Abstract
Background: Wireless Sensor Network (WSN) is an arising field for research and development. It has various applications ranging from environmental monitoring to battlefield surveillance and more. WSN is a collection of multiple sensor nodes used for sensing the environment. But these sensing nodes are deployed in such areas where it is not that easy to reach, therefore, the battery used in these nodes becomes quite impossible to change, hence there is a need to utilize this energy to get the maximum sensing for a long time.
Objective: To use the Fuzzy approach in the clustering algorithm. Clustering is a key approach to prolong the network lifetime with minimum energy utilization. In this paper, the focus is on the Cluster Head (CH) selection. So, we are proposing a clustering algorithm which is based on some of the attributes, including Average Residual Energy of CHs, Average Distance from nodes to CHs, Standard Deviation of member nodes, and Average Distance from CH to Base Station(BS).
Methods: Initially, some of the nodes are found to have greater residual energy than the average network energy, and fifteen populations are made, each having an optimum number of CHs. The final and best CHs set is chosen by determining the maximum fitness value using a fuzzy approach.
Result: The result positively supports the energy-efficient utilization with lifetime maximization, which is compared with the Base algorithm [1] and LEACH [2] protocol based on residual energy and the number of nodes that die after performing some rounds.
Conclusion: The proposed algorithm determines a fuzzy-based fitness value, provides loadbalancing among all the networking nodes, and performs a selection of best Cluster Heads, resulting in prolonged network lifetime and maximized efficiency.
Keywords: Index Terms - Sensor Nodes, Wireless Sensor Network (WSN), Clustering, Network lifetime, Cluster Head (CH), Fitness Value, Fuzzy Logic, Base Station (BS).
Graphical Abstract