Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Adenosine Receptor Modulation of Hypoxic-ischemic Injury in Striatum of Newborn Piglets

Author(s): Santiago Ortega-Gutierrez, Brandy Jones, Alan Mendez-Ruiz, Pankhil Shah and Michel T. Torbey*

Volume 17, Issue 4, 2020

Page: [510 - 517] Pages: 8

DOI: 10.2174/1567202617999200831152233

Price: $65

Abstract

Background: Hypoxic-ischemic encephalopathy (HIE) is a major cause of pediatric and adult mortality and morbidity. Unfortunately, to date, no effective treatment has been identified. In the striatum, neuronal injury is analogous to the cellular mechanism of necrosis observed during NMethyl- D-Aspartate (NMDA) excitotoxicity. Adenosine acts as a neuromodulator in the central nervous system, the role of which relies mostly on controlling excitatory glutamatergic synapses.

Objective: To examine the effect of pretreatment of SCH58261, an adenosine 2A (A2A) receptor antagonist and modulator of NMDA receptor function, following hypoxic-ischemia (HI) on sodium- potassium ATPase (Na+, K+-ATPase) activity and oxidative stress.

Methods: Piglets (4-7 days old) were subjected to 30 min hypoxia and 7 min of airway occlusion producing asphyxic cardiac arrest. Groups were divided into four categories: HI samples were divided into HI-vehicle group (n = 5) and HI-A2A group (n = 5). Sham controls were divided into Sham vehicle (n = 5) and Sham A2A (n = 5) groups. Vehicle groups were pretreated with 0.9% saline, whereas A2A animals were pretreated with SCH58261 10 min prior to intervention. Striatum samples were collected 3 h post-arrest. Sodium-potassium ATPase (Na+, K+-ATPase) activity, malondialdehyde (MDA) + 4-hydroxyalkenals (4-HDA) and glutathione (GSH) levels were compared.

Results: Pretreatment with SCH58261 significantly attenuated the decrease in Na+, K+-ATPase, decreased MDA+4-HDA levels and increased GSH in the HI-A2A group when compared to HIvehicle.

Conclusion: A2A receptor activation may contribute to neuronal injury in newborn striatum after HI in association with decreased Na+, K+-ATPase activity and increased oxidative stress.

Keywords: Hypoxic-ischemic encephalopathy, adenosine receptor, Na, K ATPase, striatal injury, piglet model, lipid peroxidation, hypoxic-ischemic cardiac arrest model.

[1]
Giesinger RE, Bailey LJ, Deshpande P, McNamara PJ. Hypoxic-ischemic encephalopathy and therapeutic hypothermia: The hemodynamic perspective. J Pediatr 2017; 180: 22-30.e2.
[2]
Oorschot DE, Sizemore RJ, Amer AR. Treatment of neonatal hypoxic-ischemic encephalopathy with erythropoietin alone, and erythropoietin combined with hypothermia: History, current status, and future research. Int J Mol Sci 2020; 21(4): 1487.
[3]
Tagin MA, Woolcott CG, Vincer MJ, Whyte RK, Stinson DA. Hypothermia for neonatal hypoxic ischemic encephalopathy: An updated systematic review and meta-analysis. Arch Pediatr Adolesc Med 2012; 166(6): 558-66.
[4]
Xu EH, Claveau M, Yoon EW, Barrington KJ, Mohammad K, Shah PS, et al. Hypothermia for neonatal hypoxic ischemic encephalopathy: An updated systematic review and meta-analysis. Arch Pediatr Adolesc Med 2020; 166(6): 558-66.
[5]
Lafuente H, Pazos MR, Alvarez A, et al. Effects of cannabidiol and hypothermia on short-term brain damage in new-born piglets after acute hypoxia-ischemia. Front Neurosci 2016; 10: 323.
[6]
Filippi L, Fiorini P, Catarzi S, et al. Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI): A feasibility study. J Matern Fetal Neonatal Med 2018; 31(8): 973-80.
[7]
Robertson NJ, Martinello K, Lingam I, et al. Melatonin as an adjunct to therapeutic hypothermia in a piglet model of neonatal encephalopathy: A translational study. Neurobiol Dis 2019; 121: 240-51.
[8]
Hagberg H, Gilland E, Diemer NH, Andine P. Hypoxia-ischemia in the neonatal rat brain: Histopathology after post-treatment with NMDA and non-NMDA receptor antagonists. Biol Neonate 1994; 66(4): 205-13.
[9]
Yang Z-J, Ni X, Carter EL, Kibler K, Martin LJ, Koehler RC. Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum. Neurobiol Dis 2011; 43(2): 446-54.
[10]
Xu B, Xiao AJ, Chen W, et al. Neuroprotective effects of a psd-95 inhibitor in neonatal hypoxic-ischemic brain injury. Mol Neurobiol 2016; 53(9): 5962-70.
[11]
Wroge CM, Hogins J, Eisenman L, Mennerick S. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 2012; 32(19): 6732-42.
[12]
Koehler RC, Yang Z-J, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38(12): 2092-111.
[13]
Mueller-Burke D, Koehler RC, Martin LJ. Rapid NMDA receptor phosphorylation and oxidative stress precede striatal neurodegeneration after hypoxic ischemia in newborn piglets and are attenuated with hypothermia. Int J Dev Neurosci 2008; 26(1): 67-76.
[14]
Hou X, Li Y, Huang Y, Zhao H, Gui L. Adenosine receptor A1-A2a heteromers regulate EAAT2 expression and glutamate uptake via YY1-induced repression of PPARγ transcription. PPAR Res 2020; 2020: 2410264.
[15]
Franco R, Rivas-Santisteban R, Casanovas M, Lillo A, Saura CA, Navarro G. Adenosine A(2A) receptor antagonists affects NMDA glutamate receptor function. Potential to address neurodegeneration in Alzheimer’s disease. Cells 2020; 9(5): 1075.
[16]
Stockwell J, Jakova E, Cayabyab FS. Adenosine A1 and A2A receptors in the brain: Current research and their role in neurodegeneration. Molecules 2017; 22(4): 676.
[17]
Ferré S, Quiroz C, Woods AS, et al. An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 2008; 14(15): 1468-74.
[18]
Colella M, Zinni M, Pansiot J, et al. modulation of microglial activation by adenosine A2a receptor in animal models of perinatal brain injury. Front Neurol 2018; 9: 605.
[19]
Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: Neuroprotection and neurodegeneration. Biochim Biophys Acta Biomembr 2011; 1808(5): 1380-99.
[20]
Martin LJ, Brambrink A, Koehler RC, Traystman RJ. Primary sensory and forebrain motor systems in the newborn brain are preferentially damaged by hypoxia-ischemia. J Comp Neurol 1997; 377(2): 262-85.
[21]
Belardinelli L, Shryock JC, Ruble J, et al. Binding of the novel nonxanthine A2A adenosine receptor antagonist [3H]SCH58261 to coronary artery membranes. Circ Res 1996; 79(6): 1153-60.
[22]
Melani A, Pantoni L, Bordoni F, et al. The selective A2A receptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 2003; 959(2): 243-50.
[23]
Melani A, Pantoni L, Corsi C, et al. Striatal outflow of adenosine, excitatory amino acids, gamma-aminobutyric acid, and taurine in awake freely moving rats after middle cerebral artery occlusion: Correlations with neurological deficit and histopathological damage. Stroke 1999; 30(11): 2448-54.
[24]
Golden WC, Brambrink AM, Traystman RJ, Martin LJ. Failure to sustain recovery of Na,K-ATPase function is a possible mechanism for striatal neurodegeneration in hypoxic-ischemic newborn piglets. Brain Res Mol Brain Res 2001; 88(1-2): 94-102.
[25]
Erdelmeier I, Gerard-Monnier D, Yadan JC, Chaudiere J. Reactions of N-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Mechanistic aspects of the colorimetric assay of lipid peroxidation. Chem Res Toxicol 1998; 11(10): 1184-94.
[26]
Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969; 27(3): 502-22.
[27]
Yang ZJ, Torbey M, Li X, Bernardy J, Golden WC, Martin LJ, et al. Dopamine receptor modulation of hypoxic-ischemic neuronal injury in striatum of newborn piglets. J Cereb Blood Flow Metab 2007; 27(7): 1339-51.
[28]
Weis SN, Schunck RV, Pettenuzzo LF, et al. Early biochemical effects after unilateral hypoxia-ischemia in the immature rat brain. Int J Dev Neurosci 2011; 29(2): 115-20.
[29]
Martin LJ, Brambrink AM, Price AC, et al. Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol Dis 2000; 7(3): 169-91.
[30]
Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martínez G, León OS. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 2001; 41(3): 233-41.
[31]
Tebano MT, Martire A, Rebola N, et al. Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: A possible key mechanism in the modulation of N-methyl-d-aspartate effects. J Neurochem 2005; 95(4): 1188-200.
[32]
Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 2008; 57(1): 121-34.
[33]
Marcoli M, Raiteri L, Bonfanti A, et al. Sensitivity to selective adenosine A1 and A2A receptor antagonists of the release of glutamate induced by ischemia in rat cerebrocortical slices. Neuropharmacology 2003; 45(2): 201-10.
[34]
Marcoli M, Bonfanti A, Roccatagliata P, et al. Glutamate efflux from human cerebrocortical slices during ischemia: vesicular-like mode of glutamate release and sensitivity to A(2A) adenosine receptor blockade. Neuropharmacology 2004; 47(6): 884-91.
[35]
Dias RB, Rombo DM, Ribeiro JA, Sebastião AM. Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus. Neuropharmacology 2013; 65: 114-22.
[36]
Chen JF, Huang Z, Ma J, et al. A(2A) adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 1999; 19(21): 9192-200.
[37]
Zhou Y, Zeng X, Li G, et al. Inactivation of endothelial adenosine A2A receptors protects mice from cerebral ischaemia-induced brain injury. Br J Clin Pharmacol 2019; 176(13): 2250-63.
[38]
Ådén U, Halldner L, Lagercrantz H, Dalmau I, Ledent C, Fredholm Bertil B. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 2003; 34(3): 739-44.
[39]
Bona E, Adén U, Gilland E, Fredholm BB, Hagberg H. Neonatal cerebral hypoxia-ischemia: The effect of adenosine receptor antagonists. Neuropharmacology 1997; 36(9): 1327-38.
[40]
Melani A, Dettori I, Corti F, Cellai L, Pedata F. Time-course of protection by the selective A2A receptor antagonist SCH58261 after transient focal cerebral ischemia. Neurol Sci 2015; 36(8): 1441-8.
[41]
Pimentel VC, Zanini D, Cardoso AM, et al. Hypoxia–ischemia alters nucleotide and nucleoside catabolism and Na+,K+-ATPase activity in the cerebral cortex of newborn rats. Neurochem Res 2013; 38(4): 886-94.
[42]
Yang ZJ, Wang B, Kwansa H, et al. Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. J Cereb Blood Flow Metab 2013; 33(10): 1612-20.
[43]
Fuller W, Parmar V, Eaton P, Bell JR, Shattock MJ. Cardiac ischemia causes inhibition of the Na/K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovasc Res 2003; 57(4): 1044-51.
[44]
Simão F, Matté A, Matté C, et al. Resveratrol prevents oxidative stress and inhibition of Na+K+-ATPase activity induced by transient global cerebral ischemia in rats. J Nutr Biochem 2011; 22(10): 921-8.
[45]
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 2007; 13(6): 688-94.
[46]
Kumar A, Mittal R, Khanna HD, Basu S. Free radical injury and blood-brain barrier permeability in hypoxic-ischemic encephalopathy. Pediatrics 2008; 122(3): e722-7.
[47]
Sameshima H, Ikenoue T. Hypoxic-ischemic neonatal encephalopathy: animal experiments for neuroprotective therapies. Stroke Res Treat 2013; 2013: 659374.
[48]
Torres-Cuevas I, Corral-Debrinski M, Gressens P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic Biol Med 2019; 142: 3-15.
[49]
Yang J, Qi J, Xiu B, Yang B, Niu C, Yang H. Reactive Oxygen Species Play a Biphasic Role in Brain Ischemia. J Invest Surg 2019; 32(2): 97-102.
[50]
Lonati E, Corsetto PA, Montorfano G, et al. Lipid reshaping and lipophagy are induced in a modeled ischemia-reperfusion injury of blood brain barrier. Int J Mol Sci 2019; 20(15): 3752.
[51]
Gołembiowska K, Dziubina A. Effect of adenosine A2A receptor antagonists and l-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 2011; 21: 222-30.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy