Review Article

在计算机模拟研究中,研究具有抗抑郁活性的新苯丙类靶标

卷 22, 期 5, 2021

发表于: 02 September, 2020

页: [539 - 554] 页: 16

弟呕挨: 10.2174/1389450121666200902171838

价格: $65

摘要

背景:在非临床心理药理研究过程中,已经探索了在芳香植物的精油中发现的天然产物,例如苯丙氨酸,以发现在中枢神经系统中具有相关药理活性,特别是抗抑郁和抗焦虑活性的新分子。严重的抑郁症是一种高度虚弱的精神病,被认为是导致自杀的主要因素,在世界范围内都是致残的公共卫生问题。当前临床上施用的抗抑郁药具有较晚的治疗作用,并伴有多种副作用,并且临床研究已报告一些患者对治疗反应不佳或没有达到完全缓解。。 目的:使用Molegro Virtual Docker和Ossis Data Warris审查抗抑郁活性的重要新靶点,并选择具有抗抑郁活性的苯丙烷,并验证抗抑郁活性更强的物质。 结果与结论:基于同源性,进行了计算机分子建模研究,确定了5-羟色胺2A受体(5-HT2AR)的三维结构,然后进行了分子对接研究以及细胞毒性风险的易感性。检查鉴定出的分子。获得了5-HT2AR同源性的模型,具有令人满意的结果,表明该模型的良好立体化学质量。苯丙烷4-烯丙基-2,6-二甲氧基苯酚对5-HT2AR的结合能最低,其结果与L-精氨酸/一氧化氮(NO)/ cGMP途径有关,并且在致突变性,致癌性参数范围内均无毒性在计算机上评估时,生殖系统毒性和皮肤组织易怒性;因此,可以认为该分子有望用于抗抑郁活性的研究。

关键词: 4-烯丙基-2

图形摘要

[1]
Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A. Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 2011; 21(12): 841-60.
[http://dx.doi.org/10.1016/j.euroneuro.2011.04.002] [PMID: 21601431]
[2]
Bahmani M, Saki K, Rafieian-Kopaei M, Karamati SA, Eftekhari Z, Jelodari M. The most common herbal medicines affecting Sarcomastigophora branches: a review study. Asian Pac J Trop Med 2014; 7S1(S1): S14-21.
[http://dx.doi.org/10.1016/S1995-7645(14)60198-X] [PMID: 25312109]
[3]
Ali B, Al-Wabel NA, Shams S, Ahamad A, Khan SA, Anwar F. Essential oils used in aromatherapy: a systemic review. Asian Pac J Trop Biomed 2015; 5(8): 601-11.
[http://dx.doi.org/10.1016/j.apjtb.2015.05.007]
[4]
Kumari S, Pundhir S, Priya P, et al. EssOilDB: a database of essential oils reflecting terpene composition and variability in the plant kingdom. Database (Oxford) 2014; 2014: bau120.
[http://dx.doi.org/10.1093/database/bau120] [PMID: 25534749]
[5]
Carvalho AA, Andrade LN, de Sousa ÉBV, de Sousa DP. Antitumor phenylpropanoids found in essential oils. BioMed Res Int 2015; 2015: 392674.
[http://dx.doi.org/10.1155/2015/392674] [PMID: 25949996]
[6]
Opitz S, Nes WD, Gershenzon J. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Phytochemistry 2014; 98: 110-9.
[http://dx.doi.org/10.1016/j.phytochem.2013.11.010] [PMID: 24359633]
[7]
Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med 2016; 2016: 3012462.
[http://dx.doi.org/10.1155/2016/3012462] [PMID: 28090211]
[8]
Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res 2016; 44(D1): D1214-9.
[http://dx.doi.org/10.1093/nar/gkv1031] [PMID: 26467479]
[9]
Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res 2007; 35(Database issue)(Suppl. 1): D521-6.
[http://dx.doi.org/10.1093/nar/gkl923] [PMID: 17202168]
[10]
Agnihotri S, Wakode S, Ali M. Essential oil of Myrica esculenta Buch. Ham.: composition, antimicrobial and topical anti-inflammatory activities. Nat Prod Res 2012; 26(23): 2266-9.
[http://dx.doi.org/10.1080/14786419.2011.652959] [PMID: 22260222]
[11]
Maeda A, Tanimoto S, Abe T, Kazama S, Tanizawa H, Nomura M. Chemical constituents of Myristica fragrans Houttuyn seed and their physiological activities. Yakugaku Zasshi 2008; 128(1): 129-33.
[http://dx.doi.org/10.1248/yakushi.128.129] [PMID: 18176064]
[12]
IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum 2013; 101: 9-549.
[PMID: 24772663]
[13]
Sell AB, Carlini EA. Anesthetic action of methyleugenol and other eugenol derivatives. Pharmacology 1976; 14(4): 367-77.
[http://dx.doi.org/10.1159/000136617] [PMID: 935250]
[14]
Joshi RK. Chemical Composition, in vitro antimicrobial and antioxidant activities of the essential oils of ocimum gratissimum, o. sanctum and their major constituents. Indian J Pharm Sci 2013; 75(4): 457-62.
[http://dx.doi.org/10.4103/0250-474X.119834] [PMID: 24302801]
[15]
Siddique S, Parveen Z, Firdaus-e-Bareen , Mazhar S. Chemical composition, antibacterial and antioxidant activities of essential oils from leaves of three melaleuca species of pakistani flora. Arab J Chem 2020; 13(1): 67-74.
[http://dx.doi.org/10.1016/j.arabjc.2017.01.018]
[16]
Liu YM, Fan HR, Deng S, et al. Methyleugenol potentiates central amygdala gabaergic inhibition and reduces anxiety. J Pharmacol Exp Ther 2019; 368(1): 1-10.
[http://dx.doi.org/10.1124/jpet.118.250779] [PMID: 30389721]
[17]
Norte MCB, Cosentino RM, Lazarini CA. Effects of methyl-eugenol administration on behavioral models related to depression and anxiety, in rats. Phytomedicine 2005; 12(4): 294-8.
[http://dx.doi.org/10.1016/j.phymed.2003.12.007] [PMID: 15898707]
[18]
Cavalcante IL. Avaliação comportamental não clínica do metileugenol em modelo de depressão induzida por dexametasona com fêmeas 2018; 16: 1-90.
[19]
Khalil AA, Rahman UU, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017; 7(52): 32669-81.
[http://dx.doi.org/10.1039/C7RA04803C]
[20]
Nam H, Kim MM. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem Toxicol 2013; 55: 106-12.
[http://dx.doi.org/10.1016/j.fct.2012.12.050] [PMID: 23313798]
[21]
Eyambe G, Canales L, Banik BK. Antimicrobial activity of eugenol derivatives. Heterocyclic Lett 2011; 1(2): 154-7.
[22]
Abbaszadeh S, Sharifzadeh A, Shokri H, Khosravi AR, Abbaszadeh A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J Mycol Med 2014; 24(2): e51-6.
[http://dx.doi.org/10.1016/j.mycmed.2014.01.063] [PMID: 24582134]
[23]
Sun WJ, Lv WJ, Li LN, et al. Eugenol confers resistance to Tomato yellow leaf curl virus (TYLCV) by regulating the expression of SlPer1 in tomato plants. N Biotechnol 2016; 33(3): 345-54.
[http://dx.doi.org/10.1016/j.nbt.2016.01.001] [PMID: 26776605]
[24]
Ma N, Liu XW, Yang YJ, et al. Preventive effect of aspirin eugenol ester on thrombosis in κ-carrageenan-induced rat tail thrombosis model. PLoS One 2015; 10(7): e0133125.
[http://dx.doi.org/10.1371/journal.pone.0133125] [PMID: 26193677]
[25]
Rajoriya S, Nandhakumar P, Kv K, Kumar A. A Study on effect of eugenol on anti-metastatic activity and expression of MMPS in TNBC MDA MB : 231 Cell Line 2019; 8(4): 788-94.
[26]
de Morais SM, Vila-Nova NS, Bevilaqua CML, et al. Thymol and eugenol derivatives as potential antileishmanial agents. Bioorg Med Chem 2014; 22(21): 6250-5.
[http://dx.doi.org/10.1016/j.bmc.2014.08.020] [PMID: 25281268]
[27]
da Silva Leal VM, Bonassoli VT, Soares LM, Milani H, de Oliveira RMW. Depletion of 5 hydroxy-triptamine (5-HT) affects the antidepressant-like effect of neuronal nitric oxide synthase inhibitor in mice. Neurosci Lett 2017; 656: 131-7.
[http://dx.doi.org/10.1016/j.neulet.2017.07.035] [PMID: 28746839]
[28]
Fonsêca DV, Salgado PRR, Aragão Neto HdeC, et al. Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int Immunopharmacol 2016; 38: 402-8.
[http://dx.doi.org/10.1016/j.intimp.2016.06.005] [PMID: 27355133]
[29]
ARAÚJO, A. N. V. DE. Investigação Da Atividade Antidepressiva Do Ortoeugenol Em Modelos Comportamentais de Depressão Induzidos Por Dexametasona 2018; 85
[30]
Fang G, Yu H, Zhi S, et al. Sex differences in intergenerational transfer risk of major depressive disorder. Med Sci Monit 2019; 25: 9887-92.
[http://dx.doi.org/10.12659/MSM.917888] [PMID: 31869319]
[31]
WHO. Global Health Risks 2009.
[32]
Gosnell SN, Velasquez KM, Molfese DL, et al. Prefrontal cortex, temporal cortex, and hippocampus volume are affected in suicidal psychiatric patients. Psychiatry Res Neuroimaging 2016; 256: 50-6.
[http://dx.doi.org/10.1016/j.pscychresns.2016.09.005] [PMID: 27685801]
[33]
Luo P, He G, Liu D. HCN channels: New targets for the design of an antidepressant with rapid effects. J Affect Disord 2019; 245(245): 764-70.
[http://dx.doi.org/10.1016/j.jad.2018.11.081] [PMID: 30448761]
[34]
Mirkovic B, Laurent C, Podlipski MA, Frebourg T, Cohen D, Gerardin P. Genetic Association Studies of Suicidal Behavior: A Review of the Past 10 Years, Progress, Limitations, and Future Directions. Front Psychiatry 2016; 7(SEP): 158.
[http://dx.doi.org/10.3389/fpsyt.2016.00158] [PMID: 27721799]
[35]
Courtet P, Giner L, Seneque M, Guillaume S, Olie E, Ducasse D. Neuroinflammation in suicide: Toward a comprehensive model. World J Biol Psychiatry 2016; 17(8): 564-86.
[http://dx.doi.org/10.3109/15622975.2015.1054879] [PMID: 26223957]
[36]
Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep 2019; 6(January): 95-110.
[http://dx.doi.org/10.1016/j.ibror.2019.01.001] [PMID: 31211282]
[37]
Kulkarni SK, Dhir A. Current investigational drugs for major depression. Expert Opin Investig Drugs 2009; 18(6): 767-88.
[http://dx.doi.org/10.1517/13543780902880850] [PMID: 19426122]
[38]
Balakrishnan N, Raj JS, Kandakatla N. In Silico studies on new indazole derivatives as gsk-3β inhibitors. Int J Pharm Pharm Sci 2015; 7(3): 295-9.
[39]
Barnes NM, Neumaier JF. Neuronal 5-HT Receptors and SERT. Tocris Biosci Sci Revew Ser 2011; 34: 1-15.
[40]
Bombardi C, Di Giovanni G. Functional anatomy of 5-HT2A receptors in the amygdala and hippocampal complex: relevance to memory functions. Exp Brain Res 2013; 230(4): 427-39.
[http://dx.doi.org/10.1007/s00221-013-3512-6] [PMID: 23591691]
[41]
Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, et al. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System. Curr Neuropharmacol 2018; 16(2): 210-21.
[http://dx.doi.org/10.2174/1570159X15666170911121027] [PMID: 28901281]
[42]
Kulikova EA, Khotskin NV, Illarionova NB, et al. Inhibitor of striatal-enriched protein tyrosine phosphatase, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (tc-2153), produces antidepressant-like effect and decreases functional activity and protein level of 5-ht2a receptor in the brain. Neuroscience 2018; 394: 220-31.
[http://dx.doi.org/10.1016/j.neuroscience.2018.10.031] [PMID: 30367948]
[43]
Dantsuji M, Nakamura S, Nakayama K, et al. 5-HT2A receptor activation enhances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J Physiol 2019; 597(9): 2565-89.
[http://dx.doi.org/10.1113/JP275440] [PMID: 30919966]
[44]
Srikiatkhachorn A, Suwattanasophon C, Ruangpattanatawee U, Phansuwan-Pujito P. 2002 Wolff Award. 5 -HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks. Headache 2002; 42(7): 566-74.
[45]
Schmid CL, Bohn LM. Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a ß-arrestin2/Src/Akt signaling complex in vivo. J Neurosci 2010; 30(40): 13513-24.
[http://dx.doi.org/10.1523/JNEUROSCI.1665-10.2010] [PMID: 20926677]
[46]
Hanson QM, Carley JR, Gilbreath TJ, Smith BC, Underbakke ES. Calmodulin-induced conformational control and allostery underlying neuronal nitric oxide synthase activation. J Mol Biol 2018; 430(7): 935-47.
[http://dx.doi.org/10.1016/j.jmb.2018.02.003] [PMID: 29458127]
[47]
Amidfar M, Kim YK, Colic L, et al. Increased levels of 5HT2A receptor mRNA expression in peripheral blood mononuclear cells of patients with major depression: correlations with severity and duration of illness. Nord J Psychiatry 2017; 71(4): 282-8.
[http://dx.doi.org/10.1080/08039488.2016.1276624] [PMID: 28125323]
[48]
Lin F, Li F, Wang C, et al. Mechanism exploration of arylpiperazine derivatives targeting the 5-ht2a receptor by in silico methods. Molecules 2017; 22(7): E1064.
[http://dx.doi.org/10.3390/molecules22071064] [PMID: 28672848]
[49]
Kanagarajadurai K, Malini M, Bhattacharya A, Panicker MM, Sowdhamini R. Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol Biosyst 2009; 5(12): 1877-88.
[http://dx.doi.org/10.1039/b906391a] [PMID: 19763327]
[50]
Staroń J, Kurczab R, Warszycki D, et al. Virtual screening-driven discovery of dual 5-HT6/5-HT2A receptor ligands with pro-cognitive properties. Eur J Med Chem 2020; 185: 111857.
[http://dx.doi.org/10.1016/j.ejmech.2019.111857] [PMID: 31734022]
[51]
Abbasi-Maleki S, Kadkhoda Z, Taghizad-Farid R. The antidepressant-like effects of origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming. Test J Tradit Complement Med 2019; 1-9.
[52]
Nguyen ET, Caldwell JL, Streicher J, et al. Differential effects of imipramine and CORT118335 (Glucocorticoid receptor modulator/mineralocorticoid receptor antagonist) on brain-endocrine stress responses and depression-like behavior in female rats. Behav Brain Res 2018; 336(336): 99-110.
[http://dx.doi.org/10.1016/j.bbr.2017.08.045] [PMID: 28866130]
[53]
Canet G, Chevallier N, Zussy C, Desrumaux C, Givalois L. Central role of glucocorticoid receptors in alzheimer’s disease and depression. Front Neurosci 2018; 12(OCT): 739.
[http://dx.doi.org/10.3389/fnins.2018.00739] [PMID: 30459541]
[54]
Farrell C, O’Keane V. Epigenetics and the glucocorticoid receptor: A review of the implications in depression. Psychiatry Res 2016; 242: 349-56.
[http://dx.doi.org/10.1016/j.psychres.2016.06.022] [PMID: 27344028]
[55]
Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017; 18(3): 159-74.
[http://dx.doi.org/10.1038/nrm.2016.152] [PMID: 28053348]
[56]
Madalena KM, Lerch JK. The effect of glucocorticoid and glucocorticoid receptor interactions on brain, spinal cord, and glial cell plasticity. Neural Plast 2017; 2017: 8640970.
[http://dx.doi.org/10.1155/2017/8640970] [PMID: 28928988]
[57]
Attoui N, Guedri K. K. M. Effect of ketoconazole on early maternal separation stress model in rats: a neurobehavioral and biochemical approach. Adv Anim Vet Sci 2019; 7(9): 761-9.
[http://dx.doi.org/10.17582/journal.aavs/2019/7.9.761.769]
[58]
Papilloud A, Veenit V, Tzanoulinou S, et al. Peripubertal stress-induced heightened aggression: modulation of the glucocorticoid receptor in the central amygdala and normalization by mifepristone treatment. Neuropsychopharmacology 2019; 44(4): 674-82.
[http://dx.doi.org/10.1038/s41386-018-0110-0] [PMID: 29941978]
[59]
Block TS, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A. Combined analysis of mifepristone for psychotic depression: plasma levels associated with clinical response. Biol Psychiatry 2018; 84(1): 46-54.
[http://dx.doi.org/10.1016/j.biopsych.2018.01.008] [PMID: 29523415]
[60]
Schatzberg AF. Anna-Monika Award Lecture, DGPPN Kongress, 2013: the role of the hypothalamic-pituitary-adrenal (HPA) axis in the pathogenesis of psychotic major depression. World J Biol Psychiatry 2015; 16(1): 2-11.
[http://dx.doi.org/10.3109/15622975.2014.916414] [PMID: 24933348]
[61]
Solomon MB, Wulsin AC, Rice T, et al. The selective glucocorticoid receptor antagonist CORT 108297 decreases neuroendocrine stress responses and immobility in the forced swim test. Horm Behav 2014; 65(4): 363-71.
[http://dx.doi.org/10.1016/j.yhbeh.2014.02.002] [PMID: 24530653]
[62]
de Souza IBMB, Costa LRF, Tiago PRF, et al. Venlafaxine and nortriptyline reverse acute dexamethasone-induced depressive-like behaviors in male and female mice. Exp Clin Psychopharmacol 2019; 27(5): 433-42.
[http://dx.doi.org/10.1037/pha0000263] [PMID: 30714753]
[63]
Maccallini C, Montagnani M, Paciotti R, et al. Selective acetamidine-based nitric oxide synthase inhibitors: synthesis, docking, and biological studies. ACS Med Chem Lett 2015; 6(6): 635-40.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00149] [PMID: 26101565]
[64]
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9(AUGUST): 322.
[http://dx.doi.org/10.3389/fncel.2015.00322] [PMID: 26347610]
[65]
Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16(1): 22-34.
[http://dx.doi.org/10.1038/nri.2015.5] [PMID: 26711676]
[66]
Talarek S, Listos J, Orzelska-Gorka J, Jakobczuk M, Kotlinska J, Biala G. The importance of l-arginine:no:cgmp pathway in tolerance to flunitrazepam in mice. Neurotox Res 2017; 31(2): 309-16.
[http://dx.doi.org/10.1007/s12640-016-9688-3] [PMID: 27957675]
[67]
Do HT, Li H, Chreifi G, Poulos TL, Silverman RB. Optimization of blood-brain barrier permeability with potent and selective human neuronal nitric oxide synthase inhibitors having a 2-aminopyridine scaffold. J Med Chem 2019; 62(5): 2690-707.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02032] [PMID: 30802056]
[68]
Boissel JP, Schwarz PM, Förstermann U, Neuronal-Type NO. Neuronal-type no. synthase: transcript diversity and expressional regulation. nitric oxide -. Biol Chem 1998; 2(5): 337-49.
[http://dx.doi.org/10.1006/niox.1998.0189] [PMID: 10100489]
[69]
Maccallini C, Amoroso R. Targeting neuronal nitric oxide synthase as a valuable strategy for the therapy of neurological disorders. Neural Regen Res 2016; 11(11): 1731-4.
[http://dx.doi.org/10.4103/1673-5374.194707] [PMID: 28123402]
[70]
Joca SRL, Sartim AG, Roncalho AL, Diniz CFA, Wegener G. Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377(1): 45-58.
[http://dx.doi.org/10.1007/s00441-018-02987-4] [PMID: 30649612]
[71]
Picón-Pagès P, Garcia-Buendia J, Muñoz FJ. Functions and dysfunctions of nitric oxide in brain. Biochim Biophys Acta Mol Basis Dis 2019; 1865(8): 1949-67.
[http://dx.doi.org/10.1016/j.bbadis.2018.11.007] [PMID: 30500433]
[72]
Ronchetti SA, Pino MTL, Cordeiro G, et al. Soluble Guanylyl Cyclase A1 Subunit Is a Key Mediator of Proliferation, Survival, and Migration in ECC-1 and HeLa Cell Lines. Sci Rep 2019; 9(1): 1-11.
[http://dx.doi.org/10.1038/s41598-019-51420-5] [PMID: 30626917]
[73]
Gileadi O, Allerston C, von Delft F. Crystal structures of human soluble guanylate cyclase catalytic domains: promiscuity of the dimer interface and a potential allosteric site. BMC Pharmacol Toxicol 2013; 14(S1): O15.
[http://dx.doi.org/10.1186/2050-6511-14-S1-O15]
[74]
Wang W, Zhou T, Jia R, et al. NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway contribute to the antidepressant-like effect of Yueju pill in mice. Biosci Rep 2019; 39(9): 1-10.
[http://dx.doi.org/10.1042/BSR20190524] [PMID: 31467174]
[75]
Ben-Azu B, Aderibigbe AO, Ajayi AM, Umukoro S, Iwalewa EO. Involvement of l-arginine-nitric oxide pathway in the antidepressant and memory promoting effects of morin in mice. Drug Dev Res 2019; 80(8): 1071-9.
[http://dx.doi.org/10.1002/ddr.21588] [PMID: 31407363]
[76]
Chaudhari UP, Trivedi ND, Patil SRR, Banerjee S. Molecular docking studies of l-name with the neuronal nitric oxide synthase. Int J Chemtech Res 2010; 2(1): 122-8.
[77]
Júnior ALG, Tchekalarova JD, da Conceição Machado K, et al. Antidepressant-like effect of anacardic acid in mice via the L-arginine-nitric oxide-serotonergic system. Phytother Res 2019; 33(8): 2126-38.
[http://dx.doi.org/10.1002/ptr.6407] [PMID: 31240792]
[78]
Delport A, Harvey BH, Petzer A, Petzer JP. Methylene blue and its analogues as antidepressant compounds. Metab Brain Dis 2017; 32(5): 1357-82.
[http://dx.doi.org/10.1007/s11011-017-0081-6] [PMID: 28762173]
[79]
Dang Y-H, Ma X-C, Zhang J-C, et al. Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 2014; 20(32): 5151-9.
[http://dx.doi.org/10.2174/1381612819666140110120435] [PMID: 24410564]
[80]
Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 1990; 185(1): 1-10.
[http://dx.doi.org/10.1016/0014-2999(90)90204-J] [PMID: 2171955]
[81]
Berman RM, Cappiello A, Anand A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47(4): 351-4.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9] [PMID: 10686270]
[82]
Wang JX, Irvine MW, Burnell ES, et al. Structural basis of subtype-selective competitive antagonism for GluN2C/2D-containing NMDA receptors. Nat Commun 2020; 11(1): 423.
[http://dx.doi.org/10.1038/s41467-020-14321-0] [PMID: 31969570]
[83]
Wang JX, Furukawa H. Dissecting diverse functions of NMDA receptors by structural biology. Curr Opin Struct Biol 2019; 54: 34-42.
[http://dx.doi.org/10.1016/j.sbi.2018.12.009] [PMID: 30703613]
[84]
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer’s disease. Alzheimers Dement 2018; 14(10): 1302-12.
[http://dx.doi.org/10.1016/j.jalz.2018.05.017] [PMID: 30293574]
[85]
Regan MC, Zhu Z, Yuan H, et al. Structural elements of a pH-sensitive inhibitor binding site in NMDA receptors. Nat Commun 2019; 10(1): 321.
[http://dx.doi.org/10.1038/s41467-019-08291-1] [PMID: 30659174]
[86]
Bratsos S, Saleh SN. Clinical Efficacy of Ketamine for Treatment-resistant Depression. Cureus 2019; 11(7): e5189.
[http://dx.doi.org/10.7759/cureus.5189] [PMID: 31565597]
[87]
Hashimoto K. Ketamine’s antidepressant action: beyond NMDA receptor inhibition. Expert Opin Ther Targets 2016; 20(11): 1389-92.
[http://dx.doi.org/10.1080/14728222.2016.1238899] [PMID: 27646666]
[88]
Becker R, Gass N, Kußmaul L, et al. NMDA receptor antagonists traxoprodil and lanicemine improve hippocampal-prefrontal coupling and reward-related networks in rats. Psychopharmacology (Berl) 2019; 236(12): 3451-63.
[http://dx.doi.org/10.1007/s00213-019-05310-3] [PMID: 31267156]
[89]
Tu G, Fu T, Yang F, Yao L, Xue W, Zhu F. Prediction of glun2b-ct1290-1310/dapk1 interaction by protein-peptide docking and molecular dynamics simulation. Molecules 2018; 23(11): E3018.
[http://dx.doi.org/10.3390/molecules23113018] [PMID: 30463177]
[90]
López V, Nielsen B, Solas M, Ramírez MJ, Jäger AK. Exploring pharmacological mechanisms of lavender (lavandula angustifolia) essential oil on central nervous system targets. Front Pharmacol 2017; 8(MAY): 280.
[http://dx.doi.org/10.3389/fphar.2017.00280] [PMID: 28579958]
[91]
Jeon SW, Kim YK. Inflammation-induced depression: Its pathophysiology and therapeutic implications. J Neuroimmunol 2017; 313(October): 92-8.
[http://dx.doi.org/10.1016/j.jneuroim.2017.10.016] [PMID: 29153615]
[92]
Zou W, Feng R, Yang Y. Changes in the serum levels of inflammatory cytokines in antidepressant drug-naïve patients with major depression. PLoS One 2018; 13(6): e0197267.
[http://dx.doi.org/10.1371/journal.pone.0197267] [PMID: 29856741]
[93]
Dahl J, Ormstad H, Aass HCD, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 2014; 45: 77-86.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.019] [PMID: 24845179]
[94]
Yoshimura R, Kishi T, Iwata N. Plasma levels of IL-6 in patients with untreated major depressive disorder: comparison with catecholamine metabolites. Neuropsychiatr Dis Treat 2019; 15: 2655-61.
[http://dx.doi.org/10.2147/NDT.S195379] [PMID: 31686824]
[95]
Jiang SJ, Tsai PI, Peng SY, et al. A potential peptide derived from cytokine receptors can bind proinflammatory cytokines as a therapeutic strategy for anti-inflammation. Sci Rep 2019; 9(1): 2317.
[http://dx.doi.org/10.1038/s41598-018-36492-z] [PMID: 30783144]
[96]
Wang X, Lin Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 2008; 29(11): 1275-88.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[97]
Bialek K, Czarny P, Strycharz J, Sliwinski T. Major depressive disorders accompanying autoimmune diseases - Response to treatment. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95(April): 109678.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109678] [PMID: 31238086]
[98]
Shariq AS, Brietzke E, Rosenblat JD, Barendra V, Pan Z, McIntyre RS. Targeting cytokines in reduction of depressive symptoms: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83(83): 86-91.
[http://dx.doi.org/10.1016/j.pnpbp.2018.01.003] [PMID: 29309829]
[99]
Bayramgürler D, Karson A, Özer C, Utkan T. Effects of long-term etanercept treatment on anxiety- and depression-like neurobehaviors in rats. Physiol Behav 2013; 119: 145-8.
[http://dx.doi.org/10.1016/j.physbeh.2013.06.010] [PMID: 23769689]
[100]
Chester K, Zahiruddin S, Ahmad A, Khan W, Paliwal S, Ahmad S. Bioautography-Based Identification of Antioxidant Metabolites of Solanum Nigrum L. and Exploration Its Hepatoprotective Potential AgChester, K et Al (2017) ‘Bioautography-Based Identification of Antioxidant Metabolites of Solanum Nigrum L and Explorati Pharmacogn Mag 2017; 13(62): 179-88.
[101]
Alizadeha AA, Hamzeh-Mivehroud M, Haddad E, et al. Characterization of novel fragment antibodies against tnf-alpha isolated using phage display technique. Iran J Pharm Res 2019; 18(2): 759-71.
[http://dx.doi.org/10.22037/ijpr.2019.1100646] [PMID: 31531059]
[102]
Xu S, Peng H, Wang N, Zhao M. Inhibition of TNF-α and il-1 by compounds from selected plants for rheumatoid arthritis therapy: in vivo and in silico studies. Trop J Pharm Res 2018; 17(2): 277-85.
[http://dx.doi.org/10.4314/tjpr.v17i2.12]
[103]
Wang J, Qiao C, Xiao H, et al. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database. Drug Des Devel Ther 2016; 10: 4091-100.
[http://dx.doi.org/10.2147/DDDT.S118457] [PMID: 28008232]
[104]
Yamasaki K, Taga T, Hirata Y, et al. Cloning and expression of the human interleukin-6 (bsf-2/ifni 2) receptor. Science (80- ) 1988; 241(4867): 825-8.
[105]
Liu Q, Imaizumi T, Aizawa T, et al. Cytosolic Sensors of Viral RNA Are Involved in the Production of Interleukin-6 via Toll-Like Receptor 3 Signaling in Human Glomerular Endothelial Cells. Kidney Blood Press Res 2019; 44(1): 62-71.
[http://dx.doi.org/10.1159/000498837] [PMID: 30808838]
[106]
Dewitte A, Villeneuve J, Lepreux S, et al. CD154 induces interleukin-6 secretion by kidney tubular epithelial cells under hypoxic conditions: inhibition by chloroquine. Mediators Inflamm 2020; 2020: 6357046.
[http://dx.doi.org/10.1155/2020/6357046] [PMID: 32089648]
[107]
Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci USA 2020; 117(6): 2751-60.
[http://dx.doi.org/10.1073/pnas.1920004117] [PMID: 31980524]
[108]
Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Interleukin-6 secretion is limited by self-signaling in endosomes. J Mol Cell Biol 2019; 11(2): 144-57.
[http://dx.doi.org/10.1093/jmcb/mjy038] [PMID: 30016456]
[109]
Borovcanin MM, Jovanovic I, Radosavljevic G, et al. Interleukin-6 in schizophrenia-is there a therapeutic relevance? Front Psychiatry 2017; 8(11): 221.
[http://dx.doi.org/10.3389/fpsyt.2017.00221] [PMID: 29163240]
[110]
Gelinas AD, Davies DR, Edwards TE, et al. Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. J Biol Chem 2014; 289(12): 8720-34.
[http://dx.doi.org/10.1074/jbc.M113.532697] [PMID: 24415767]
[111]
Wang M, Wei J, Yang X, et al. The level of IL-6 was associated with sleep disturbances in patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15: 1695-700.
[http://dx.doi.org/10.2147/NDT.S202329] [PMID: 31417262]
[112]
Fan N, Luo Y, Ou Y, He H. Altered serum levels of TNF-α, IL-6, and IL-18 in depressive disorder patients. Hum Psychopharmacol 2017; 32(4)
[http://dx.doi.org/10.1002/hup.2588] [PMID: 28582802]
[113]
Haroon E, Daguanno AW, Woolwine BJ, et al. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology 2018; 95(April): 43-9.
[http://dx.doi.org/10.1016/j.psyneuen.2018.05.026] [PMID: 29800779]
[114]
Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006; 31(10): 2121-31.
[http://dx.doi.org/10.1038/sj.npp.1301029] [PMID: 16452991]
[115]
Zhu CB, Lindler KM, Owens AW, Daws LC, Blakely RD, Hewlett WA. Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 2010; 35(13): 2510-20.
[http://dx.doi.org/10.1038/npp.2010.116] [PMID: 20827273]
[116]
Shukla P, Khandelwal R, Sharma D, Dhar A, Nayarisseri A, Singh SK. Virtual Screening of IL-6 Inhibitors for Idiopathic Arthritis. Bioinformation 2019; 15(2): 121-30.
[http://dx.doi.org/10.6026/97320630015121] [PMID: 31435158]
[117]
Kappelmann N, Lewis G, Dantzer R, Jones P, Khandaker G. Antidepressant activity of anti-cytokine treatment: a systematic review and meta- analysis of clinical trials of chronic inflammatory conditions brain. Behav Immun 2017; 66: e2.
[118]
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: A program to check the stereochemical quality of protein structures. J Appl Cryst 1993; 26(2): 283-91.
[http://dx.doi.org/10.1107/S0021889892009944]
[119]
Lovell SC, Davis IW, Adrendall WB, et al. Structure Validation by C Alpha GeomF. Altschul, S., Gish, W., Miller, W., W. Myers, E., & J. Lipman, D. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology.Etry: Phi,Psi and C Beta Deviation. Proteins-Structure Funct. Genet 2002; 2003(50): 437-50.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[120]
Berman H, Henrick K, Nakamura H. Announcing the worldwide Protein Data Bank. Nat Struct Biol 2003; 10(12): 980.
[http://dx.doi.org/10.1038/nsb1203-980] [PMID: 14634627]
[121]
Schüttelkopf AW, van Aalten DMF. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 2004; 60(Pt 8): 1355-63.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[122]
Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem 2006; 49(11): 3315-21.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[123]
Sander T, Freyss J, von Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009; 49(2): 232-46.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[124]
Liu T, Tang GW, Capriotti E. Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 2011; 14(6): 532-47.
[http://dx.doi.org/10.2174/138620711795767811] [PMID: 21521153]
[125]
Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem Biol Drug Des 2019; 93(1): 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[126]
Kim S, Thiessen PA, Bolton EE, et al. PubChem Substance and Compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[127]
Sasaki-Hamada S, Nakamura Y, Koizumi K, Nabeta R, Oka JI. Pharmacological evidence for the relationship between the NMDA receptor and nitric oxide pathway and the antidepressant-like effects of glucagon-like peptide-2 in the mouse forced-swim test. BehavBrain Res 2019; 364(1): 162-6.
[http://dx.doi.org/10.1016/j.bbr.2019.02.028] [PMID: 30779973]
[128]
Yazir Y, Utkan T, Aricioglu F. Inhibition of neuronal nitric oxide synthase and soluble guanylate cyclase prevents depression-like behaviour in rats exposed to chronic unpredictable mild stress. Basic Clin Pharmacol Toxicol 2012; 111(3): 154-60.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00877.x] [PMID: 22385503]
[129]
Schoch GA, D’Arcy B, Stihle M, et al. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations. J Mol Biol 2010; 395(3): 568-77.
[http://dx.doi.org/10.1016/j.jmb.2009.11.011] [PMID: 19913032]
[130]
Hodes GE, Ménard C, Russo SJ. Integrating Interleukin-6 into depression diagnosis and treatment. Neurobiol Stress 2016; 4: 15-22.
[http://dx.doi.org/10.1016/j.ynstr.2016.03.003] [PMID: 27981186]
[131]
Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiology & Behavior 2017; 175(1): 139-48.
[http://dx.doi.org/10.1016/j.physbeh.2017.03.040]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy