Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Factors Affecting the Penetration of Niosome into the Skin, Their Laboratory Measurements and Dependency to the Niosome Composition: A Review

Author(s): Bahareh Kheilnezhad and Afra Hadjizadeh*

Volume 18, Issue 5, 2021

Published on: 20 August, 2020

Page: [555 - 569] Pages: 15

DOI: 10.2174/1567201817999200820161438

Price: $65

Abstract

Skin, the most significant protective organ in the body, may face serious problems, including cancer, infectious diseases, etc., requiring different drugs for the treatment. However, most of these drugs have poor chemical and physical stability, and insufficient penetration through the skin layers. In recent years, with the development of nanotechnology, it has been possible to load a variety of drugs into nanocarriers, to effectively targeted drug delivery. The unique structure of niosome presents an effective novel drug delivery system with the ability to load both hydrophilic and lipophilic drugs, having many potential therapeutic applications including skin treatment. However, surveying and discussing these recent, rapidly growing reported studies, along with their theoretical principals, are required for the full understanding and exploring the great potential of this approach in skin diseases and cosmetic treatments. To this aim, an emphasis has been given to the factors affecting the penetration of niosome into the skin and their laboratory measurements and dependency on the niosome composition. In sum, longer tail surfactants for storing hydrophobic drugs and intracellular passing and surfactants with a large head group for penetrating hydrophilic drugs are more suitable. Cholesterol and oleic acid are commonly used lipids to gain more stability and permeability, respectively. The ionic component in the niosome interrupts cellular connectivity, thus making it more permeable, but it may cause relative cell toxicity. Herbal oils have been used in the structure to make the nanoparticles elastic and allow them to pass through pores without changing the size of the particles.

Keywords: Niosome, skin treatment, skin penetration factors, laboratory measurements, niosomes composition, biosurfactant, organ.

Graphical Abstract

[1]
Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C.; Gandía, M.L.L.; Heras Caballero, A. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers (Basel), 2018, 10(2), 213.
[http://dx.doi.org/10.3390/polym10020213] [PMID: 30966249]
[2]
Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J., 2013, 4(4), 267-272.
[http://dx.doi.org/10.4103/2229-5178.120635] [PMID: 24350003]
[3]
NVS. M.; Saini, A., Niosomes: A novel drug delivery system. Int. J. Res. Pharm. Chem., 2011, 1(3), 498-511.
[4]
Varshosaz, J.; Pardakhty, A.; Baharanchi, S.M.; Baharanchi, H. Sorbitan monopalmitate-based proniosomes for transdermal delivery of chlorpheniramine maleate. Drug Deliv., 2005, 12(2), 75-82.
[http://dx.doi.org/10.1080/10717540490446044] [PMID: 15824032]
[5]
Bhardwaj, P.; Tripathi, P.; Gupta, R.; Pandey, S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol., 2020, 101581.
[http://dx.doi.org/10.1016/j.jddst.2020.101581]
[6]
Manosroi, A.; Jantrawut, P.; Akazawa, H.; Akihisa, T.; Manosroi, W.; Manosroi, J. Transdermal absorption enhancement of gel containing elastic niosomes loaded with gallic acid from Terminalia chebula galls. Pharm. Biol., 2011, 49(6), 553-562.
[http://dx.doi.org/10.3109/13880209.2010.528432] [PMID: 21284426]
[7]
Fang, J-Y.; Hong, C-T.; Chiu, W-T.; Wang, Y-Y. Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm., 2001, 219(1-2), 61-72.
[http://dx.doi.org/10.1016/S0378-5173(01)00627-5] [PMID: 11337166]
[8]
Muzzalupo, R.; Tavano, L. Niosomal drug delivery for transdermal targeting: recent advances. Drug Deliv. Transl. Res., 2015, 4, 23.
[http://dx.doi.org/10.2147/RRTD.S64773]
[9]
Ge, X.; Wei, M.; He, S.; Yuan, W-E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 2019, 11(2), 55.
[http://dx.doi.org/10.3390/pharmaceutics11020055] [PMID: 30700021]
[10]
Alsarra, I.A.; Bosela, A.A.; Ahmed, S.M.; Mahrous, G.M. Proniosomes as a drug carrier for transdermal delivery of ketorolac. Eur. J. Pharm. Biopharm., 2005, 59(3), 485-490.
[http://dx.doi.org/10.1016/j.ejpb.2004.09.006] [PMID: 15760729]
[11]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[12]
Moghassemi, S.; Hadjizadeh, A.; Omidfar, K. Formulation and characterization of bovine serum albumin-loaded niosome. AAPS PharmSciTech, 2017, 18(1), 27-33.
[http://dx.doi.org/10.1208/s12249-016-0487-1] [PMID: 26817764]
[13]
Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release, 2014, 185, 22-36.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.015] [PMID: 24747765]
[14]
Moghassemi, S.; Hadjizadeh, A.; Hakamivala, A.; Omidfar, K. Growth factor-loaded nano-niosomal gel formulation and characterization. AAPS PharmSciTech, 2017, 18(1), 34-41.
[http://dx.doi.org/10.1208/s12249-016-0579-y] [PMID: 27502406]
[15]
Zeb, A.; Arif, S.T.; Malik, M.; Shah, F.A.; Din, F.U.; Qureshi, O.S.; Lee, E-S.; Lee, G-Y.; Kim, J-K. Potential of nanoparticulate carriers for improved drug delivery via skin. J. Pharm. Investig., 2018, 49, 1-33.
[16]
Al-Mahallawi, A.M.; Khowessah, O.M.; Shoukri, R.A. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: Fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int. J. Pharm., 2017, 522(1-2), 157-164.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.005] [PMID: 28279741]
[17]
Challapalli, P.V.; Stinchcomb, A.L. In vitro experiment optimization for measuring tetrahydrocannabinol skin permeation. Int. J. Pharm., 2002, 241(2), 329-339.
[http://dx.doi.org/10.1016/S0378-5173(02)00262-4] [PMID: 12100860]
[18]
Sharma, R.; Dua, J.S.; Prasad, D.; Hira, S. Advancement in novel drug delivery system: Niosomes. J. Drug Deliv. Ther., 2019, 9(3-s), 995-1001.
[19]
Newton, A.M.; Kaur, S. Solid lipid nanoparticles for skin and drug delivery: Methods of preparation and characterization techniques and applications.Nanoarchitectonics in Biomedicine; Elsevier, 2019, pp. 295-334.
[http://dx.doi.org/10.1016/B978-0-12-816200-2.00015-3]
[20]
Rahimpour, Y.; Hamishehkar, H. Niosomes as carrier in dermal drug delivery In: Recent Advances in Novel Drug Carrier Systems, 2012, 3, 141-164.
[http://dx.doi.org/10.5772/51729]
[21]
Larese, F.F.; D’Agostin, F.; Crosera, M.; Adami, G.; Renzi, N.; Bovenzi, M.; Maina, G. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 2009, 255(1-2), 33-37.
[http://dx.doi.org/10.1016/j.tox.2008.09.025] [PMID: 18973786]
[22]
Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: In vitro characterization, ex vivo permeation and in vivo skin deposition study. J. Liposome Res., 2019, 29(1), 73-85.
[http://dx.doi.org/10.1080/08982104.2018.1430831] [PMID: 29355060]
[23]
Manosroi, A.; Wongtrakul, P.; Manosroi, J.; Sakai, H.; Sugawara, F.; Yuasa, M.; Abe, M. Characterization of vesicles prepared with various non-ionic surfactants mixed with cholesterol. Colloids Surf. B Biointerfaces, 2003, 30(1-2), 129-138.
[http://dx.doi.org/10.1016/S0927-7765(03)00080-8]
[24]
Mazzotta, E.; Oliviero Rossi, C.; Muzzalupo, R. Different BRIJ97 colloid systems as potential enhancers of acyclovir skin permeation and depot. Colloids Surf. B Biointerfaces, 2019, 173, 623-631.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.041] [PMID: 30368209]
[25]
Shah, P.; Goodyear, B.; Haq, A.; Puri, V.; Michniak-Kohn, B. Evaluations of quality by design (qbd) elements impact for developing niosomes as a promising topical drug delivery platform. Pharmaceutics, 2020, 12(3), 246.
[http://dx.doi.org/10.3390/pharmaceutics12030246] [PMID: 32182792]
[26]
Srisuk, P.; Thongnopnua, P.; Raktanonchai, U.; Kanokpanont, S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int. J. Pharm., 2012, 427(2), 426-434.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.045] [PMID: 22310459]
[27]
Dugave, C. cis-trans Isomerization in Biochemistry; John Wiley   Sons, 2006.
[28]
Sakdiset, P.; Todo, H.; Sugibayashi, K. Potential of stratum corneum lipid liposomes for screening of chemical skin penetration enhancers. Chem. Pharm. Bull. (Tokyo), 2017, 65(8), 776-783.
[http://dx.doi.org/10.1248/cpb.c17-00269] [PMID: 28768931]
[29]
Shalini, M.; Ali, M.H.; Lakshmi, P. Formulation and evaluation of elastic niosomes of eletriptan hydrobromide. Int. J. Pharm. Sci. Res., 2016, 7(4), 1679.
[30]
Taymouri, S.; Varshosaz, J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv. Biomed. Res., 2016, 5, 48.
[http://dx.doi.org/10.4103/2277-9175.178781] [PMID: 27110545]
[31]
Kakkar, S.; Kaur, I.P. Spanlastics-a novel nanovesicular carrier system for ocular delivery. Int. J. Pharm., 2011, 413(1-2), 202-210.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.027] [PMID: 21540093]
[32]
Kumar, P.; Singh, S.K.; Mishra, D.N.; Girotra, P. Enhancement of ketorolac tromethamine permeability through rat skin using penetration enhancers: An ex-vivo study. Int. J. Pharm. Investig., 2015, 5(3), 142-146.
[http://dx.doi.org/10.4103/2230-973X.160850] [PMID: 26258055]
[33]
Muzzalupo, R. Niosomes and proniosomes for enhanced skin delivery.Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Springer, 2016, pp. 147-160.
[http://dx.doi.org/10.1007/978-3-662-47862-2_10]
[34]
Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D-D.; Kim, J.S.; Yoo, B.K.; Choi, H-G.; Woo, J.S.; Yong, C.S. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm., 2009, 377(1-2), 1-8.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.020] [PMID: 19394413]
[35]
Nokhodchi, A.; Shokri, J.; Dashbolaghi, A.; Hassan-Zadeh, D.; Ghafourian, T.; Barzegar-Jalali, M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int. J. Pharm., 2003, 250(2), 359-369.
[http://dx.doi.org/10.1016/S0378-5173(02)00554-9] [PMID: 12527163]
[36]
Chaikul, P.; Khat-Udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci., 2019, 131, 39-49.
[http://dx.doi.org/10.1016/j.ejps.2019.02.008] [PMID: 30735821]
[37]
Wang, C.; Zhu, J.; Zhang, D.; Yang, Y.; Zheng, L.; Qu, Y.; Yang, X.; Cui, X. Ionic liquid - microemulsions assisting in the transdermal delivery of Dencichine: Preparation, in-vitro and in-vivo evaluations, and investigation of the permeation mechanism. Int. J. Pharm., 2018, 535(1-2), 120-131.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.024] [PMID: 29104058]
[38]
Hao, Y.; Zhao, F.; Li, N.; Yang, Y.; Li, K. Studies on a high encapsulation of colchicine by a niosome system. Int. J. Pharm., 2002, 244(1-2), 73-80.
[http://dx.doi.org/10.1016/S0378-5173(02)00301-0] [PMID: 12204566]
[39]
Walters, K.A.; Walker, M.; Olejnik, O. Non-ionic surfactant effects on hairless mouse skin permeability characteristics. J. Pharm. Pharmacol., 1988, 40(8), 525-529.
[http://dx.doi.org/10.1111/j.2042-7158.1988.tb05295.x] [PMID: 2907003]
[40]
López, A.; Llinares, F.; Cortell, C.; Herráez, M. Comparative enhancer effects of Span20 with Tween20 and Azone on the in vitro percutaneous penetration of compounds with different lipophilicities. Int. J. Pharm., 2000, 202(1-2), 133-140.
[http://dx.doi.org/10.1016/S0378-5173(00)00427-0] [PMID: 10915936]
[41]
Percival, S.L.; Chen, R.; Mayer, D.; Salisbury, A.M. Mode of action of poloxamer-based surfactants in wound care and efficacy on biofilms. Int. Wound J., 2018, 15(5), 749-755.
[http://dx.doi.org/10.1111/iwj.12922] [PMID: 29869367]
[42]
Naughton, P.J.; Marchant, R.; Naughton, V.; Banat, I.M. Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J. Appl. Microbiol., 2019, 127(1), 12-28.
[http://dx.doi.org/10.1111/jam.14243] [PMID: 30828919]
[43]
Haque, F.; Sajid, M.; Cameotra, S.S.; Battacharyya, M.S. Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against Candida albicans. Biofouling, 2017, 33(9), 768-779.
[http://dx.doi.org/10.1080/08927014.2017.1363191] [PMID: 28946803]
[44]
Decesaro, A.; Machado, T.S.; Cappellaro, Â.C.; Reinehr, C.O.; Thomé, A.; Colla, L.M. Biosurfactants during in situ bioremediation: factors that influence the production and challenges in evalution. Environ. Sci. Pollut. Res. Int., 2017, 24(26), 20831-20843.
[http://dx.doi.org/10.1007/s11356-017-9778-7] [PMID: 28815413]
[45]
Sajid, M.; Cameotra, S.S.; Khan, M.S.A.; Ahmad, I. Nanoparticle-based delivery of phytomedicines: Challenges and opportunities.New Look to Phytomedicine; Elsevier, 2019, pp. 597-623.
[http://dx.doi.org/10.1016/B978-0-12-814619-4.00024-0]
[46]
De Almeida, F.C.G.; Silva, T.; Garrard, I.; Asfora, L.; Sarubbo, G.; Tambourgi, E.B. Optimization and evaluation of biosurfactant produced by Pantoea sp. using pineapple peel residue, vegetable fat and corn steep liquor. J. Chem. Chem. Eng., 2015, 2015(9), 269-279.
[47]
Mnif, I.; Mnif, S.; Sahnoun, R.; Maktouf, S.; Ayedi, Y.; Ellouze-Chaabouni, S.; Ghribi, D. Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ. Sci. Pollut. Res. Int., 2015, 22(19), 14852-14861.
[http://dx.doi.org/10.1007/s11356-015-4488-5] [PMID: 25994261]
[48]
Costa, S.G.; Nitschke, M.; Haddad, R.; Eberlin, M.N.; Contiero, J. Production of Pseudomonas aeruginosa LBI rhamnolipids following growth on Brazilian native oils. Process Biochem., 2006, 41(2), 483-488.
[http://dx.doi.org/10.1016/j.procbio.2005.07.002]
[49]
de Cássia F S Silva, R.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int. J. Mol. Sci., 2014, 15(7), 12523-12542.
[http://dx.doi.org/10.3390/ijms150712523] [PMID: 25029542]
[50]
Bezza, F.A.; Chirwa, E.M.N. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J., 2015, 101, 168-178.
[http://dx.doi.org/10.1016/j.bej.2015.05.007]
[51]
Liu, Q.; Lin, J.; Wang, W.; Huang, H.; Li, S. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem. Eng. J., 2015, 93, 31-37.
[http://dx.doi.org/10.1016/j.bej.2014.08.023]
[52]
Varjani, S.J.; Upasani, V.N. Core Flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour. Technol., 2016, 220, 175-182.
[http://dx.doi.org/10.1016/j.biortech.2016.08.060] [PMID: 27567478]
[53]
Amani, H.; Mehrnia, M.R.; Sarrafzadeh, M.H.; Haghighi, M.; Soudi, M.R. Scale up and application of biosurfactant from Bacillus subtilis in Enhanced Oil recovery. Appl. Biochem. Biotechnol., 2010, 162(2), 510-523.
[http://dx.doi.org/10.1007/s12010-009-8889-0] [PMID: 20084470]
[54]
Korayem, A.; Abdelhafez, A.; Zaki, M.; Saleh, E. Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using Plackett–Burman design. Ann. Agric. Sci., 2015, 60(2), 209-217.
[http://dx.doi.org/10.1016/j.aoas.2015.09.001]
[55]
Vijayakumar, S.; Saravanan, V. Biosurfactants-types, sources and applications. Int. Res. J. Microbiol., 2015, 10(5), 181-192.
[http://dx.doi.org/10.3923/jm.2015.181.192]
[56]
Ben Ayed, H.; Jridi, M.; Maalej, H.; Nasri, M.; Hmidet, N. Characterization and stability of biosurfactant produced by Bacillus mojavensis A21 and its application in enhancing solubility of hydrocarbon. J. Chem. Technol. Biotechnol., 2014, 89(7), 1007-1014.
[http://dx.doi.org/10.1002/jctb.4192]
[57]
de Oliveira, D.W.F.; França, Í.W.L.; Félix, A.K.N.; Martins, J.J.L.; Giro, M.E.A.; Melo, V.M.M.; Gonçalves, L.R.B. Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf. B Biointerfaces, 2013, 101, 34-43.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.011] [PMID: 22796769]
[58]
Zhao, F.; Zhou, J-D.; Ma, F.; Shi, R-J.; Han, S-Q.; Zhang, J.; Zhang, Y. Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: Applications for microbial enhanced oil recovery. Bioresour. Technol., 2016, 207, 24-30.
[http://dx.doi.org/10.1016/j.biortech.2016.01.126] [PMID: 26868152]
[59]
Al-Wahaibi, Y.; Al-Hadrami, H.; Al-Bahry, S.; Elshafie, A.; Al-Bemani, A.; Joshi, S. Injection of biosurfactant and chemical surfactant following hot water injection to enhance heavy oil recovery. Petrol. Sci., 2016, 13(1), 100-109.
[http://dx.doi.org/10.1007/s12182-015-0067-0]
[60]
Chaprão, M.J.; Ferreira, I.N.; Correa, P.F.; Rufino, R.D.; Luna, J.M.; Silva, E.J.; Sarubbo, L.A. Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron. J. Biotechnol., 2015, 18(6), 471-479.
[http://dx.doi.org/10.1016/j.ejbt.2015.09.005]
[61]
Debon, J. Produção de biossurfactante por Bacillus subtilis ATCC 21332 em condição anaeróbia., 2015.
[62]
Pardakhty, A.; Varshosaz, J.; Rouholamini, A. In vitro study of polyoxyethylene alkyl ether niosomes for delivery of insulin. Int. J. Pharm., 2007, 328(2), 130-141.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.002] [PMID: 16997517]
[63]
Varshosaz, J.; Pardakhty, A.; Hajhashemi, V.I.; Najafabadi, A.R. Development and physical characterization of sorbitan monoester niosomes for insulin oral delivery. Drug Deliv., 2003, 10(4), 251-262.
[http://dx.doi.org/10.1080/drd_10_4_251] [PMID: 14612341]
[64]
Thomas, A.; Matthäus, B.; Fiebig, H.J. Fats and fatty oils; Ullmann's Encyclopedia of Industrial Chemistry, 2000, pp. 1-84.
[65]
Abd, E.; Roberts, M.S.; Grice, J.E. A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacol. Physiol., 2016, 29(1), 24-30.
[http://dx.doi.org/10.1159/000441040] [PMID: 26540487]
[66]
El Maghraby, G.M.; Ahmed, A.A.; Osman, M.A. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm. J., 2015, 23(1), 67-74.
[http://dx.doi.org/10.1016/j.jsps.2014.05.001] [PMID: 25685045]
[67]
Zhang, K.; Zhang, Y.; Li, Z.; Li, N.; Feng, N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. Int. J. Nanomedicine, 2017, 12, 3521-3532.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[68]
Aggarwal, G.; Dhawan, S.; HariKumar, S.L. Natural oils as skin permeation enhancers for transdermal delivery of olanzapine: in vitro and in vivo evaluation. Curr. Drug Deliv., 2012, 9(2), 172-181.
[http://dx.doi.org/10.2174/156720112800234567] [PMID: 22023211]
[69]
Fox, L.T.; Gerber, M.; Plessis, J.D.; Hamman, J.H. Transdermal drug delivery enhancement by compounds of natural origin. Molecules, 2011, 16(12), 10507-10540.
[http://dx.doi.org/10.3390/molecules161210507]
[70]
Eid, R.K.; Essa, E.A.; El Maghraby, G.M. Essential oils in niosomes for enhanced transdermal delivery of felodipine. Pharm. Dev. Technol., 2019, 24(2), 157-165.
[http://dx.doi.org/10.1080/10837450.2018.1441302] [PMID: 29441809]
[71]
García-Manrique, P.; Machado, N.D.; Fernández, M.A.; Blanco-López, M.C.; Matos, M.; Gutiérrez, G. Effect of drug molecular weight on niosomes size and encapsulation efficiency. Colloids Surf. B Biointerfaces, 2020, 186, 110711.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110711] [PMID: 31864114]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy