pant, K.K.; Dixit, R.K. Molecular Docking studies of D2 Dopamine receptor with Risperidone derivatives. Bioinformation, 2014, 10(1), 8-12.
[http://dx.doi.org/10.6026/97320630010008] [PMID: 24516319]
[90]
Ehrlich, K.; Götz, A.; Bollinger, S.; Tschammer, N.; Bettinetti, L.; Härterich, S.; Hübner, H.; Lanig, H.; Gmeiner, P. Dopamine D2, D3, and D4 selective phenylpiperazines as molecular probes to explore the origins of subtype specific receptor binding. J. Med. Chem., 2009, 52(15), 4923-4935.
[http://dx.doi.org/10.1021/jm900690y] [PMID: 19606869]
[91]
Sukalovic, V.; Ignjatovic, D.; Tovilovic, G.; Andric, D.; Shakib, K.; Kostic-Rajacic, S.; Soskic, V. Interactions of N-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-2-aryl-2-yl-acetamides and 1-{[2-(4-phenyl-piperazin-1-yl)-ethyl]-phenyl}-3-aryl-2-yl-ureas with dopamine D2 and 5-hydroxytryptamine 5HT(1A) receptors. Bioorg. Med. Chem. Lett., 2012, 22(12), 3967-3972.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.098] [PMID: 22607670]
[92]
Sukalovic, V.; Soskic, V.; Sencanski, M.; Andric, D.; Kostic-Rajacic, S. Determination of key receptor-ligand interactions of dopaminergic arylpiperazines and the dopamine D2 receptor homology model. J. Mol. Model., 2013, 19(4), 1751-1762.
[http://dx.doi.org/10.1007/s00894-012-1731-6] [PMID: 23300056]
[93]
Soskic, V.; Sukalovic, V.; Kostic-Rajacic, S. Exploration of n-arylpiperazine binding sites of d2 dopaminergic receptor. Mini Rev. Med. Chem., 2015, 15(12), 988-1001.
[http://dx.doi.org/10.2174/138955751512150731112448] [PMID: 25723457]
[94]
Ichiyama, K.; Yokoyama-Kumakura, S.; Tanaka, Y.; Tanaka, R.; Hirose, K.; Bannai, K.; Edamatsu, T.; Yanaka, M.; Niitani, Y.; Miyano-Kurosaki, N.; Takaku, H.; Koyanagi, Y.; Yamamoto, N. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity. Proc. Natl. Acad. Sci. USA, 2003, 100(7), 4185-4190.
[http://dx.doi.org/10.1073/pnas.0630420100] [PMID: 12642669]
[95]
Kawatkar, S.P.; Yan, M.; Gevariya, H.; Lim, M.Y.; Eisold, S.; Zhu, X.; Huang, Z.; An, J. Computational analysis of the structural mechanism of inhibition of chemokine receptor CXCR4 by small molecule antagonists. Exp. Biol. Med. (Maywood), 2011, 236(7), 844-850.
[http://dx.doi.org/10.1258/ebm.2011.010345] [PMID: 21697335]
[96]
Rosenkilde, M.M.; Gerlach, L.O.; Jakobsen, J.S.; Skerlj, R.T.; Bridger, G.J.; Schwartz, T.W. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J. Biol. Chem., 2004, 279(4), 3033-3041.
[http://dx.doi.org/10.1074/jbc.M309546200] [PMID: 14585837]
[97]
Gerlach, L.O.; Skerlj, R.T.; Bridger, G.J.; Schwartz, T.W. Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J. Biol. Chem., 2001, 276(17), 14153-14160.
[http://dx.doi.org/10.1074/jbc.M010429200] [PMID: 11154697]
[98]
Wong, R.S.; Bodart, V.; Metz, M.; Labrecque, J.; Bridger, G.; Fricker, S.P. Comparison of the potential multiple binding modes of bicyclam, monocylam, and noncyclam small-molecule CXC chemokine receptor 4 inhibitors. Mol. Pharmacol., 2008, 74(6), 1485-1495.
[http://dx.doi.org/10.1124/mol.108.049775] [PMID: 18768385]
[99]
Neves, M.A.; Simões, S.; Sá e Melo, M.L. Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J. Comput. Aided Mol. Des., 2010, 24(12), 1023-1033.
[http://dx.doi.org/10.1007/s10822-010-9393-x] [PMID: 20960031]
[100]
Pettersson, S.; Pérez-Nueno, V.I.; Mena, M.P.; Clotet, B.; Esté, J.A.; Borrell, J.I.; Teixidó, J. Novel monocyclam derivatives as HIV entry inhibitors: Design, synthesis, anti-HIV evaluation, and their interaction with the CXCR4 co-receptor. ChemMedChem, 2010, 5(8), 1272-1281.
[http://dx.doi.org/10.1002/cmdc.201000124] [PMID: 20533501]
[101]
Kim, S.K.; Gao, Z.G.; Jeong, L.S.; Jacobson, K.A. Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J. Mol. Graph. Model., 2006, 25(4), 562-577.
[http://dx.doi.org/10.1016/j.jmgm.2006.05.004] [PMID: 16793299]
[102]
Levit, A.; Barak, D.; Behrens, M.; Meyerhof, W.; Niv, M.Y. Homology model-assisted elucidation of binding sites in GPCRs. Methods Mol. Biol., 2012, 914, 179-205.
[http://dx.doi.org/10.1007/978-1-62703-023-6_11] [PMID: 22976029]
[103]
Balasubramanian, P.K.; Balupuri, A.; Kothandan, G.; Cho, S.J. In silico study of 1-(4-Phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl) ethanones derivatives as CCR1 antagonist: homology modeling, docking and 3D-QSAR approach. Bioorg. Med. Chem. Lett., 2014, 24(3), 928-933.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.065] [PMID: 24424131]
[104]
Kaczor, A.A.; Żuk, J.; Matosiuk, D. Comparative molecular field analysis and molecular dynamics studies of the dopamine D2 receptor antagonists without a protonatable nitrogen atom. Med. Chem. Res., 2018, 27(4), 1149-1166.
[http://dx.doi.org/10.1007/s00044-018-2137-5] [PMID: 29576721]
[105]
Evers, A.; Klabunde, T. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J. Med. Chem., 2005, 48(4), 1088-1097.
[http://dx.doi.org/10.1021/jm0491804] [PMID: 15715476]
[106]
Gadhe, C.G.; Kim, M.H. Insights into the binding modes of CC chemokine receptor 4 (CCR4) inhibitors: a combined approach involving homology modelling, docking, and molecular dynamics simulation studies. Mol. Biosyst., 2015, 11(2), 618-634.
[http://dx.doi.org/10.1039/C4MB00568F] [PMID: 25474265]
[107]
Schlegel, B.; Laggner, C.; Meier, R.; Langer, T.; Schnell, D.; Seifert, R.; Stark, H.; Höltje, H.D.; Sippl, W. Generation of a homology model of the human histamine H(3) receptor for ligand docking and pharmacophore-based screening. J. Comput. Aided Mol. Des., 2007, 21(8), 437-453.
[http://dx.doi.org/10.1007/s10822-007-9127-x] [PMID: 17668276]
[108]
Haghighi, O.; Davaeifar, S.; Zahiri, H.S.; Maleki, H.; Noghabi, K.A. Homology modeling and molecular docking studies of glutamate dehydrogenase (gdh) from Cyanobacterium synechocystis sp. pcc 6803. Int. J. Pept. Res. Ther., 2020, 26(2), 783-793.
[http://dx.doi.org/10.1007/s10989-019-09886-4]
[109]
Chaudhaery, S.S.; Roy, K.K.; Shakya, N.; Saxena, G.; Sammi, S.R.; Nazir, A.; Nath, C.; Saxena, A.K. Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J. Med. Chem., 2010, 53(17), 6490-6505.
[http://dx.doi.org/10.1021/jm100573q] [PMID: 20684567]
[110]
Massink, A.; Amelia, T.; Karamychev, A.; IJzerman, A.P. Allosteric modulation of G protein-coupled receptors by amiloride and its derivatives. Perspectives for drug discovery? Med. Res. Rev., 2020, 40(2), 683-708.
[http://dx.doi.org/10.1002/med.21633] [PMID: 31495942]
[111]
Balaramnavar, V.M.; Khan, I.A.; Siddiqui, J.A.; Khan, M.P.; Chakravarti, B.; Sharan, K.; Swarnkar, G.; Rastogi, N.; Siddiqui, H.H.; Mishra, D.P.; Chattopadhyay, N.; Saxena, A.K. Identification of novel 2-((1-(benzyl(2-hydroxy-2-phenylethyl)amino)-1-oxo-3-phenylpropan-2-yl)carbamoyl)benzoic acid analogues as BMP-2 stimulators. J. Med. Chem., 2012, 55(19), 8248-8259.
[http://dx.doi.org/10.1021/jm300985d] [PMID: 22978808]
[112]
Saxena, M.; Bhunia, S.S.; Saxena, A.K. Docking studies of novel pyrazinopyridoindoles class of antihistamines with the homology modelled H(1)-receptor. SAR QSAR Environ. Res., 2012, 23(3-4), 311-325.
[http://dx.doi.org/10.1080/1062936X.2012.664561] [PMID: 22463083]
[113]
Gupta, A.K.; Varshney, K.; Singh, N.; Mishra, V.; Saxena, M.; Palit, G.; Saxena, A.K. Identification of novel amino acid derived CCK-2R antagonists as potential antiulcer agent: homology modeling, design, synthesis, and pharmacology. J. Chem. Inf. Model., 2013, 53(1), 176-187.
[http://dx.doi.org/10.1021/ci3003655] [PMID: 23240656]
[114]
Singh, S.; Roy, K.K.; Khan, S.R.; Kashyap, V.K.; Sharma, A.; Jaiswal, S.; Sharma, S.K.; Krishnan, M.Y.; Chaturvedi, V.; Lal, J.; Sinha, S.; Dasgupta, A.; Srivastava, R.; Saxena, A.K. Novel, potent, orally bioavailable and selective mycobacterial ATP synthase inhibitors that demonstrated activity against both replicating and non-replicating M. tuberculosis. Bioorg. Med. Chem., 2015, 23(4), 742-752.
[http://dx.doi.org/10.1016/j.bmc.2014.12.060] [PMID: 25614114]
[115]
Balaramnavar, V.M.; Srivastava, R.; Rahuja, N.; Gupta, S.; Rawat, A.K.; Varshney, S.; Chandasana, H.; Chhonker, Y.S.; Doharey, P.K.; Kumar, S.; Gautam, S.; Srivastava, S.P.; Bhatta, R.S.; Saxena, J.K.; Gaikwad, A.N.; Srivastava, A.K.; Saxena, A.K. Identification of novel PTP1B inhibitors by pharmacophore based virtual screening, scaffold hopping and docking. Eur. J. Med. Chem., 2014, 87, 578-594.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.097] [PMID: 25299681]
[116]
Daga, P.R.; Polgar, W.E.; Zaveri, N.T. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification. J. Chem. Inf. Model., 2014, 54(10), 2732-2743.
[http://dx.doi.org/10.1021/ci500291a] [PMID: 25148595]
[117]
Daga, P.R.; Zaveri, N.T. Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation. Proteins, 2012, 80(8), 1948-1961.
[http://dx.doi.org/10.1002/prot.24077] [PMID: 22489047]
[118]
Diaz, C.; Leplatois, P.; Angelloz-Nicoud, P.; Lecomte, M.; Josse, A.; Delpech, M.; Pecceu, F.; Loison, G.; Shire, D.; Pascal, M.; Ferrara, P.; Ferran, E. Differential virtual screening (dvs) with active and inactive molecular models for finding and profiling gpcr modulators: case of the cck1 receptor. Mol. Inform., 2011, 30(4), 345-358.
[http://dx.doi.org/10.1002/minf.201000180] [PMID: 27466951]
[119]
Saxena, M.; Saxena, A. A Developments in antihistamines (H1). In: Progress in Drug Research;Birkhauser Verlag: Basel; , 1992; 39, pp. 35-125.
[120]
Saxena, M.; Agarwal, S.K.; Patnaik, G.K.; Saxena, A.K. Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of [beta-(Aroylamino)ethyl]piperazines and -piperidines and [2-[(Arylamino)carbonyl]ethyl]piperazines, -pyrazinopyri-doindoles, and -pyrazinoisoquinolines. A new class of potent H1 antagonists. J. Med. Chem., 1990, 33(11), 2970-2976.
[http://dx.doi.org/10.1021/jm00173a011] [PMID: 1977909]
[121]
Saxena, A.K.; Saxena, M.; Chi, H.; Wiese, M. Identification of a pharmacophore by application of hypothetical active site lattice (HASL) approach. Med. Chem. Res., 1993, 3(1), 201-208.
[122]
Saxena, M.; Gaur, S.; Prathipati, P.; Saxena, A.K. Synthesis of some substituted pyrazinopyridoindoles and 3D QSAR studies along with related compounds: piperazines, piperidines, pyrazinoisoquinolines, and diphenhydramine, and its semi-rigid analogs as antihistamines (H1). Bioorg. Med. Chem., 2006, 14(24), 8249-8258.
[http://dx.doi.org/10.1016/j.bmc.2006.09.018] [PMID: 17010624]
[123]
Saxena, A.K.; Dhaon, M.K.; Ram, S.; Saxena, M.; Jain, P.C.; Patnaik, G.K.; Anand, N. Synthesis and QSAR in 2-substituted 1,2,3,4,6,12,12a-octahydropyrzino-(2′,1′:6,1)-pyrido(3,4-b)indoles. A new class of H-antagonists. Indian J. Chem., 1983, 22b(1), 1224-1232.
[124]
Saxena, A.K.; Alam, I.; Dixit, A.; Saxena, M. Internet resources in GPCR modelling. SAR QSAR Environ. Res., 2008, 19(1-2), 11-25.
[http://dx.doi.org/10.1080/10629360701844126] [PMID: 18311631]
[125]
Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G.W.; Kobayashi, T.; Stevens, R.C.; Iwata, S. Structure of the human histamine H1 receptor complex with doxepin. Nature, 2011, 475(7354), 65-70.
[http://dx.doi.org/10.1038/nature10236] [PMID: 21697825]
[126]
Vass, M.; Schmidt, É.; Horti, F.; Keserű, G.M. Virtual fragment screening on GPCRs: a case study on dopamine D3 and histamine H4 receptors. Eur. J. Med. Chem., 2014, 77, 38-46.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.034] [PMID: 24607587]
[127]
Tarcsay, A.; Paragi, G.; Vass, M.; Jójárt, B.; Bogár, F.; Keserű, G.M. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J. Chem. Inf. Model., 2013, 53(11), 2990-2999.
[http://dx.doi.org/10.1021/ci400087b] [PMID: 24116387]
[128]
Gandhimathi, A.; Sowdhamini, R. Molecular modelling of human 5-hydroxytryptamine receptor (5-HT2A) and virtual screening studies towards the identification of agonist and antagonist molecules. J. Biomol. Struct. Dyn., 2016, 34(5), 952-970.
[http://dx.doi.org/10.1080/07391102.2015.1062802] [PMID: 26327576]
[129]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[130]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[131]
Kołaczkowski, M.; Bucki, A.; Feder, M.; Pawłowski, M. Ligand-optimized homology models of D1 and D2 dopamine receptors: application for virtual screening. J. Chem. Inf. Model., 2013, 53(3), 638-648.
[http://dx.doi.org/10.1021/ci300413h] [PMID: 23398329]
[132]
Ghamari, N.; Zarei, O.; Reiner, D.; Dastmalchi, S.; Stark, H.; Hamzeh-Mivehroud, M. Histamine H3 receptor ligands by hybrid virtual screening, docking, molecular dynamics simulations, and investigation of their biological effects. Chem. Biol. Drug Des., 2019, 93(5), 832-843.
[http://dx.doi.org/10.1111/cbdd.13471] [PMID: 30586225]
[133]
Gatica, E.A.; Cavasotto, C.N. Ligand and decoy sets for docking to G protein-coupled receptors. J. Chem. Inf. Model., 2012, 52(1), 1-6.
[http://dx.doi.org/10.1021/ci200412p] [PMID: 22168315]
[134]
Pala, D.; Beuming, T.; Sherman, W.; Lodola, A.; Rivara, S.; Mor, M. Structure-based virtual screening of MT2 melatonin receptor: influence of template choice and structural refinement. J. Chem. Inf. Model., 2013, 53(4), 821-835.
[http://dx.doi.org/10.1021/ci4000147] [PMID: 23541165]
[135]
Roy, K.K.; Saxena, A.K. Structural basis for the β-adrenergic receptor subtype selectivity of the representative agonists and antagonists. J. Chem. Inf. Model., 2011, 51(6), 1405-1422.
[http://dx.doi.org/10.1021/ci2000874] [PMID: 21534556]
[136]
Shakya, N.; Roy, K.K.; Saxena, A.K. Substituted 1,2,3,4-tetrahydroquinolin-6-yloxypropanes as β3-adrenergic receptor agonists: design, synthesis, biological evaluation and pharmacophore modeling. Bioorg. Med. Chem., 2009, 17(2), 830-847.
[http://dx.doi.org/10.1016/j.bmc.2008.11.030] [PMID: 19081260]
[137]
Prathipati, P.; Saxena, A.K. Characterization of beta3-adrenergic receptor: determination of pharmacophore and 3D QSAR model for beta3 adrenergic receptor agonism. J. Comput. Aided Mol. Des., 2005, 19(2), 93-110.
[http://dx.doi.org/10.1007/s10822-005-1558-7] [PMID: 16075304]
[138]
Saxena, A.K.; Roy, K.K. Hierarchical virtual screening: identification of potential high-affinity and selective β(3)-adrenergic receptor agonists. SAR QSAR Environ. Res., 2012, 23(5-6), 389-407.
[http://dx.doi.org/10.1080/1062936X.2012.664824] [PMID: 22452658]
[139]
Duan, X.; Zhang, M.; Zhang, X.; Wang, F.; Lei, M. Molecular modeling and docking study on dopamine D2-like and serotonin 5-HT2A receptors. J. Mol. Graph. Model., 2015, 57, 143-155.
[http://dx.doi.org/10.1016/j.jmgm.2015.01.014] [PMID: 25728902]
[140]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[141]
Yap, B.K.; Buckle, M.J.; Doughty, S.W. Homology modeling of the human 5-HT1A, 5-HT 2A, D1, and D2 receptors: model refinement with molecular dynamics simulations and docking evaluation. J. Mol. Model., 2012, 18(8), 3639-3655.
[http://dx.doi.org/10.1007/s00894-012-1368-5] [PMID: 22354276]
[142]
Lapinsh, M.; Gutcaits, A.; Prusis, P.; Post, C.; Lundstedt, T.; Wikberg, J.E. Classification of G-protein coupled receptors by alignment-independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci., 2002, 11(4), 795-805.
[http://dx.doi.org/10.1110/ps.2500102] [PMID: 11910023]
[143]
Kling, R.C.; Lanig, H.; Clark, T.; Gmeiner, P. Active-state models of ternary GPCR complexes: determinants of selective receptor-G-protein coupling. PLoS One, 2013, 8(6), e67244-e67244.
[http://dx.doi.org/10.1371/journal.pone.0067244] [PMID: 23826246]
[144]
Rasmussen, S.G.; DeVree, B.T.; Zou, Y.; Kruse, A.C.; Chung, K.Y.; Kobilka, T.S.; Thian, F.S.; Chae, P.S.; Pardon, E.; Calinski, D.; Mathiesen, J.M.; Shah, S.T.; Lyons, J.A.; Caffrey, M.; Gellman, S.H.; Steyaert, J.; Skiniotis, G.; Weis, W.I.; Sunahara, R.K.; Kobilka, B.K. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature, 2011, 477(7366), 549-555.
[http://dx.doi.org/10.1038/nature10361] [PMID: 21772288]
[145]
Tschammer, N.; Bollinger, S.; Kenakin, T.; Gmeiner, P. Histidine 6.55 is a major determinant of ligand-biased signaling in dopamine D2L receptor. Mol. Pharmacol., 2011, 79(3), 575-585.
[http://dx.doi.org/10.1124/mol.110.068106] [PMID: 21163968]
[146]
Tschammer, N.; Elsner, J.; Goetz, A.; Ehrlich, K.; Schuster, S.; Ruberg, M.; Kühhorn, J.; Thompson, D.; Whistler, J.; Hübner, H.; Gmeiner, P. Highly potent 5-aminotetrahydropyrazolopyridines: enantioselective dopamine D3 receptor binding, functional selectivity, and analysis of receptor-ligand interactions. J. Med. Chem., 2011, 54(7), 2477-2491.
[http://dx.doi.org/10.1021/jm101639t] [PMID: 21388142]
[147]
Kling, R.C.; Tschammer, N.; Lanig, H.; Clark, T.; Gmeiner, P. Active-state model of a dopamine D2 receptor-Gαi complex stabilized by aripiprazole-type partial agonists. PLoS One, 2014, 9(6)e100069
[http://dx.doi.org/10.1371/journal.pone.0100069] [PMID: 24932547]
[148]
Fowler, J.C.; Bhattacharya, S.; Urban, J.D.; Vaidehi, N.; Mailman, R.B. Receptor conformations involved in dopamine D(2L) receptor functional selectivity induced by selected transmembrane-5 serine mutations. Mol. Pharmacol., 2012, 81(6), 820-831.
[http://dx.doi.org/10.1124/mol.111.075457] [PMID: 22416052]
[149]
Platania, C.B.M.; Salomone, S.; Leggio, G.M.; Drago, F.; Bucolo, C. Homology modeling of dopamine D2 and D3 receptors: molecular dynamics refinement and docking evaluation. PLoS One, 2012, 7(9)e44316
[http://dx.doi.org/10.1371/journal.pone.0044316] [PMID: 22970199]
[150]
Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2), 195-201.
[http://dx.doi.org/10.1093/bioinformatics/bti770] [PMID: 16301204]
[151]
Kiefer, F.; Arnold, K.; Künzli, M.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res., 2009, 37(Database issue), D387-D392.
[http://dx.doi.org/10.1093/nar/gkn750] [PMID: 18931379]
[152]
Ortega, R.; Hübner, H.; Gmeiner, P.; Masaguer, C.F. Aromatic ring functionalization of benzolactam derivatives: new potent dopamine D3 receptor ligands. Bioorg. Med. Chem. Lett., 2011, 21(9), 2670-2674.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.083] [PMID: 21273071]
[153]
Krogsgaard-Larsen, N.; Harpsøe, K.; Kehler, J.; Christoffersen, C.T.; Brøsen, P.; Balle, T. Revision of the classical dopamine D2 agonist pharmacophore based on an integrated medicinal chemistry, homology modelling and computational docking approach. Neurochem. Res., 2014, 39(10), 1997-2007.
[http://dx.doi.org/10.1007/s11064-014-1314-2] [PMID: 25056287]
[154]
Wang, C.; Jiang, Y.; Ma, J.; Wu, H.; Wacker, D.; Katritch, V.; Han, G.W.; Liu, W.; Huang, X-P.; Vardy, E.; McCorvy, J.D.; Gao, X.; Zhou, X.E.; Melcher, K.; Zhang, C.; Bai, F.; Yang, H.; Yang, L.; Jiang, H.; Roth, B.L.; Cherezov, V.; Stevens, R.C.; Xu, H.E. Structural basis for molecular recognition at serotonin receptors. Science, 2013, 340(6132), 610-614.
[http://dx.doi.org/10.1126/science.1232807] [PMID: 23519210]
[155]
Sleno, R.; Hébert, T.E. The dynamics of gpcr oligomerization and their functional consequences. Int. Rev. Cell Mol. Biol., 2018, 338, 141-171.
[http://dx.doi.org/10.1016/bs.ircmb.2018.02.005] [PMID: 29699691]
[156]
Ng, H.K.H.; Chow, B.K.C. Oligomerization of family B GPCRs: Exploration in inter-family oligomer formation. Front. Endocrinol. (Lausanne), 2015, 6(10)
[157]
Gahbauer, S.; Böckmann, R.A. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front. Physiol., 2016, 7, 494.
[http://dx.doi.org/10.3389/fphys.2016.00494]
[158]
Somvanshi, R.K.; Kumar, U. Pathophysiology of gpcr homo- and heterodimerization: special emphasis on somatostatin receptors. Pharmaceuticals (Basel), 2012, 5(5), 417-446.
[http://dx.doi.org/10.3390/ph5050417] [PMID: 24281555]
[159]
Ferré, S.; Casadó, V.; Devi, L.A.; Filizola, M.; Jockers, R.; Lohse, M.J.; Milligan, G.; Pin, J-P.; Guitart, X. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev., 2014, 66(2), 413-434.
[http://dx.doi.org/10.1124/pr.113.008052] [PMID: 24515647]
[160]
Kleinau, G.; Müller, A.; Biebermann, H. Oligomerization of GPCRs involved in endocrine regulation. J. Mol. Endocrinol., 2016, 57(1), R59-R80.
[http://dx.doi.org/10.1530/JME-16-0049] [PMID: 27151573]
[161]
Casadó, V.; Cortés, A.; Mallol, J.; Pérez-Capote, K.; Ferré, S.; Lluis, C.; Franco, R.; Canela, E.I. GPCR homomers and heteromers: a better choice as targets for drug development than GPCR monomers? Pharmacol. Ther., 2009, 124(2), 248-257.
[http://dx.doi.org/10.1016/j.pharmthera.2009.07.005] [PMID: 19664655]
[162]
Fuxe, K.; Marcellino, D.; Borroto-Escuela, D.O.; Frankowska, M.; Ferraro, L.; Guidolin, D.; Ciruela, F.; Agnati, L.F. The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J. Recept. Signal Transduct. Res., 2010, 30(5), 272-283.
[http://dx.doi.org/10.3109/10799893.2010.506191] [PMID: 20684666]
[163]
Kaczor, A.A.; Jörg, M.; Capuano, B. The dopamine D2 receptor dimer and its interaction with homobivalent antagonists: homology modeling, docking and molecular dynamics. J. Mol. Model., 2016, 22(9), 203-203.
[http://dx.doi.org/10.1007/s00894-016-3065-2] [PMID: 27491852]
[164]
Kaufmann, K.W.; Lemmon, G.H.; Deluca, S.L.; Sheehan, J.H.; Meiler, J. Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry, 2010, 49(14), 2987-2998.
[http://dx.doi.org/10.1021/bi902153g] [PMID: 20235548]
[165]
Kaczor, A.A.; Żuk, J.; Matosiuk, D. Comparative molecular field analysis and molecular dynamics studies of the dopamine D(2) receptor antagonists without a protonatable nitrogen atom. Med. Chem. Res., 2018, 27(4), 1149-1166.
[166]
Kaczor, A.A.; Silva, A.G.; Loza, M.I.; Kolb, P.; Castro, M.; Poso, A. Structure-based virtual screening for dopamine d2 receptor ligands as potential antipsychotics. ChemMedChem, 2016, 11(7), 718-729.
[http://dx.doi.org/10.1002/cmdc.201500599] [PMID: 26990027]
[167]
Kota, K.; Kuzhikandathil, E.V.; Afrasiabi, M.; Lacy, B.; Kontoyianni, M.; Crider, A.M.; Song, D. Identification of key residues involved in the activation and signaling properties of dopamine D3 receptor. Pharmacol. Res., 2015, 99, 174-184.
[http://dx.doi.org/10.1016/j.phrs.2015.05.016] [PMID: 26116441]
[168]
Nielsen, J.E.; Andersen, K.V.; Honig, B.; Hooft, R.W.; Klebe, G.; Vriend, G.; Wade, R.C. Improving macromolecular electrostatics calculations. Protein Eng., 1999, 12(8), 657-662.
[http://dx.doi.org/10.1093/protein/12.8.657] [PMID: 10469826]
[169]
Conn, P.J.; Christopoulos, A.; Lindsley, C.W. Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat. Rev. Drug Discov., 2009, 8(1), 41-54.
[http://dx.doi.org/10.1038/nrd2760] [PMID: 19116626]
[170]
Thaker, T.M.; Kaya, A.I.; Preininger, A.M.; Hamm, H.E.; Iverson, T.M. Allosteric mechanisms of G protein-Coupled Receptor signaling: a structural perspective. Methods Mol. Biol., 2012, 796, 133-174.
[http://dx.doi.org/10.1007/978-1-61779-334-9_8] [PMID: 22052489]
[171]
Jiang, Y.; Yuan, Y.; Zhang, X.; Liang, T.; Guo, Y.; Li, M.; Pu, X. Use of network model to explore dynamic and allosteric properties of three GPCR homodimers. RSC Advances, 2016, 6(108), 106327-106339.
[http://dx.doi.org/10.1039/C6RA18243G]
[172]
Ivetac, A.; McCammon, J.A. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem. Biol. Drug Des., 2010, 76(3), 201-217.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01012.x] [PMID: 20626410]
[173]
Carlsson, J.; Coleman, R.G.; Setola, V.; Irwin, J.J.; Fan, H.; Schlessinger, A.; Sali, A.; Roth, B.L.; Shoichet, B.K. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat. Chem. Biol., 2011, 7(11), 769-778.
[http://dx.doi.org/10.1038/nchembio.662] [PMID: 21926995]
[174]
Obiol-Pardo, C.; López, L.; Pastor, M.; Selent, J. Progress in the structural prediction of G protein-coupled receptors: D3 receptor in complex with eticlopride. Proteins, 2011, 79(6), 1695-1703.
[http://dx.doi.org/10.1002/prot.23021] [PMID: 21491496]
[175]
Bhattacharya, S.; Lam, A.R.; Li, H.; Balaraman, G.; Niesen, M.J.M.; Vaidehi, N. Critical analysis of the successes and failures of homology models of G protein-coupled receptors. Proteins, 2013, 81(5), 729-739.
[http://dx.doi.org/10.1002/prot.24195] [PMID: 23042299]
[176]
Loo, J.S.E.; Emtage, A.L.; Ng, K.W.; Yong, A.S.J.; Doughty, S.W. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment. J. Mol. Graph. Model., 2018, 80, 38-47.
[http://dx.doi.org/10.1016/j.jmgm.2017.12.017] [PMID: 29306746]
[177]
Urmi, K.F.; Finch, A.M.; Griffith, R. Template selection and refinement considerations for modelling aminergic GPCR-ligand complexes. J. Mol. Graph. Model., 2017, 76, 488-503.
[http://dx.doi.org/10.1016/j.jmgm.2017.07.030] [PMID: 28818718]
[178]
Vilar, S.; Ferino, G.; Phatak, S.S.; Berk, B.; Cavasotto, C.N.; Costanzi, S. Docking-based virtual screening for ligands of G protein-coupled receptors: not only crystal structures but also in silico models. J. Mol. Graph. Model., 2011, 29(5), 614-623.
[http://dx.doi.org/10.1016/j.jmgm.2010.11.005] [PMID: 21146435]
[179]
Costanzi, S. On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. J. Med. Chem., 2008, 51(10), 2907-2914.
[http://dx.doi.org/10.1021/jm800044k] [PMID: 18442228]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy