Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Involvement of the AcrAB Efflux Pump in Ciprofloxacin Resistance in Clinical Klebsiella Pneumoniae Isolates

Author(s): Saeed Khoshnood, Mohsen Heidary, Ali Hashemi, Fatemeh Shahi, Morteza Saki, Ebrahim Kouhsari, Gita Eslami and Hossein Goudarzi*

Volume 21, Issue 4, 2021

Published on: 05 September, 2020

Page: [564 - 571] Pages: 8

DOI: 10.2174/1871526520999200905121220

Price: $65

conference banner
Abstract

Background: Increasing prevalence of multiple antibiotic resistance in Klebsiella pneumoniae strains confines the therapeutic options used to treat bacterial infections.

Objective: We aimed in this study to investigate the role of AcrAB and qepA efflux pumps and AAC(6′)-Ib-cr enzyme in ciprofloxacin resistance and to detect the RAPD-PCR fingerprint of K. pneumoniae isolates.

Methods: A total of , 117 K. pneumoniae isolates were collected from hospitalized patients in three hospitals in Tehran, Iran, from August 2013 to March 2014. Antimicrobial susceptibility tests were performed by the disk diffusion method. Molecular identification and expression level of encoding quinolone resistance genes, acrA, acrB, qepA, and aac(6')-Ib-cr, were performed by PCR and real-- time PCR assays, respectively. All the K. pneumoniae isolates containing the mentioned genes were used simultaneously for RAPD-PCR typing.

Results: Colistin and carbapenems were the most efficient antibiotics against the clinical isolates of K. pneumoniae. PCR assay demonstrated that among the 117 isolates, 110 (94%) and 102 (87%) were positive for acrA and acrB gene and 5 (4%) and 100 (85%) isolates showed to have qepA and aac(6′)-Ib-cr genes, respectively. Determination for AcrAB pump expression in 21% of strains demonstrated an increased expression, and the mean increase expression for acrB genes was 0.5-81. The results of RAPD-PCR reflected that in 95% CI, all isolates belonged to a clone.

Conclusion: A high prevalence of genes encoding quinolone resistance in K. pneumoniae was detected in clinical samples. Therefore, the control of infection and prevention of drug-resistant bacteria spread need careful management of medication and identification of resistant isolates.

Keywords: Klebsiella pneumoniae, efflux pump, fluoroquinolone, antimicrobial susceptibility, ciprofloxacin resistance, AcrB.

Graphical Abstract

[1]
Gorrie, C.L.; Mirceta, M.; Wick, R.R.; Judd, L.M.; Wyres, K.L.; Thomson, N.R.; Strugnell, R.A.; Pratt, N.F.; Garlick, J.S.; Watson, K.M.; Hunter, P.C.; McGloughlin, S.A.; Spelman, D.W.; Jenney, A.W.J.; Holt, K.E. Antimicrobial resistant Klebsiella pneumoniae carriage and infection in specialized geriatric care wards linked to acquisition in the referring hospital. Clin. Infect. Dis., 2018, 67(2), 161-170.
[http://dx.doi.org/10.1093/cid/ciy027] [PMID: 29340588]
[2]
Melot, B.; Colot, J.; Guerrier, G. Bacteremic community-acquired infections due to Klebsiella pneumoniae: clinical and microbiological presentation in New Caledonia, 2008-2013. Int. J. Infect. Dis., 2015, 41, 29-31.
[http://dx.doi.org/10.1016/j.ijid.2015.10.013] [PMID: 26518064]
[3]
Poirel, L.; Héritier, C.; Podglajen, I.; Sougakoff, W.; Gutmann, L.; Nordmann, P. Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV β-lactamase that compromises the efficacy of imipenem. Antimicrob. Agents Chemother., 2003, 47(2), 755-758.
[http://dx.doi.org/10.1128/AAC.47.2.755-758.2003] [PMID: 12543688]
[4]
Pakzad, I.; Zayyen Karin, M.; Taherikalani, M.; Boustanshenas, M.; Lari, A.R. Contribution of AcrAB efflux pump to ciprofloxacin resistance in Klebsiella pneumoniae isolated from burn patients. GMS Hyg. Infect. Control, 2013, 8(2), Doc15.
[PMID: 24327941]
[5]
Schneiders, T.; Amyes, S.G.; Levy, S.B. Role of AcrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob. Agents Chemother., 2003, 47(9), 2831-2837.
[http://dx.doi.org/10.1128/AAC.47.9.2831-2837.2003] [PMID: 12936981]
[6]
Fuursted, K.; Schumacher, H. Significance of low-level resistance to ciprofloxacin in Klebsiella pneumoniae and the effect of increased dosage of ciprofloxacin in vivo using the rat granuloma pouch model. J. Antimicrob. Chemother., 2002, 50(3), 421-424.
[http://dx.doi.org/10.1093/jac/dkf148] [PMID: 12205069]
[7]
Shahraki, S.; Mohammadzadeh-Rostami, F.; Haddadi-Feishani, M.; Mohagheghifard, A.H.; Jahani, S.; Majidiani, H. Evaluation of Quinolone-Resistant Strains of Klebsiella pneumoniae in Clinical Specimens Obtained from Patients Referred to Zahedan Educational Hospitals. Zahedan J Res Med Sci, 2015, 17, 1-4.
[http://dx.doi.org/10.17795/zjrms1022]
[8]
Bialek-Davenet, S.; Marcon, E.; Leflon-Guibout, V.; Lavigne, J.P.; Bert, F.; Moreau, R.; Nicolas-Chanoine, M.H. in vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob. Agents Chemother., 2011, 55(6), 2795-2802.
[http://dx.doi.org/10.1128/AAC.00156-11] [PMID: 21464248]
[9]
Ardebili, A.; Lari, A.R.; Talebi, M. Correlation of ciprofloxacin resistance with the AdeABC efflux system in Acinetobacter baumannii clinical isolates. Ann. Lab. Med., 2014, 34(6), 433-438.
[http://dx.doi.org/10.3343/alm.2014.34.6.433] [PMID: 25368818]
[10]
Padilla, E.; Llobet, E.; Doménech-Sánchez, A.; Martínez-Martínez, L.; Bengoechea, J.A.; Albertí, S. Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob. Agents Chemother., 2010, 54(1), 177-183.
[http://dx.doi.org/10.1128/AAC.00715-09] [PMID: 19858254]
[11]
Goudarzi, M.; Azad, M.; Seyedjavadi, S.S. Prevalence of plasmid-mediated quinolone resistance determinants and OqxAB efflux pumps among extended-spectrum-lactamase producing Klebsiella pneumoniae isolated from patients with nosocomial urinary tract infection in Tehran, Iran. Scientifica (Cairo), 2015, 2015518167
[http://dx.doi.org/10.1155/2015/518167] [PMID: 26301114]
[12]
Li, X-Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria: an update. Drugs, 2009, 69(12), 1555-1623.
[http://dx.doi.org/10.2165/11317030-000000000-00000] [PMID: 19678712]
[13]
Aathithan, S.; French, G.L. Prevalence and role of efflux pump activity in ciprofloxacin resistance in clinical isolates of Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis., 2011, 30(6), 745-752.
[http://dx.doi.org/10.1007/s10096-010-1147-0] [PMID: 21286930]
[14]
Hansen, D.S.; Aucken, H.M.; Abiola, T.; Podschun, R. Recommended test panel for differentiation of Klebsiella species on the basis of a trilateral interlaboratory evaluation of 18 biochemical tests. J. Clin. Microbiol., 2004, 42(8), 3665-3669.
[http://dx.doi.org/10.1128/JCM.42.8.3665-3669.2004] [PMID: 15297514]
[15]
CLSI. Clinical and Laboratory Standards Institute (CLSI) Performance standards for antimicrobial susceptibility testing 2018. https://clsi.org/standards/products/microbiology/documents/m100/
[16]
Yamane, K.; Wachino, J.; Suzuki, S.; Kimura, K.; Shibata, N.; Kato, H.; Shibayama, K.; Konda, T.; Arakawa, Y. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother., 2007, 51(9), 3354-3360.
[http://dx.doi.org/10.1128/AAC.00339-07] [PMID: 17548499]
[17]
Peleg, A.Y.; Adams, J.; Paterson, D.L. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob. Agents Chemother., 2007, 51(6), 2065-2069.
[http://dx.doi.org/10.1128/AAC.01198-06] [PMID: 17420217]
[18]
Xiao, X.; Zhang, J.; Zhang, Q.; Wang, L.; Tan, Y.; Guo, Z. Two methods for extraction of high-purity genomic DNA from mucoid Gram-negative bacteria. Afr J Microbiol Res, 2011, 5, 4013-4018.
[http://dx.doi.org/10.5897/AJMR11.785]
[19]
Saadatian Farivar, A.; Nowroozi, J.; Eslami, G.; Sabokbar, A. RAPD PCR Profile, antibiotic resistance, prevalence of armA gene, and detection of KPC enzyme in Klebsiella pneumoniae Isolates. Can. J. Infect. Dis. Med. Microbiol., 2018, 2018, 6183162.
[20]
Hasdemir, UO; Chevalier, J; Nordmann, P; Pagès, J-M Detection and prevalence of active drug efflux mechanism in various multidrug-resistant Klebsiella pneumoniae strains from Turkey J Clin Microbiol, 2004, 42, 2701-2706.
[21]
Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: structure, function and regulation. Nat. Rev. Microbiol., 2018, 16(9), 523-539.
[http://dx.doi.org/10.1038/s41579-018-0048-6] [PMID: 30002505]
[22]
Bialek-Davenet, S.; Lavigne, J-P.; Guyot, K.; Mayer, N.; Tournebize, R.; Brisse, S.; Leflon-Guibout, V.; Nicolas-Chanoine, M.H. Differential contribution of AcrAB and OqxAB efflux pumps to multidrug resistance and virulence in Klebsiella pneumoniae. J. Antimicrob. Chemother., 2015, 70(1), 81-88.
[http://dx.doi.org/10.1093/jac/dku340] [PMID: 25193085]
[23]
Buffet-Bataillon, S.; Tattevin, P.; Maillard, J-Y.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol., 2016, 11(1), 81-92.
[http://dx.doi.org/10.2217/fmb.15.131] [PMID: 26674470]
[24]
Feizabadi, M.M.; Delfani, S.; Raji, N.; Majnooni, A.; Aligholi, M.; Shahcheraghi, F.; Parvin, M.; Yadegarinia, D. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb. Drug Resist., 2010, 16(1), 49-53.
[http://dx.doi.org/10.1089/mdr.2009.0096] [PMID: 19961397]
[25]
Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci. Rep., 2016, 6, 38929.
[http://dx.doi.org/10.1038/srep38929] [PMID: 28004732]
[26]
Bokaeian, M.; Shahraki, Z.S.; Delarampoor, A.; Atashgah, M.; Dahmarde, B. Evaluation of Antibiotic Resistance Patterns of Clinical Klebsiella pneumoniae Isolates from Educational Hospitals in Zahedan Iran. mljgoums, 2018, 12, 41-45. http://goums.ac. ir/mljgoums/browse.php?a_id=1075&sid=1&slc_lang=en
[27]
Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C-J.; Nordmann, P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J. Antimicrob. Chemother., 2007, 60(2), 394-397.
[http://dx.doi.org/10.1093/jac/dkm204] [PMID: 17561500]
[28]
Shin, S.Y.; Kwon, K.C.; Park, J.W.; Song, J.H.; Ko, Y.H.; Sung, J.Y.; Shin, H.W.; Koo, S.H. Characteristics of aac(6′)-Ib-cr gene in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from Chungnam area. Korean J. Lab. Med., 2009, 29(6), 541-550.
[http://dx.doi.org/10.3343/kjlm.2009.29.6.541] [PMID: 20046086]
[29]
Minh Vien, L.T.; Baker, S.; Phuong Thao, L.T.; Phuong Tu, L.T.; Thu Thuy, C.; Thu Nga, T.T.; Minh Hoang, N.V.; Campbell, J.I.; Minh Yen, L.; Trong Hieu, N.; Vinh Chau, N.V.; Farrar, J.; Schultsz, C. High prevalence of plasmid-mediated quinolone resistance determinants in commensal members of the Enterobacteriaceae in Ho Chi Minh City, Vietnam. J. Med. Microbiol., 2009, 58(Pt 12), 1585-1592.
[http://dx.doi.org/10.1099/jmm.0.010033-0] [PMID: 19696153]
[30]
Park, K.S.; Kim, M.H.; Park, T.S.; Nam, Y.S.; Lee, H.J.; Suh, J.T. Prevalence of the plasmid-mediated quinolone resistance genes, aac(6′)-Ib-cr, qepA, and oqxAB in clinical isolates of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae in Korea. Ann. Clin. Lab. Sci., 2012, 42(2), 191-197.
[PMID: 22585617]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy