[1]
Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: An [(11)C]PBR28 PET Brain Imaging Study. Am J Psychiatry 2016; 173(1): 44-52. [http://dx.doi.org/10.1176/appi.ajp.2015.14101358]. [PMID:26472628].
[2]
Doorduin J, de Vries EF, Willemsen AT, de Groot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 2009; 50(11): 1801-7. [http://dx.doi.org/10.2967/jnumed.109.066647]. [PMID:19837763].
[3]
Li H, Sagar AP, Kéri S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord 2018; 241: 305-10. [http://dx.doi.org/10.1016/j.jad.2018.08.021]. [PMID:30142589].
[4]
Su L, Faluyi YO, Hong YT, et al. Neuroinflammatory and morphological changes in late-life depression: the NIMROD study. Br J Psychiatry 2016; 209(6): 525-6. [http://dx.doi.org/10.1192/bjp.bp.116.190165]. [PMID:27758838].
[5]
Galvez-Contreras AY, Campos-Ordonez T, Lopez-Virgen V, Gomez-Plascencia J, Ramos-Zuniga R, Gonzalez-Perez O. Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 2016; 32: 85-96. [http://dx.doi.org/10.1016/j.cytogfr.2016.08.004]. [PMID:27618303].
[6]
Moises HW, Zoega T, Gottesman II. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2002; 2: 8. [http://dx.doi.org/10.1186/1471-244X-2-8]. [PMID:12095426].
[7]
Azis IA, Hashioka S, Tsuchie K, et al. Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior. J Affect Disord 2019; 257: 331-9. [http://dx.doi.org/10.1016/j.jad.2019.07.008]. [PMID:31302522].
[8]
Limoa E, Hashioka S, Miyaoka T, et al. Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J Neuroinflammation 2016; 13(1): 230. [http://dx.doi.org/10.1186/s12974-016-0688-2]. [PMID:27590010].
[9]
Kondratyev A, Ved R, Gale K. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 2002; 114(2): 411-6. [http://dx.doi.org/10.1016/S0306-4522(02)00266-X]. [PMID:12204210].
[10]
Shields AM, Panayi GS, Corrigall VM. Resolution-Associated Molecular Patterns (RAMP): RAMParts defending immunological homeostasis? Clin Exp Immunol 2011; 165(3): 292-300. [http://dx.doi.org/10.1111/j.1365-2249.2011.04433.x]. [PMID:21671907].
[11]
Wu Z, Ni J, Liu Y, et al. Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun 2017; 65: 350-61. [http://dx.doi.org/10.1016/j.bbi.2017.06.002]. [PMID:28610747].
[12]
Liu Y, Wu Z, Nakanishi Y, et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Sci Rep 2017; 7(1): 11759. [http://dx.doi.org/10.1038/s41598-017-12173-1]. [PMID:28924232].
[13]
Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol 2000; 32(3): 263-7. [http://dx.doi.org/10.1016/S1357-2725(99)00133-8]. [PMID:10716624].