Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Nitrogen-doped Carbon Dots from Hutai-8 Grape Skin and their Application in Hg2+ Detection

Author(s): Pan Zhang, Shun-Sheng Zhao*, Jia-Jia Wang and Xiang-Rong Liu

Volume 17, Issue 2, 2021

Published on: 19 August, 2020

Page: [338 - 347] Pages: 10

DOI: 10.2174/1573413716999200819201126

Abstract

Background: In recent years, environmental pollution and heavy metal pollution caused by rapid urbanization and industrialization have become increasingly serious. Among them, mercury (II) ion (Hg2+) is one of the highly toxic heavy metal ions, and its pollution comes from various natural resources and human activities. Therefore, people attach great importance to the development of analytical methods for effective analysis and sensitive detection of Hg2+.

Objective: Using grape skin as a green and environment friendly carbon source to synthesize fluorescent carbon dots and to apply them in detecting the concentration of Hg2+ in water.

Methods: Using "Hutai No. 8" grape skin as a carbon source, fluorescent carbon dots were synthesized by a one-step hydrothermal method. The structure and fluorescent properties of the carbon dots were tested using TEM, XPS, XRD, and other characterization instruments, and their utilization on the detection of mercury ions in the actual water samples was explored.

Results: The CDs had a particle size of about 4.8 nm and a spherical shape. There were N-H, C-N, C=O, and other functional groups on the surface. It was found that Hg2+ has an obvious fluorescence quenching effect on CDs, and thus CDs fluorescence quenching method to detect the concentration Hg2+ was established, and the detection limit was 3.7 μM, which could be applied to test the concentration of Hg2+ in water samples.

Conclusion: Using grape skin as a carbon source, fluorescent carbon dots were successfully synthesized by the hydrothermal method. Carbon dots were used to detect mercury ions in water, and a method for detecting mercury ions in actual water samples was established.

Keywords: Carbon dots, Hg2+, hydrothermal, sensing, fluorescence quenching, fluorescence detection.

« Previous
Graphical Abstract

[1]
Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc., 2004, 126(40), 12736-12737.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[2]
Liu, Y.H.; Zhu, C.; Gao, Y.; Yang, L.; Xu, J.Y.; Zhang, X.T.; Lu, C.; Wang, Y.F.; Zhu, Y.Z. Biomass-derived nitrogen self-doped carbon dots via a simple one-pot method: Physicochemical, structural, and luminescence properties. Appl. Surf. Sci., 2020, 510, 145437.
[http://dx.doi.org/10.1016/j.apsusc.2020.145437]
[3]
Jamaludin, N.; Rashid, S.A.; Tan, T. Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots.Othman, R.N.I.R.; Hossein, M.Z. Synthesis, Technology and Applications of Carbon Nanomaterials; Rashid, S.A., Ed.; Elsevier BV, 2019, pp. 109-134.
[http://dx.doi.org/10.1016/B978-0-12-815757-2.00005-X]
[4]
Singh, A.K.; Singh, V.K.; Singh, M.; Singh, P.; Khadim, S.R.; Singh, U.; Koch, B.; Hasan, S.H.; Asthana, R.K. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. J. Photochem. Photobiol. Chem., 2019, 376, 63-72.
[http://dx.doi.org/10.1016/j.jphotochem.2019.02.023]
[5]
Wang, Z.; Chen, D.; Gu, B.; Gao, B.; Wang, T.; Guo, Q.; Wang, G. Biomass-derived nitrogen doped graphene quantum dots with color-tunable emission for sensing, fluorescence ink and multicolor cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117671.
[http://dx.doi.org/10.1016/j.saa.2019.117671] [PMID: 31670043]
[6]
Tejwan, N.; Saha, S.K.; Das, J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci., 2020, 275, 102046.
[http://dx.doi.org/10.1016/j.cis.2019.102046] [PMID: 31757388]
[7]
Hu, S.L.; Niu, K.Y.; Sun, J.; Yang, J.; Zhao, N.Q.; Du, X.W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 2009, 19, 484-488.
[http://dx.doi.org/10.1039/B812943F]
[8]
Lu, J.; Yang, J.X.; Wang, J.; Lim, A.; Wang, S.; Loh, K.P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3(8), 2367-2375.
[http://dx.doi.org/10.1021/nn900546b] [PMID: 19702326]
[9]
Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed. Engl., 2007, 46(34), 6473-6475.
[http://dx.doi.org/10.1002/anie.200701271] [PMID: 17645271]
[10]
Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon, 2018, 140, 77-99.
[http://dx.doi.org/10.1016/j.carbon.2018.08.016]
[11]
Song, J.; Zhao, Y.; Zhang, Y.; Fu, P.; Zheng, L.; Yuan, Q.; Wang, S.; Huang, X.; Xu, W.; Cao, Z.; Gromov, S.; Lai, S. Influence of biomass burning on atmospheric aerosols over the western South China Sea: Insights from ions, carbonaceous fractions and stable carbon isotope ratios. Environ. Pollut., 2018, 242(Pt B), 1800-1809.
[http://dx.doi.org/10.1016/j.envpol.2018.07.088] [PMID: 30093156]
[12]
Leopold, K.; Foulkes, M.; Worsfold, P. Methods for the determination and speciation of mercury in natural waters--a review. Anal. Chim. Acta, 2010, 663(2), 127-138.
[http://dx.doi.org/10.1016/j.aca.2010.01.048] [PMID: 20206001]
[13]
Yang, Y.; Xiao, X.C.; Xing, X.X.; Wang, Z.Z.; Zou, T.; Wang, Z.D.; Zhao, R.J.; Wang, Y.D. One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions. Mater. Res. Express, 2019, 6, 095615.
[http://dx.doi.org/10.1088/2053-1591/ab3006]
[14]
Ye, Q.; Yan, F.; Luo, Y.; Wang, Y.; Zhou, X.; Chen, L. Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 854-862.
[http://dx.doi.org/10.1016/j.saa.2016.10.039] [PMID: 27816885]
[15]
Atchudan, R.; Edison, T.N.J.I.; Chakradhar, D.; Perumal, S.; Shim, J.J.; Lee, Y.R. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus, fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sens. Actuators B Chem., 2017, 246, 497-509.
[http://dx.doi.org/10.1016/j.snb.2017.02.119]
[16]
Wang, X.; Qu, K.; Xu, B.; Ren, J.; Qu, X. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem., 2011, 21, 2445-2450.
[http://dx.doi.org/10.1039/c0jm02963g]
[17]
Molkenova, A.; Atabaev, T.S. Phosphorus-doped carbon dots (P-CDs) from dextrose for low-concentration ferric ions sensing in water. Optik (Stuttg.), 2019, 187, 70-73.
[http://dx.doi.org/10.1016/j.ijleo.2019.05.013]
[18]
Yu, J.; Song, N.; Zhang, Y.K.; Zhong, S.X.; Wang, A.J.; Chen, J.R. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sens. Actuators B Chem., 2015, 214, 29-35.
[http://dx.doi.org/10.1016/j.snb.2015.03.006]
[19]
Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun. (Camb.), 2012, 48(8), 1147-1149.
[http://dx.doi.org/10.1039/C2CC16791C] [PMID: 22159407]
[20]
Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. (Camb.), 2012, 48(75), 9367-9369.
[http://dx.doi.org/10.1039/c2cc33844k] [PMID: 22911246]
[21]
Lu, W.; Qin, X.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Green synthesis of carbon nanodots as an effective fluorescent probe for sensitive and selective detection of mercury(II) ions. J. Nanopart. Res., 2013, 15, 1344.
[http://dx.doi.org/10.1007/s11051-012-1344-0]
[22]
Hoan, B.T.; Thanh, T.T.; Tam, P.D.; Trung, N.N.; Cho, S.; Pham, V.H. A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions. Mater. Sci. Eng. B, 2019, 251, 114455.
[http://dx.doi.org/10.1016/j.mseb.2019.114455]
[23]
Da Silva Souza, D.R.; Caminhas, L.D.; De Mesquita, J.P.; Pereira, F.V. Luminescent carbon dots obtained from cellulose. Mater. Chem. Phys., 2018, 203, 148-155.
[http://dx.doi.org/10.1016/j.matchemphys.2017.10.001]
[24]
Shen, J.; Shang, S.M.; Chen, X.Y.; Wang, D.; Cai, Y. Highly fluorescent N,S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection. Sens. Actuators B Chem., 2017, 248, 92-100.
[http://dx.doi.org/10.1016/j.snb.2017.03.123]
[25]
Ahn, J.; Song, Y.; Kwon, J.E.; Woo, J.; Kim, H. Characterization of food waste-driven carbon dot focusing on chemical structural, electron relaxation behavior and Fe3+ selective sensing. Data Brief, 2019, 25, 104038.
[http://dx.doi.org/10.1016/j.dib.2019.104038] [PMID: 31194181]
[26]
Huang, H.; Lv, J.; Zhou, D.; Bao, N.; Xu, Y.; Wang, A.; Feng, J. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Advances, 2013, 3, 21691-21696.
[http://dx.doi.org/10.1039/c3ra43452d]
[27]
Liu, S.; Tian, J.; Wang, L.; Zhang, Y.; Qin, X.; Luo, Y.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater., 2012, 24(15), 2037-2041.
[http://dx.doi.org/10.1002/adma.201200164] [PMID: 22419383]
[28]
Chauhan, P.; Dogra, S.; Chaudhary, S.; Kumar, R. Usage of coconut coir for sustainable production of high-valued carbon dots with discriminatory sensing aptitude toward metal ions. Mater. Today Chem., 2020, 16, 100247.
[http://dx.doi.org/10.1016/j.mtchem.2020.100247]
[29]
Liu, H.C.; Ding, J.; Zhang, K.; Ding, L. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis. TrAC-Trands. Anal. Chem., 2019, 118, 315-337.
[30]
Yang, M.; Dai, J.; He, M.; Duan, T.; Yao, W. Biomass-derived carbon from Ganoderma lucidum spore as a promising anode material for rapid potassium-ion storage. J. Colloid Interface Sci., 2020, 567, 256-263.
[http://dx.doi.org/10.1016/j.jcis.2020.02.023] [PMID: 32062488]
[31]
Wang, W.; Li, Y.; Cheng, L.; Cao, Z.; Liu, W. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(1), 46-48.
[http://dx.doi.org/10.1039/C3TB21370F] [PMID: 32261297]
[32]
Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. Engl., 2012, 51(49), 12215-12218.
[http://dx.doi.org/10.1002/anie.201206791] [PMID: 23109224]
[33]
Shereema, R.M.; Sankar, V.; Rahu, K.G.; Rao, T.P.; Shankar, S.S. One step green synthesis of carbon quantum dots and its application towards the bioelectroanalytical and biolabeling studies. Electrochim. Acta, 2015, 182, 588-595.
[http://dx.doi.org/10.1016/j.electacta.2015.09.145]
[34]
Paul, A.; Kurian, M. N-doped photoluminescent carbon dots from water hyacinth for tumor detection. Mater. Today, 2020, 25, 213-217.
[35]
Yang, X.; Wang, D.; Luo, N.; Feng, M.; Peng, X.; Liao, X. Green synthesis of fluorescent N,S-carbon dots from bamboo leaf and the interaction with nitrophenol compounds. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 239, 118462.
[http://dx.doi.org/10.1016/j.saa.2020.118462] [PMID: 32450536]
[36]
Zhao, X.; Liao, S.; Wang, L.; Liu, Q.; Chen, X. Facile green and one-pot synthesis of purple perilla derived carbon quantum dot as a fluorescent sensor for silver ion. Talanta, 2019, 201, 1-8.
[http://dx.doi.org/10.1016/j.talanta.2019.03.095] [PMID: 31122398]
[37]
Atchudan, R.; Jebakumar, T.N.; Edison, I.; Perumal, S.; Lee, Y.R. Hydrophilic nitrogen-doped carbon dots from biowaste using dwarf banana peel for environmental and biological applications. Fuel, 2020, 275, 117821.
[http://dx.doi.org/10.1016/j.fuel.2020.117821]
[38]
Mehta, V.N.; Jha, S.; Basu, H.; Singhal, R.K.; Kailasa, S.K. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells. Sens. Actuators B Chem., 2015, 213, 434-443.
[http://dx.doi.org/10.1016/j.snb.2015.02.104]
[39]
Wang, C.J.; Shi, H.X.; Yang, M.; Yan, Y.J.; Liu, E.Z.; Ji, Z.; Fan, J. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater. Res. Bull., 2020, 124, 110730.
[http://dx.doi.org/10.1016/j.materresbull.2019.110730]

© 2024 Bentham Science Publishers | Privacy Policy