Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Mini-Review Article

Versatile Use of Nanosponge in the Pharmaceutical Arena: A Mini-Review

Author(s): Shubham Shrestha and Sankha Bhattacharya*

Volume 14, Issue 4, 2020

Page: [351 - 359] Pages: 9

DOI: 10.2174/1872210514999200901200558

Price: $65

Abstract

Drug delivery for a long time has been a major problem in the pharmaceutical field. The development of a new Nano-carrier system called nanosponge has shown the potential to solve the problem. Nanosponge has a porous structure and can entrap the drug in it. It can carry both hydrophilic and hydrophobic drugs. They also provide controlled release of the drugs and can also protect various substances from degradation. Nanosponge can increase the solubility of drugs and can also be formulated into an oral, topical and parenteral dosage form. The current review explores different preparation techniques, characterization parameters, as well as various applications of nanosponge. Various patents related to nanosponge drug delivery system have been discussed in this study.

Keywords: Nanocarrier system, Nanosponge, Differential Scanning Calorimetry (DSC), Thermo Gravimetric Analysis (TGA), Atomic Force Microscopy (AFM), protein degradation.

Graphical Abstract

[1]
Bhagwat RR, Vaidhya IS. Novel drug delivery systems: An overview. Int J Pharm Sci Res 2013; 4(3): 970.
[2]
Yadav GV, Panchory HP. Nanosponges “A boon to the targeted drug delivery system”. J Drug Deliv Ther 2013; 3(4): 151-5.
[http://dx.doi.org/10.22270/jddt.v3i4.564]
[3]
Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8 PMID: 16779701]
[4]
Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Roggero C, Vallero R. inventors; sea marconi technologies di w tumiatti Sas, assignee.Ultrasound-assisted synthesis of cyclodextrin-based nanosponges United States patent application US Patent 11/630,403, 2008.
[5]
Trotta F, Zanetti M, Cavalli R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J Org Chem 2012; 8(1): 2091-9.
[http://dx.doi.org/10.3762/bjoc.8.235 PMID: 23243470]
[6]
Bolmal UB, Manvi FV, Rajkumar K, Palla SS, Paladugu A, Reddy KR. Recent advances in nanosponges as drug delivery system. Int J Pharm Sci Nanotechnol 2013; 6: 1934-44.
[7]
Swaminathan S, Pastero L, Serpe L, et al. Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur J Pharm Biopharm 2010; 74(2): 193-201.
[http://dx.doi.org/10.1016/j.ejpb.2009.11.003 PMID: 19900544]
[8]
Swaminathan S, Cavalli R, Trotta F, et al. In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. J Incl Phenom Macrocycl Chem 2010; 68(1-2): 183-91.
[http://dx.doi.org/10.1007/s10847-010-9765-9]
[9]
Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: In vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 2011; 12(1): 279-86.
[http://dx.doi.org/10.1208/s12249-011-9584-3 PMID: 21240574]
[10]
Torne SJ, Ansari KA, Vavia PR, Trotta F, Cavalli R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv 2010; 17(6): 419-25.
[http://dx.doi.org/10.3109/10717541003777233 ] [PMID: 20429848]
[11]
Torne S, Darandale S, Vavia P, Trotta F, Cavalli R. Cyclodextrin-based nanosponges: Effective nanocarrier for tamoxifen delivery. Pharm Dev Technol 2013; 18(3): 619-25.
[http://dx.doi.org/10.3109/10837450.2011.649855 ] [PMID: 22235935]
[12]
Momin MM, Zaheer Z, Zainuddin R, Sangshetti JN. Extended release delivery of erlotinib glutathione nanosponge for targeting lung cancer. Artif Cells Nanomed Biotechnol 2018; 46(5): 1064-75.
[http://dx.doi.org/10.1080/21691401.2017.1360324 ] [PMID: 28758795]
[13]
Rao M, Bajaj A, Khole I, et al. In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J Incl Phenom Macrocycl Chem 2013; 77: 135-45.
[http://dx.doi.org/10.1007/s10847-012-0224-7]
[14]
Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P. Nanosponge formulations as oxygen delivery systems. Int J Pharm 2010; 402(1-2): 254-7.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.025 ] [PMID: 20888402]
[15]
Swaminathan S, Vavia PR, Trotta F, Cavalli R. Nanosponges encapsulating dexamethasone for ocular delivery: Formulation design, physicochemical characterization, safety and corneal permeability assessment. J Biomed Nanotechnol 2013; 9(6): 998-1007.
[http://dx.doi.org/10.1166/jbn.2013.1594 PMID: 23858964]
[16]
Zainuddin R, Zaheer Z, Sangshetti JN, Momin M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev Ind Pharm 2017; 43(12): 2076-84.
[http://dx.doi.org/10.1080/03639045.2017.1371732 ] [PMID: 28845699]
[17]
Mendes C, Meirelles GC, Barp CG, Assreuy J, Silva MAS, Ponchel G. Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr Polym 2018; 195: 586-92.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.011 PMID: 29805015]
[18]
Peila R, Scordino P, Shanko DB, Caldera F, Trotta F, Ferri A. Synthesis and characterization of β-cyclodextrin nanosponges for N, N-diethyl-meta-toluamide complexation and their application on polyester fabrics. React Funct Polym 2017; 119: 87-94.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.008]
[19]
Gangadharappa HV, Prasad SM, Singh RP. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. J Drug Deliv Sci Technol 2017; 41: 488-501.
[http://dx.doi.org/10.1016/j.jddst.2017.09.004]
[20]
Pushpalatha R, Selvamuthukumar S, Kilimozhi D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J Drug Deliv Sci Technol 2018; 45: 45-53.
[http://dx.doi.org/10.1016/j.jddst.2018.03.004]
[21]
Caldera F, Tannous M, Cavalli R, Zanetti M, Trotta F. Evolution of cyclodextrin nanosponges. Int J Pharm 2017; 531(2): 470-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.072 ] [PMID: 28645630]
[22]
Sharma R, Pathak K. Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm Dev Technol 2011; 16(4): 367-76.
[http://dx.doi.org/10.3109/10837451003739289 ] [PMID: 20367024]
[23]
Penjuri SC, Ravouru N, Damineni S, Bns S, Poreddy SR. Formulation and evaluation of lansoprazole loaded Nanosponges. Turk J Pharm Sci 2016; 13(3): 304-10.
[http://dx.doi.org/10.4274/tjps.2016.04]
[24]
Swaminathan S, Vavia PR, Trotta F, Torne S. Formulation of betacyclodextrin based nanosponges of itraconazole. J Incl Phenom Macrocycl Chem 2007; 57(1-4): 89-94.
[http://dx.doi.org/10.1007/s10847-006-9216-9]
[25]
Trotta F, Shende P, Biasizzo M. Method for preparing dextrin nanosponges. WO2012147069A1, 2011.
[26]
Won-Il Choi. Heparin nanosponge for controlled release of growth factors and metho for manufacturing thereof. KR Patent 101920284B1 2017.
[27]
Cavalli R, Tumiatti V, Trotta F, Bertha GN, Mognetti B, Logiello CM. CM. Cyclodextrin nanosponges as vehicles for antitumor agents. JP2010531827A 2007.
[28]
Wang Changhua Hong Min Sun Gang Duan Xixin Liu Chang Han Yongwei Jiang Song. Method for preparing TiO2(B) nano-sponge.CN104649319A, . 2015.
[29]
Gilardi G, Trotta F, Cavalli R, et al. Cyclodextrin nanosponges as a carrier for biocatalysts, and in the delivery and release of enzymes, proteins, vaccines and antibodies. WO Patent 2009149883A1,. 2008.
[30]
Yang R, He J, Xu L, Yu J. Bubble-electrospinning for fabricating nanofibers. Polymer (Guildf) 2009; 50(24): 5846-50.
[http://dx.doi.org/10.1016/j.polymer.2009.10.021]
[31]
Bonifazi G, Serranti S. 2D-fractal based algorithms for nanoparticles characterization. In image processing: Algorithms and Systems XII 2014 Feb 25 (Vol. 9019, p. 90190K). International Society for Optics and Photonics.
[32]
Nag OK, Delehanty JB. Active cellular and subcellular targeting of nanoparticles for drug deliveryPharmaceutics 2019; 11(10): 543.
[http://dx.doi.org/10.3390/pharmaceutics11100543] [PMID: 31635367]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy