Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Research Progress of Herbal Medicines on Drug Metabolizing Enzymes: Consideration Based on Toxicology

Author(s): Shuting Wang, Wanfang Li, Jianbo Yang, Zengyan Yang, Cuiping Yang* and Hongtao Jin*

Volume 21, Issue 12, 2020

Page: [913 - 927] Pages: 15

DOI: 10.2174/1389200221999200819144204

Price: $65

Abstract

The clinical application of herbal medicines is increasing, but there is still a lack of comprehensive safety data and in-depth research into mechanisms of action. The composition of herbal medicines is complex, with each herb containing a variety of chemical components. Each of these components may affect the activity of metabolizing enzymes, which may lead to herb-drug interactions. It has been reported that the combined use of herbs and drugs can produce some unexpected interactions. Therefore, this study reviews the progress of research on safety issues caused by the effects of herbs on metabolizing enzymes with reference to six categories of drugs, including antithrombotic drugs, non-steroidal anti-inflammatory drugs, anti-diabetic drugs, statins lipid-lowering drugs, immunosuppressants, and antineoplastic drugs. Understanding the effects of herbs on the activity of metabolizing enzymes could help avoid the toxicity and adverse drug reactions resulting from the co-administration of herbs and drugs, and help doctors to reduce the risk of prescription incompatibility.

Keywords: Herbal medicines, herbs, metabolizing enzymes, herb-drug interactions, cytochrome P450, toxicity.

Graphical Abstract

[1]
Chen, X.W.; Serag, E.S.; Sneed, K.B.; Liang, J.; Chew, H.; Pan, S.Y.; Zhou, S.F. Clinical herbal interactions with conventional drugs: from molecules to maladies. Curr. Med. Chem., 2011, 18(31), 4836-4850.
[http://dx.doi.org/10.2174/092986711797535317] [PMID: 21919844]
[2]
Choi, Y.H.; Chin, Y.W.; Kim, Y.G. Herb-drug interactions: focus on metabolic enzymes and transporters. Arch. Pharm. Res., 2011, 34(11), 1843-1863.
[http://dx.doi.org/10.1007/s12272-011-1106-z] [PMID: 22139685]
[3]
Job, K.M.; Kiang, T.K.; Constance, J.E.; Sherwin, C.M.; Enioutina, E.Y. Canada and United States. Herbal medicines: challenges in the modern world. Part 4. Expert Rev. Clin. Pharmacol., 2016, 9(12), 1597-1609.
[http://dx.doi.org/10.1080/17512433.2016.1238762] [PMID: 27644147]
[4]
Brodniewicz, T.; Grynkiewicz, G. Preclinical drug development. Acta Pol. Pharm., 2010, 67(6), 578-585.
[PMID: 21229871]
[5]
Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med., 2011, 17(10), 1217-1220.
[http://dx.doi.org/10.1038/nm.2471] [PMID: 21989013]
[6]
Raskin, I.; Ribnicky, D.M.; Komarnytsky, S.; Ilic, N.; Poulev, A.; Borisjuk, N.; Brinker, A.; Moreno, D.A.; Ripoll, C.; Yakoby, N.; O’Neal, J.M.; Cornwell, T.; Pastor, I.; Fridlender, B. Plants and human health in the twenty-first century. Trends Biotechnol., 2002, 20(12), 522-531.
[http://dx.doi.org/10.1016/S0167-7799(02)02080-2] [PMID: 12443874]
[7]
Teng, L.; Zu, Q.; Li, G.; Yu, T.; Job, K.M.; Yang, X.; Di, L.; Sherwin, C.M.; Enioutina, E.Y. Herbal medicines: challenges in the modern world. Part 3. China and Japan. Expert Rev. Clin. Pharmacol., 2016, 9(9), 1225-1233.
[http://dx.doi.org/10.1080/17512433.2016.1195263] [PMID: 27232545]
[8]
Sammons, H.M.; Gubarev, M.I.; Krepkova, L.V.; Bortnikova, V.V.; Corrick, F.; Job, K.M.; Sherwin, C.M.; Enioutina, E.Y. European Union and Russia. Herbal medicines: challenges in the modern world. Part 2. Expert Rev. Clin. Pharmacol., 2016, 9(8), 1117-1127.
[http://dx.doi.org/10.1080/17512433.2016.1189326] [PMID: 27171366]
[9]
Enioutina, E.Y.; Salis, E.R.; Job, K.M.; Gubarev, M.I.; Krepkova, L.V.; Sherwin, C.M. Herbal Medicines: challenges in the modern world. Part 5. Status and current directions of complementary and alternative herbal medicine worldwide. Expert Rev. Clin. Pharmacol., 2017, 10(3), 327-338.
[PMID: 27923318]
[10]
Bailey, R.L.; Gahche, J.J.; Miller, P.E.; Thomas, P.R.; Dwyer, J.T. Why US adults use dietary supplements. JAMA Intern. Med., 2013, 173(5), 355-361.
[http://dx.doi.org/10.1001/jamainternmed.2013.2299] [PMID: 23381623]
[11]
Sun, W.; Sanderson, P.E.; Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today, 2016, 21(7), 1189-1195.
[http://dx.doi.org/10.1016/j.drudis.2016.05.015] [PMID: 27240777]
[12]
He, B.; Lu, C.; Zheng, G.; He, X.; Wang, M.; Chen, G.; Zhang, G.; Lu, A. Combination therapeutics in complex diseases. J. Cell. Mol. Med., 2016, 20(12), 2231-2240.
[http://dx.doi.org/10.1111/jcmm.12930] [PMID: 27605177]
[13]
Firestone, A.J.; Settleman, J. A three-drug combination to treat BRAF-mutant cancers. Nat. Med., 2017, 23(8), 913-914.
[http://dx.doi.org/10.1038/nm.4382] [PMID: 28777790]
[14]
Jiang, Y.M.; Wang, Y.; Tan, H.S.; Yu, T.; Fan, X.M.; Chen, P.; Zeng, H.; Huang, M.; Bi, H.C. Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol. Sin., 2016, 37(3), 382-389.
[http://dx.doi.org/10.1038/aps.2015.120] [PMID: 26806302]
[15]
Shengule, S.; Kumbhare, K.; Patil, D.; Mishra, S.; Apte, K.; Patwardhan, B. Herb-drug interaction of Nisha Amalaki and Curcuminoids with metformin in normal and diabetic condition: a disease system approach. Biomed. Pharmacother., 2018, 101, 591-598.
[http://dx.doi.org/10.1016/j.biopha.2018.02.032] [PMID: 29518605]
[16]
Brown, A. C. Liver toxicity related to herbs and dietary supplements: online table of case reports. Part 2 of 5 series. Food. Chem. Toxicol., 2017, 107(Pt A), 472-501.
[17]
Brown, A. Kidney toxicity related to herbs and dietary supplements: online table of kidney toxicity cases. J. Acad. Nutr. Diet., 2016, 116(9), 502-519.
[http://dx.doi.org/10.1016/j.jand.2016.06.300]
[18]
Bent, S. Herbal medicine in the United States: review of efficacy, safety, and regulation: grand rounds at University of California, San Francisco Medical Center. J. Gen. Intern. Med., 2008, 23(6), 854-859.
[http://dx.doi.org/10.1007/s11606-008-0632-y] [PMID: 18415652]
[19]
Asher, G.N.; Corbett, A.H.; Hawke, R.L. Common herbal dietary supplement-drug interactions. Am. Fam. Physician, 2017, 96(2), 101-107.
[PMID: 28762712]
[20]
Köhle, C.; Bock, K.W. Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem. Pharmacol., 2007, 73(12), 1853-1862.
[http://dx.doi.org/10.1016/j.bcp.2007.01.009] [PMID: 17266942]
[21]
Singh, A.; Zhao, K. Herb-drug interactions of commonly used Chinese medicinal herbs. Int. Rev. Neurobiol., 2017, 135, 197-232.
[http://dx.doi.org/10.1016/bs.irn.2017.02.010] [PMID: 28807159]
[22]
Urlacher, V.B.; Girhard, M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol., 2012, 30(1), 26-36.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.012] [PMID: 21782265]
[23]
Wienkers, L.C.; Heath, T.G. Predicting in vivo drug interactions from in vitro drug discovery data. Nat. Rev. Drug Discov., 2005, 4(10), 825-833.
[http://dx.doi.org/10.1038/nrd1851] [PMID: 16224454]
[24]
Evans, W.E.; Relling, M.V. Pharmacogenomics: translating functional genomics into rational therapeutics. Science, 1999, 286(5439), 487-491.
[http://dx.doi.org/10.1126/science.286.5439.487] [PMID: 10521338]
[25]
Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol., 2013, 45(6), 1121-1132.
[http://dx.doi.org/10.1016/j.biocel.2013.02.019] [PMID: 23500526]
[26]
Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol., 1995, 30(6), 445-600.
[http://dx.doi.org/10.3109/10409239509083491] [PMID: 8770536]
[27]
Guengerich, F.P. Cytochrome p450 and chemical toxicology. Chem. Res. Toxicol., 2008, 21(1), 70-83.
[http://dx.doi.org/10.1021/tx700079z] [PMID: 18052394]
[28]
Hollenberg, P.F. Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug Metab. Rev., 2002, 34(1-2), 17-35.
[http://dx.doi.org/10.1081/DMR-120001387] [PMID: 11996009]
[29]
Rau, S.E.; Bend, J.R.; Arnold, M.O.; Tran, L.T.; Spence, J.D.; Bailey, D.G. Grapefruit juice-terfenadine single-dose interaction: magnitude, mechanism, and relevance. Clin. Pharmacol. Ther., 1997, 61(4), 401-409.
[http://dx.doi.org/10.1016/S0009-9236(97)90190-9] [PMID: 9129557]
[30]
Solanki, M.; Pointon, A.; Jones, B.; Herbert, K. Cytochrome P450 2J2: potential role in drug metabolism and cardiotoxicity. Drug Metab. Dispos., 2018, 46(8), 1053-1065.
[http://dx.doi.org/10.1124/dmd.117.078964] [PMID: 29695613]
[31]
Dong, H.; Ma, J.; Li, T.; Xiao, Y.; Zheng, N.; Liu, J.; Gao, Y.; Shao, J.; Jia, L. Global deregulation of ginseng products may be a safety hazard to warfarin takers: solid evidence of ginseng-warfarin interaction. Sci. Rep., 2017, 7(1), 5813.
[http://dx.doi.org/10.1038/s41598-017-05825-9] [PMID: 28725042]
[32]
Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J., 2007, 7(2), 99-111.
[http://dx.doi.org/10.1038/sj.tpj.6500417] [PMID: 16983400]
[33]
Chan, P.C.; Xia, Q.; Fu, P.P. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J. Environ. Sci. Health. C. Environ. Carcinog. Ecotoxicol. Rev., 2007, 25(3), 211-244.
[http://dx.doi.org/10.1080/10590500701569414] [PMID: 17763047]
[34]
Mohutsky, M.A.; Anderson, G.D.; Miller, J.W.; Elmer, G.W. Ginkgo biloba: evaluation of CYP2C9 drug interactions in vitro and in vivo. Am. J. Ther., 2006, 13(1), 24-31.
[http://dx.doi.org/10.1097/01.mjt.0000143695.68285.31] [PMID: 16428919]
[35]
Matthews, M.K. Jr Association of Ginkgo biloba with intracerebral hemorrhage. Neurology, 1998, 50(6), 1933-1934.
[http://dx.doi.org/10.1212/WNL.50.6.1933] [PMID: 9633781]
[36]
Patrono, C.; Rocca, B. Aspirin and Other COX-1 inhibitors. Handb. Exp. Pharmacol., 2012, (210), 137-164.
[http://dx.doi.org/10.1007/978-3-642-29423-5_6] [PMID: 22918730]
[37]
Guirguis-Blake, J.M.; Evans, C.V.; Senger, C.A.; O’Connor, E.A.; Whitlock, E.P. Aspirin for the primary prevention of cardiovascular events: a systematic evidence review for the U.S. Preventive Services Task Force. Ann. Intern. Med., 2016, 164(12), 804-813.
[http://dx.doi.org/10.7326/M15-2113] [PMID: 27064410]
[38]
Lanas, A.; Ferrández, A. Treatment and prevention of aspirin-induced gastroduodenal ulcers and gastrointestinal bleeding. Expert Opin. Drug Saf., 2002, 1(3), 245-252.
[http://dx.doi.org/10.1517/14740338.1.3.245] [PMID: 12904140]
[39]
Song, H.; Wang, P.; Liu, J.; Wang, C. Panax notoginseng preparations for unstable Angina Pectoris: a systematic review and meta-analysis. Phytother. Res., 2017, 31(8), 1162-1172.
[http://dx.doi.org/10.1002/ptr.5848] [PMID: 28634988]
[40]
Sun, Z.; Wu, Y.; Liu, S.; Hu, S.; Zhao, B.; Li, P.; Du, S. Effects of Panax notoginseng saponins on esterases responsible for aspirin hydrolysis in vitro. Int. J. Mol. Sci., 2018, 19(10), 3144.
[http://dx.doi.org/10.3390/ijms19103144] [PMID: 30322078]
[41]
Tian, Z.; Pang, H.; Du, S.; Lu, Y.; Zhang, L.; Wu, H.; Guo, S.; Wang, M.; Zhang, Q. Effect of Panax notoginseng saponins on the pharmacokinetics of aspirin in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1040, 136-143.
[http://dx.doi.org/10.1016/j.jchromb.2016.12.007] [PMID: 27978468]
[42]
Zhou, L.; Wang, S.; Zhang, Z.; Lau, B.S.; Fung, K.P.; Leung, P.C.; Zuo, Z. Pharmacokinetic and pharmacodynamic interaction of Danshen-Gegen extract with warfarin and aspirin. J. Ethnopharmacol., 2012, 143(2), 648-655.
[http://dx.doi.org/10.1016/j.jep.2012.07.029] [PMID: 22867637]
[43]
Kuehl, G.E.; Bigler, J.; Potter, J.D.; Lampe, J.W. Glucuronidation of the aspirin metabolite salicylic acid by expressed UDP-glucuronosyltransferases and human liver microsomes. Drug Metab. Dispos., 2006, 34(2), 199-202.
[http://dx.doi.org/10.1124/dmd.105.005652] [PMID: 16258079]
[44]
Zhang, X.X.; Cao, Y.F.; Wang, L.X.; Yuan, X.L.; Fang, Z.Z. Inhibitory effects of tanshinones towards the catalytic activity of UDP-glucuronosyltransferases (UGTs). Pharm. Biol., 2017, 55(1), 1703-1709.
[http://dx.doi.org/10.3109/13880209.2015.1045621] [PMID: 28466663]
[45]
Chang, T.K.H.; Chen, J.; Benetton, S.A. In vitro effect of standardized ginseng extracts and individual ginsenosides on the catalytic activity of human CYP1A1, CYP1A2, and CYP1B1. Drug Metab. Dispos., 2002, 30(4), 378-384.
[http://dx.doi.org/10.1124/dmd.30.4.378] [PMID: 11901090]
[46]
Lee, H.; Heo, J.K.; Lee, G.H.; Park, S.Y.; Jang, S.N.; Kim, H.J.; Kwon, M.J.; Song, I.S.; Liu, K.H. Ginsenoside rc is a new selective UGT1A9 inhibitor in human liver microsomes and recombinant human UGT isoforms. Drug Metab. Dispos., 2019, 47(12), 1372-1379.
[http://dx.doi.org/10.1124/dmd.119.087965] [PMID: 31578207]
[47]
Gao, J.; Shi, Z.; Zhu, S.; Li, G.Q.; Yan, R.; Yao, M. Influences of processed rhubarbs on the activities of four CYP isozymes and the metabolism of saxagliptin in rats based on probe cocktail and pharmacokinetics approaches. J. Ethnopharmacol., 2013, 145(2), 566-572.
[http://dx.doi.org/10.1016/j.jep.2012.11.030] [PMID: 23207062]
[48]
Su, T.; Mao, C.; Yin, F.; Yu, Z.; Lin, Y.; Song, Y.; Lu, T. Effects of unprocessed versus vinegar-processed Schisandra chinensis on the activity and mRNA expression of CYP1A2, CYP2E1 and CYP3A4 enzymes in rats. J. Ethnopharmacol., 2013, 146(3), 734-743.
[http://dx.doi.org/10.1016/j.jep.2013.01.028] [PMID: 23376044]
[49]
Huang, Y.; Zheng, S.L.; Zhu, H.Y.; Xu, Z.S.; Xu, R.A. Effects of aescin on cytochrome P450 enzymes in rats. J. Ethnopharmacol., 2014, 151(1), 583-590.
[http://dx.doi.org/10.1016/j.jep.2013.11.016] [PMID: 24252494]
[50]
Yu, C.P.; Huang, C.Y.; Lin, S.P.; Hou, Y.C. Activation of P-glycoprotein and CYP 3A by Coptidis rhizoma in vivo: using cyclosporine as a probe substrate in rats. Yao Wu Shi Pin Fen Xi, 2018, 26(2S), S125-S132.
[http://dx.doi.org/10.1016/j.jfda.2017.11.005] [PMID: 29703381]
[51]
Jiang, B.; Meng, L.; Zhang, F.; Jin, X.; Zhang, G. Enzyme-inducing effects of berberine on cytochrome P450 1A2 in vitro and in vivo. Life Sci., 2017, 189, 1-7.
[http://dx.doi.org/10.1016/j.lfs.2017.09.011] [PMID: 28893642]
[52]
Bray, B.J.; Perry, N.B.; Menkes, D.B.; Rosengren, R.J.St. John’s wort extract induces CYP3A and CYP2E1 in the Swiss Webster mouse. Toxicol. Sci., 2002, 66(1), 27-33.
[53]
Feng, D.; Tang, T.; Fan, R.; Luo, J.; Cui, H.; Wang, Y.; Gan, P. Gancao (Glycyrrhizae Radix) provides the main contribution to Shaoyao-Gancao decoction on enhancements of CYP3A4 and MDR1 expression via pregnane X receptor pathway in vitro. BMC Complement. Altern. Med., 2018, 18(1), 345.
[http://dx.doi.org/10.1186/s12906-018-2402-7] [PMID: 30594244]
[54]
Yang, X-F.; Wang, N-P.; Lu, W-H.; Zeng, F-D. Effects of Ginkgo biloba extract and tanshinone on cytochrome P-450 isozymes and glutathione transferase in rats. Acta Pharmacol. Sin., 2003, 24(10), 1033-1038.
[PMID: 14531948]
[55]
Lau, A.J.; Chang, T.K. Inhibition of human CYP2B6-catalyzed bupropion hydroxylation by Ginkgo biloba extract: effect of terpene trilactones and flavonols. Drug Metab. Dispos., 2009, 37(9), 1931-1937.
[http://dx.doi.org/10.1124/dmd.109.028118] [PMID: 19487249]
[56]
Xu, S.; Liu, J.; Shi, J.; Wang, Z.; Ji, L. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside exacerbates acetaminophen-induced hepatotoxicity by inducing hepatic expression of CYP2E1, CYP3A4 and CYP1A2. Sci. Rep., 2017, 7(1), 16511.
[http://dx.doi.org/10.1038/s41598-017-16688-5] [PMID: 29184146]
[57]
Chen, X.; Jin, J.; Chen, Y.; Peng, L.; Zhong, G.; Li, J.; Bi, H.; Cai, Y.; Huang, M. Effect of scutellarin on the metabolism and pharmacokinetics of clopidogrel in rats. Biopharm. Drug Dispos., 2015, 36(1), 64-68.
[http://dx.doi.org/10.1002/bdd.1918] [PMID: 25256597]
[58]
Ma, S.; Dai, G.; Bi, X.; Gong, M.; Miao, C.; Chen, H.; Gao, L.; Zhao, W.; Liu, T.; Zhang, N. The herb-drug interaction of Clopidogrel and Xuesaitong dispersible tablet by modulation of the pharmacodynamics and liver carboxylesterase 1A metabolism. Evid. Based Complement. Alternat. Med., 2018, 2018(3), 1-8.
[http://dx.doi.org/10.1155/2018/5651989] [PMID: 30498515]
[59]
Singh, A.; Zhao, K.; Bell, C.; Shah, A.J. Effect of berberine on in vitro metabolism of sulfonylureas: a herb-drug interactions study. Rapid Commun. Mass Spectrom., 2019, 34(Sup 4), e8651.
[PMID: 31721320]
[60]
Xu, H.; Williams, K.M.; Liauw, W.S.; Murray, M.; Day, R.O.; McLachlan, A.J. Effects of St John’s wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br. J. Pharmacol., 2008, 153(7), 1579-1586.
[http://dx.doi.org/10.1038/sj.bjp.0707685] [PMID: 18204476]
[61]
Sahu, R.; Ahmed, T.; Sangana, R.; Punde, R.; Subudhi, B.B. Effect of Tinospora cordifolia aqua-alcoholic extract on pharmacokinetic of Glibenclamide in rat: an herb-drug interaction study. J. Pharm. Biomed. Anal., 2018, 151, 310-316.
[http://dx.doi.org/10.1016/j.jpba.2018.01.010] [PMID: 29413979]
[62]
Patel, O.; Muller, C.J.F.; Joubert, E.; Rosenkranz, B.; Taylor, M.J.C.; Louw, J.; Awortwe, C. Pharmacokinetic interaction of green rooibos extract with atorvastatin and metformin in rats. Front. Pharmacol., 2019, 10, 1243.
[http://dx.doi.org/10.3389/fphar.2019.01243] [PMID: 31708777]
[63]
Fantoukh, O.I.; Dale, O.R.; Parveen, A.; Hawwal, M.F.; Ali, Z.; Manda, V.K.; Khan, S.I.; Chittiboyina, A.G.; Viljoen, A.; Khan, I.A. Safety assessment of phytochemicals derived from the globalized South African rooibos tea (Aspalathus linearis) through interaction with CYP, PXR, and P-gp. J. Agric. Food Chem., 2019, 67(17), 4967-4975.
[http://dx.doi.org/10.1021/acs.jafc.9b00846] [PMID: 30955332]
[64]
Andrén, L.; Andreasson, A.; Eggertsen, R. Interaction between a commercially available St. John’s wort product (Movina) and atorvastatin in patients with hypercholesterolemia. Eur. J. Clin. Pharmacol., 2007, 63(10), 913-916.
[http://dx.doi.org/10.1007/s00228-007-0345-x] [PMID: 17701167]
[65]
Ren, Y.; Li, H.; Liu, X. Effects of Ginkgo leaf tablets on the pharmacokinetics of atovastatin in rats. Pharm. Biol., 2019, 57(1), 403-406.
[http://dx.doi.org/10.1080/13880209.2019.1622569] [PMID: 31188698]
[66]
Karliova, M.; Treichel, U.; Malagò, M.; Frilling, A.; Gerken, G.; Broelsch, C.E. Interaction of Hypericum perforatum (St. John’s wort) with cyclosporin A metabolism in a patient after liver transplantation. J. Hepatol., 2000, 33(5), 853-855.
[http://dx.doi.org/10.1016/S0168-8278(00)80321-9] [PMID: 11097498]
[67]
Ruschitzka, F.; Meier, P.J.; Turina, M.; Lüscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet, 2000, 355(9203), 548-549.
[http://dx.doi.org/10.1016/S0140-6736(99)05467-7] [PMID: 10683008]
[68]
Moschella, C.; Jaber, B.L. Interaction between cyclosporine and Hypericum perforatum (St. John’s wort) after organ transplantation. Am. J. Kidney Dis., 2001, 38(5), 1105-1107.
[http://dx.doi.org/10.1053/ajkd.2001.28617] [PMID: 11684566]
[69]
Hou, Y.C.; Lin, S.P.; Chao, P.D. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A. Food Chem., 2012, 135(4), 2307-2312.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.061] [PMID: 22980806]
[70]
Lin, S.P.; Chao, P.D.; Tsai, S.Y.; Wang, M.J.; Hou, Y.C. Citrus grandis peel increases the bioavailability of cyclosporine and tacrolimus, two important immunosuppressants, in rats. J. Med. Food, 2011, 14(11), 1463-1468.
[http://dx.doi.org/10.1089/jmf.2011.1596] [PMID: 21883002]
[71]
Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab. Pharmacokinet., 2012, 27(2), 242-247.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-105] [PMID: 22123127]
[72]
Zhai, X.; Chen, C.; Xu, X.; Ma, L.; Zhou, S.; Wang, Z.; Ma, L.; Zhao, X.; Zhou, Y.; Cui, Y. Marked change in blood tacrolimus concentration levels due to grapefruit in a renal transplant patient. J. Clin. Pharm. Ther., 2019, 44(5), 819-822.
[http://dx.doi.org/10.1111/jcpt.13002] [PMID: 31231823]
[73]
Nayeri, A.; Wu, S.; Adams, E.; Tanner, C.; Meshman, J.; Saini, I.; Reid, W. Acute calcineurin inhibitor nephrotoxicity secondary to turmeric intake: a case report. Transplant. Proc., 2017, 49(1), 198-200.
[http://dx.doi.org/10.1016/j.transproceed.2016.11.029] [PMID: 28104136]
[74]
Hu, Z.; Yang, X.; Ho, P.C.; Chan, E.; Chan, S.Y.; Xu, C.; Li, X.; Zhu, Y.Z.; Duan, W.; Chen, X.; Huang, M.; Yang, H.; Zhou, S.St. John’s Wort modulates the toxicities and pharmacokinetics of CPT-11 (irinotecan) in rats. Pharm. Res., 2005, 22(6), 902-914.
[http://dx.doi.org/10.1007/s11095-005-4585-0] [PMID: 15948034]
[75]
Mathijssen, R.H.J.; Verweij, J.; de Bruijn, P.; Loos, W.J.; Sparreboom, A. Effects of St. John’s wort on irinotecan metabolism. J. Natl. Cancer Inst., 2002, 94(16), 1247-1249.
[http://dx.doi.org/10.1093/jnci/94.16.1247] [PMID: 12189228]
[76]
Man, S.; Li, Y.; Fan, W.; Gao, W.; Liu, Z.; Zhang, Y.; Liu, C. Combination therapy of cyclophosphamide and Rhizoma Paridis Saponins on anti-hepatocarcinoma mice and effects on cytochrome p450 enzyme expression. Steroids, 2014, 80, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2013.11.015] [PMID: 24291418]
[77]
Jiang, X.L.; Samant, S.; Lesko, L.J.; Schmidt, S. Clinical pharmacokinetics and pharmacodynamics of clopidogrel. Clin. Pharmacokinet., 2015, 54(2), 147-166.
[http://dx.doi.org/10.1007/s40262-014-0230-6] [PMID: 25559342]
[78]
Hu, Y.; Wang, J. Interactions between clopidogrel and traditional Chinese medicine. J. Thromb. Thrombolysis, 2019, 48(3), 491-499.
[http://dx.doi.org/10.1007/s11239-019-01945-3] [PMID: 31471773]
[79]
Lin, L-L.; Liu, A-J.; Liu, J-G.; Yu, X-H.; Qin, L-P.; Su, D-F. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J. Cardiovasc. Pharmacol., 2007, 50(3), 327-332.
[http://dx.doi.org/10.1097/FJC.0b013e3180cbd0e7] [PMID: 17878763]
[80]
Taubert, D.; von Beckerath, N.; Grimberg, G.; Lazar, A.; Jung, N.; Goeser, T.; Kastrati, A.; Schömig, A.; Schömig, E. Impact of P-glycoprotein on clopidogrel absorption. Clin. Pharmacol. Ther., 2006, 80(5), 486-501.
[http://dx.doi.org/10.1016/j.clpt.2006.07.007] [PMID: 17112805]
[81]
Zhang, X.; Wu, J.; Zhang, B. Xuesaitong injection as one adjuvant treatment of acute cerebral infarction: a systematic review and meta-analysis. BMC Complement. Altern. Med., 2015, 15, 36.
[http://dx.doi.org/10.1186/s12906-015-0560-4] [PMID: 25888429]
[82]
Jaeschke, H. Acetaminophen: Dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig. Dis., 2015, 33(4), 464-471.
[http://dx.doi.org/10.1159/000374090] [PMID: 26159260]
[83]
Kostrubsky, S.E.; Sinclair, J.F.; Strom, S.C.; Wood, S.; Urda, E.; Stolz, D.B.; Wen, Y.H.; Kulkarni, S.; Mutlib, A. Phenobarbital and phenytoin increased acetaminophen hepatotoxicity due to inhibition of UDP-glucuronosyltransferases in cultured human hepatocytes. Toxicol. Sci., 2005, 87(1), 146-155.
[http://dx.doi.org/10.1093/toxsci/kfi211] [PMID: 15933229]
[84]
Kaur, G.; Leslie, E.M.; Tillman, H.; Lee, W.M.; Swanlund, D.P.; Karvellas, C.J.; Group, U.S.A.L.F.S. US acute liver failure study group. detection of ophthalmic acid in serum from acetaminophen-induced acute liver failure patients is more frequent in non-survivors. PLoS One, 2015, 10(9)e0139299
[http://dx.doi.org/10.1371/journal.pone.0139299] [PMID: 26407170]
[85]
Vliegenthart, A.D.; Shaffer, J.M.; Clarke, J.I.; Peeters, L.E.; Caporali, A.; Bateman, D.N.; Wood, D.M.; Dargan, P.I.; Craig, D.G.; Moore, J.K.; Thompson, A.I.; Henderson, N.C.; Webb, D.J.; Sharkey, J.; Antoine, D.J.; Park, B.K.; Bailey, M.A.; Lader, E.; Simpson, K.J.; Dear, J.W. Comprehensive microRNA profiling in acetaminophen toxicity identifies novel circulating biomarkers for human liver and kidney injury. Sci. Rep., 2015, 5, 15501.
[http://dx.doi.org/10.1038/srep15501] [PMID: 26489516]
[86]
Mohamed, M.E.; Frye, R.F. Inhibitory effects of commonly used herbal extracts on UDP-glucuronosyltransferase 1A4, 1A6, and 1A9 enzyme activities. Drug Metab. Dispos., 2011, 39(9), 1522-1528.
[http://dx.doi.org/10.1124/dmd.111.039602] [PMID: 21632963]
[87]
Lin, L.; Ni, B.; Lin, H.; Zhang, M.; Li, X.; Yin, X.; Qu, C.; Ni, J. Traditional usages, botany, phytochemistry, pharmacology and toxicology of Polygonum multiflorum Thunb.: a review. J. Ethnopharmacol., 2015, 159, 158-183.
[http://dx.doi.org/10.1016/j.jep.2014.11.009] [PMID: 25449462]
[88]
Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2016, 12(10), 566-592.
[http://dx.doi.org/10.1038/nrendo.2016.86] [PMID: 27339889]
[89]
Simpson, S.H.; Lee, J.; Choi, S.; Vandermeer, B.; Abdelmoneim, A.S.; Featherstone, T.R. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol., 2015, 3(1), 43-51.
[http://dx.doi.org/10.1016/S2213-8587(14)70213-X] [PMID: 25466239]
[90]
Pop, L.M.; Lingvay, I. The infamous, famous sulfonylureas and cardiovascular safety: much ado about nothing? Curr. Diab. Rep., 2017, 17(12), 124.
[http://dx.doi.org/10.1007/s11892-017-0954-4] [PMID: 29063276]
[91]
Gökalp, O.; Gunes, A.; Cam, H.; Cure, E.; Aydın, O.; Tamer, M.N.; Scordo, M.G.; Dahl, M.L. Mild hypoglycaemic attacks induced by sulphonylureas related to CYP2C9, CYP2C19 and CYP2C8 polymorphisms in routine clinical setting. Eur. J. Clin. Pharmacol., 2011, 67(12), 1223-1229.
[http://dx.doi.org/10.1007/s00228-011-1078-4] [PMID: 21691805]
[92]
Landman, G.W.; de Bock, G.H.; van Hateren, K.J.; van Dijk, P.R.; Groenier, K.H.; Gans, R.O.; Houweling, S.T.; Bilo, H.J.; Kleefstra, N. Safety and efficacy of gliclazide as treatment for type 2 diabetes: a systematic review and meta-analysis of randomized trials. PLoS One, 2014, 9(2)e82880
[http://dx.doi.org/10.1371/journal.pone.0082880] [PMID: 24533045]
[93]
Zou, K.; Li, Z.; Zhang, Y.; Zhang, H.Y.; Li, B.; Zhu, W.L.; Shi, J.Y.; Jia, Q.; Li, Y.M. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin., 2017, 38(2), 157-167.
[http://dx.doi.org/10.1038/aps.2016.125] [PMID: 27917872]
[94]
Tan, H-L.; Chan, K-G.; Pusparajah, P.; Duangjai, A.; Saokaew, S.; Mehmood Khan, T.; Lee, L-H.; Goh, B-H. Rhizoma coptidis: a Potential Cardiovascular Protective Agent. Front. Pharmacol., 2016, 7, 362.
[http://dx.doi.org/10.3389/fphar.2016.00362] [PMID: 27774066]
[95]
Obach, R.S. Inhibition of human cytochrome P450 enzymes by constituents of St. John’s Wort, an herbal preparation used in the treatment of depression. J. Pharmacol. Exp. Ther., 2000, 294(1), 88-95.
[PMID: 10871299]
[96]
Komoroski, B.J.; Zhang, S.; Cai, H.; Hutzler, J.M.; Frye, R.; Tracy, T.S.; Strom, S.C.; Lehmann, T.; Ang, C.Y.W.; Cui, Y.Y.; Venkataramanan, R. Induction and inhibition of cytochromes P450 by the St. John’s wort constituent hyperforin in human hepatocyte cultures. Drug Metab. Dispos., 2004, 32(5), 512-518.
[http://dx.doi.org/10.1124/dmd.32.5.512] [PMID: 15100173]
[97]
Ravindran, S.; Basu, S.; Gorti, S.K.; Surve, P.; Sloka, N. Metabolic profile of glyburide in human liver microsomes using LC-DAD-Q-TRAP-MS/MS. Biomed. Chromatogr., 2013, 27(5), 575-582.
[http://dx.doi.org/10.1002/bmc.2830] [PMID: 23070832]
[98]
Abdelmoneim, A.S.; Eurich, D.T.; Senthilselvan, A.; Qiu, W.; Simpson, S.H. Dose-response relationship between sulfonylureas and major adverse cardiovascular events in elderly patients with type 2 diabetes. Pharmacoepidemiol. Drug Saf., 2016, 25(10), 1186-1195.
[http://dx.doi.org/10.1002/pds.4014] [PMID: 27102581]
[99]
Zhou, L.; Naraharisetti, S.B.; Liu, L.; Wang, H.; Lin, Y.S.; Isoherranen, N.; Unadkat, J.D.; Hebert, M.F.; Mao, Q. Contributions of human cytochrome P450 enzymes to glyburide metabolism. Biopharm. Drug Dispos., 2010, 31(4), 228-242.
[http://dx.doi.org/10.1002/bdd.706] [PMID: 20437462]
[100]
Polu, P.R.; Nayanbhirama, U.; Khan, S.; Maheswari, R. Assessment of free radical scavenging and anti-proliferative activities of Tinospora cordifolia Miers (Willd). BMC Complement. Altern. Med., 2017, 17(1), 457.
[http://dx.doi.org/10.1186/s12906-017-1953-3] [PMID: 28893230]
[101]
Scheen, A.J. Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide. Clin. Pharmacokinet., 2007, 46(2), 93-108.
[http://dx.doi.org/10.2165/00003088-200746020-00001] [PMID: 17253883]
[102]
Takahashi, H.; Hidaka, S.; Seki, C.; Yokoi, N.; Seino, S. Characteristics of repaglinide effects on insulin secretion. Eur. J. Pharmacol., 2018, 828, 52-59.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.025] [PMID: 29555503]
[103]
Jia, Y.; Lao, Y.; Zhu, H.; Li, N.; Leung, S.W. Is metformin still the most efficacious first-line oral hypoglycaemic drug in treating type 2 diabetes? A network meta-analysis of randomized controlled trials. Obes. Rev., 2019, 20(1), 1-12.
[http://dx.doi.org/10.1111/obr.12753] [PMID: 30230172]
[104]
Bidstrup, T.B.; Bjørnsdottir, I.; Sidelmann, U.G.; Thomsen, M.S.; Hansen, K.T. CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br. J. Clin. Pharmacol., 2003, 56(3), 305-314.
[http://dx.doi.org/10.1046/j.0306-5251.2003.01862.x] [PMID: 12919179]
[105]
Goud, T.; Maddi, S.; Nayakanti, D.; Thatipamula, R.P. Altered pharmacokinetics and pharmacodynamics of repaglinide by ritonavir in rats with healthy, diabetic and impaired hepatic function. Drug Metab. Pers. Ther., 2016, 31(2), 123-130.
[http://dx.doi.org/10.1515/dmpt-2015-0046] [PMID: 27166727]
[106]
Türk, D.; Hanke, N.; Wolf, S.; Frechen, S.; Eissing, T.; Wendl, T.; Schwab, M.; Lehr, T. Physiologically based pharmacokinetic models for prediction of complex CYP2C8 and OATP1B1 (SLCO1B1) drug-drug-gene interactions: a modeling network of gemfibrozil, repaglinide, pioglitazone, rifampicin, clarithromycin and itraconazole. Clin. Pharmacokinet., 2019, 58(12), 1595-1607.
[http://dx.doi.org/10.1007/s40262-019-00777-x] [PMID: 31129789]
[107]
Niemi, M.; Kajosaari, L.I.; Neuvonen, M.; Backman, J.T.; Neuvonen, P.J. The CYP2C8 inhibitor trimethoprim increases the plasma concentrations of repaglinide in healthy subjects. Br. J. Clin. Pharmacol., 2004, 57(4), 441-447.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02027.x] [PMID: 15025742]
[108]
Khamaisi, M.; Leitersdorf, E. Severe hypoglycemia from clarithromycin-repaglinide drug interaction. Pharmacotherapy, 2008, 28(5), 682-684.
[http://dx.doi.org/10.1592/phco.28.5.682] [PMID: 18447665]
[109]
Poonam, T.; Prakash, G.P.; Kumar, L.V. Influence of Allium sativum extract on the hypoglycemic activity of glibenclamide: an approach to possible herb-drug interaction. Drug Metabol. Drug Interact., 2013, 28(4), 225-230.
[http://dx.doi.org/10.1515/dmdi-2013-0031] [PMID: 24114899]
[110]
Hirota, T.; Ieiri, I. Drug-drug interactions that interfere with statin metabolism. Expert Opin. Drug Metab. Toxicol., 2015, 11(9), 1435-1447.
[http://dx.doi.org/10.1517/17425255.2015.1056149] [PMID: 26058399]
[111]
Smith, C.; Swart, A. Aspalathus linearis (Rooibos)-a functional food targeting cardiovascular disease. Food Funct., 2018, 9(10), 5041-5058.
[http://dx.doi.org/10.1039/C8FO01010B] [PMID: 30183052]
[112]
Sun, S.; Wang, R.; Fan, J.; Zhang, G.; Zhang, H. Effects of Danshen tablets on pharmacokinetics of atorvastatin calcium in rats and its potential mechanism. Pharm. Biol., 2018, 56(1), 104-108.
[http://dx.doi.org/10.1080/13880209.2018.1424209] [PMID: 29322864]
[113]
Cortese, F.; Gesualdo, M.; Cortese, A.; Carbonara, S.; Devito, F.; Zito, A.; Ricci, G.; Scicchitano, P.; Ciccone, M.M. Rosuvastatin: Beyond the cholesterol-lowering effect. Pharmacol. Res., 2016, 107, 1-18.
[http://dx.doi.org/10.1016/j.phrs.2016.02.012] [PMID: 26930419]
[114]
Rosenson, R.S. Rosuvastatin: a new inhibitor of HMG-coA reductase for the treatment of dyslipidemia. Expert Rev. Cardiovasc. Ther., 2003, 1(4), 495-505.
[http://dx.doi.org/10.1586/14779072.1.4.495] [PMID: 15030249]
[115]
Davidson, M.H.; Toth, P.P. Comparative effects of lipid-lowering therapies. Prog. Cardiovasc. Dis., 2004, 47(2), 73-104.
[http://dx.doi.org/10.1016/j.pcad.2004.04.007] [PMID: 15586350]
[116]
Liu, R.; Dobson, C.C.; Foster, B.C.; Durst, T.; Sanchez, P.; Arnason, J.T.; Harris, C.S. Effect of an anxiolytic botanical containing Souroubea sympetala and Platanus occidentalis on in-vitro diazepam human cytochrome P450-mediated metabolism. J. Pharm. Pharmacol., 2019, 71(3), 429-437.
[http://dx.doi.org/10.1111/jphp.13045] [PMID: 30467864]
[117]
Wen, J.H.; Xiong, Y.Q. The effect of herbal medicine danshensu and ursolic acid on pharmacokinetics of rosuvastatin in rats. Eur. J. Drug Metab. Pharmacokinet., 2011, 36(4), 205-211.
[http://dx.doi.org/10.1007/s13318-011-0048-7] [PMID: 21717139]
[118]
Emami Riedmaier, A.; Burt, H.; Abduljalil, K.; Neuhoff, S. More power to OATP1B1: An evaluation of sample size in pharmacogenetic studies using a rosuvastatin PBPK model for intestinal, hepatic, and renal transporter-mediated clearances. J. Clin. Pharmacol., 2016, 56(Suppl. 7), S132-S142.
[http://dx.doi.org/10.1002/jcph.669] [PMID: 27385171]
[119]
Vermes, A.; Vermes, I. Genetic polymorphisms in cytochrome P450 enzymes: effect on efficacy and tolerability of HMG-CoA reductase inhibitors. Am. J. Cardiovasc. Drugs, 2004, 4(4), 247-255.
[http://dx.doi.org/10.2165/00129784-200404040-00005] [PMID: 15285699]
[120]
Dutta, D.; Barr, V.A.; Akpan, I.; Mittelstadt, P.R.; Singha, L.I.; Samelson, L.E.; Ashwell, J.D. Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat. Immunol., 2017, 18(2), 196-204.
[http://dx.doi.org/10.1038/ni.3640] [PMID: 27941787]
[121]
Hojo, M.; Morimoto, T.; Maluccio, M.; Asano, T.; Morimoto, K.; Lagman, M.; Shimbo, T.; Suthanthiran, M. Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature, 1999, 397(6719), 530-534.
[http://dx.doi.org/10.1038/17401] [PMID: 10028970]
[122]
Dodd-Butera, T.; Broderick, M. Cyclosporine. In:Encyclopedia of Toxicology. 2nd ed; Wexler, P., Ed.; Elsevier: New York, 2005, pp. 711-713.
[http://dx.doi.org/10.1016/B0-12-369400-0/00283-0]
[123]
Zhu, H.J.; Yuan, S.H.; Fang, Y.; Sun, X.Z.; Kong, H.; Ge, W.H. The effect of CYP3A5 polymorphism on dose-adjusted cyclosporine concentration in renal transplant recipients: a meta-analysis. Pharmacogenomics J., 2011, 11(3), 237-246.
[http://dx.doi.org/10.1038/tpj.2010.26] [PMID: 20368718]
[124]
Yu, C.P.; Lin, H.J.; Lin, S.P.; Shia, C.S.; Chang, P.H.; Hou, Y.C.; Hsieh, Y.W. Rhubarb decreased the systemic exposure of cyclosporine, a probe substrate of P-glycoprotein and CYP 3A. Xenobiotica, 2016, 46(8), 677-682.
[http://dx.doi.org/10.3109/00498254.2015.1117159] [PMID: 26634287]
[125]
Yang, M.S.; Yu, C.P.; Huang, C.Y.; Chao, P.L.; Lin, S.P.; Hou, Y.C. Aloe activated P-glycoprotein and CYP 3A: a study on the serum kinetics of aloe and its interaction with cyclosporine in rats. Food Funct., 2017, 8(1), 315-322.
[http://dx.doi.org/10.1039/C6FO00938G] [PMID: 28009901]
[126]
Yu, C.P.; Wu, P.P.; Hou, Y.C.; Lin, S.P.; Tsai, S.Y.; Chen, C.T.; Chao, P.D. Quercetin and rutin reduced the bioavailability of cyclosporine from Neoral, an immunosuppressant, through activating P-glycoprotein and CYP 3A4. J. Agric. Food Chem., 2011, 59(9), 4644-4648.
[http://dx.doi.org/10.1021/jf104786t] [PMID: 21466223]
[127]
Hsu, P.W.; Shia, C.S.; Lin, S.P.; Chao, P.D.; Juang, S.H.; Hou, Y.C. Potential risk of mulberry-drug interaction: modulation on P-glycoprotein and cytochrome P450 3A. J. Agric. Food Chem., 2013, 61(18), 4464-4469.
[http://dx.doi.org/10.1021/jf3052384] [PMID: 23590720]
[128]
Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr., 2017, 57(13), 2889-2895.
[http://dx.doi.org/10.1080/10408398.2015.1077195] [PMID: 26528921]
[129]
Damery, S.; Gratus, C.; Grieve, R.; Warmington, S.; Jones, J.; Routledge, P.; Greenfield, S.; Dowswell, G.; Sherriff, J.; Wilson, S. The use of herbal medicines by people with cancer: a cross-sectional survey. Br. J. Cancer, 2011, 104(6), 927-933.
[http://dx.doi.org/10.1038/bjc.2011.47] [PMID: 21364591]
[130]
Zhu, H.; Hao, J.; Niu, Y.; Liu, D.; Chen, D.; Wu, X. Molecular targets of Chinese herbs: a clinical study of metastatic colorectal cancer based on network pharmacology. Sci. Rep., 2018, 8(1), 7238.
[http://dx.doi.org/10.1038/s41598-018-25500-x] [PMID: 29740162]
[131]
Alsanad, S.M.; Williamson, E.M.; Howard, R.L. Cancer patients at risk of herb/food supplement-drug interactions: a systematic review. Phytother. Res., 2014, 28(12), 1749-1755.
[http://dx.doi.org/10.1002/ptr.5213] [PMID: 25158128]
[132]
Alsanad, S.M.; Howard, R.L.; Williamson, E.M. An assessment of the impact of herb-drug combinations used by cancer patients. BMC Complement. Altern. Med., 2016, 16(1), 393.
[http://dx.doi.org/10.1186/s12906-016-1372-x] [PMID: 27756298]
[133]
Meijerman, I.; Beijnen, J.H.; Schellens, J.H. Herb-drug interactions in oncology: focus on mechanisms of induction. Oncologist, 2006, 11(7), 742-752.
[http://dx.doi.org/10.1634/theoncologist.11-7-742] [PMID: 16880233]
[134]
Haefeli, W.E.; Carls, A. Drug interactions with phytotherapeutics in oncology. Expert Opin. Drug Metab. Toxicol., 2014, 10(3), 359-377.
[http://dx.doi.org/10.1517/17425255.2014.873786] [PMID: 24387348]
[135]
Hahn, R.Z.; Antunes, M.V.; Verza, S.G.; Perassolo, M.S.; Suyenaga, E.S.; Schwartsmann, G.; Linden, R. Pharmacokinetic and pharmacogenetic markers of irinotecan toxicity. Curr. Med. Chem., 2019, 26(12), 2085-2107.
[http://dx.doi.org/10.2174/0929867325666180622141101] [PMID: 29932028]
[136]
de Man, F.M.; Goey, A.K.L.; van Schaik, R.H.N.; Mathijssen, R.H.J.; Bins, S. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin. Pharmacokinet., 2018, 57(10), 1229-1254.
[http://dx.doi.org/10.1007/s40262-018-0644-7] [PMID: 29520731]
[137]
Charasson, V.; Haaz, M-C.; Robert, J. Determination of drug interactions occurring with the metabolic pathways of irinotecan. Drug Metab. Dispos., 2002, 30(6), 731-733.
[http://dx.doi.org/10.1124/dmd.30.6.731] [PMID: 12019202]
[138]
Sprouse, A.A.; van Breemen, R.B. Pharmacokinetic interactions between drugs and botanical dietary supplements. Drug Metab. Dispos., 2016, 44(2), 162-171.
[http://dx.doi.org/10.1124/dmd.115.066902] [PMID: 26438626]
[139]
Emadi, A.; Jones, R.J.; Brodsky, R.A. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol., 2009, 6(11), 638-647.
[http://dx.doi.org/10.1038/nrclinonc.2009.146] [PMID: 19786984]
[140]
Gurtoo, H.L.; Bansal, S.K.; Pavelic, Z.; Struck, R.F. Effects of the induction of hepatic microsomal metabolism on the toxicity of cyclophosphamide. Br. J. Cancer, 1985, 51(1), 67-75.
[http://dx.doi.org/10.1038/bjc.1985.10] [PMID: 3966972]
[141]
Ekhart, C.; Doodeman, V.D.; Rodenhuis, S.; Smits, P.H.M.; Beijnen, J.H.; Huitema, A.D.R. Influence of polymorphisms of drug metabolizing enzymes (CYP2B6, CYP2C9, CYP2C19, CYP3A4, CYP3A5, GSTA1, GSTP1, ALDH1A1 and ALDH3A1) on the pharmacokinetics of cyclophosphamide and 4-hydroxycyclophosphamide. Pharmacogenet. Genomics, 2008, 18(6), 515-523.
[http://dx.doi.org/10.1097/FPC.0b013e3282fc9766] [PMID: 18496131]
[142]
Ekhart, C.; Doodeman, V.D.; Rodenhuis, S.; Smits, P.H.; Beijnen, J.H.; Huitema, A.D. Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br. J. Clin. Pharmacol., 2009, 67(1), 50-60.
[http://dx.doi.org/10.1111/j.1365-2125.2008.03321.x] [PMID: 19076156]
[143]
Ramirez, D.A.; Collins, K.P.; Aradi, A.E.; Conger, K.A.; Gustafson, D.L. Kinetics of cyclophosphamide metabolism in humans, dogs, cats, and mice and relationship to cytotoxic activity and pharmacokinetics. Drug Metab. Dispos., 2019, 47(3), 257-268.
[http://dx.doi.org/10.1124/dmd.118.083766] [PMID: 30567881]
[144]
Man, S.; Qiu, P.; Li, J.; Zhang, L.; Gao, W. Global metabolic profiling for the study of Rhizoma Paridis saponins-induced hepatotoxicity in rats. Environ. Toxicol., 2017, 32(1), 99-108.
[http://dx.doi.org/10.1002/tox.22215] [PMID: 26590097]
[145]
Ma, B.L.; Ma, Y.M. Pharmacokinetic herb-drug interactions with traditional Chinese medicine: progress, causes of conflicting results and suggestions for future research. Drug Metab. Rev., 2016, 48(1), 1-26.
[http://dx.doi.org/10.3109/03602532.2015.1124888] [PMID: 26915920]
[146]
Xiao, M.; Qian, C.; Luo, X.; Yang, M.; Zhang, Y.; Wu, C.; Mok, C.; Lee, P.; Zuo, Z. Impact of the Chinese herbal medicines on dual antiplatelet therapy with clopidogrel and aspirin: pharmacokinetics and pharmacodynamics outcomes and related mechanisms in rats. J. Ethnopharmacol., 2019, 235, 100-110.
[http://dx.doi.org/10.1016/j.jep.2019.01.040] [PMID: 30710735]
[147]
Hellum, B.H.; Hu, Z.; Nilsen, O.G. Trade herbal products and induction of CYP2C19 and CYP2E1 in cultured human hepatocytes. Basic Clin. Pharmacol. Toxicol., 2009, 105(1), 58-63.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00412.x] [PMID: 19371257]
[148]
Chien, C.F.; Wu, Y.T.; Lee, W.C.; Lin, L.C.; Tsai, T.H. Herb-drug interaction of Andrographis paniculata extract and andrographolide on the pharmacokinetics of theophylline in rats. Chem. Biol. Interact., 2010, 184(3), 458-465.
[http://dx.doi.org/10.1016/j.cbi.2010.01.017] [PMID: 20096675]
[149]
Vanhove, T.; Annaert, P.; Kuypers, D.R. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab. Rev., 2016, 48(1), 88-112.
[http://dx.doi.org/10.3109/03602532.2016.1151037] [PMID: 26912097]
[150]
Qian, C.Q.; Zhao, K.J.; Chen, Y.; Liu, L.; Liu, X.D. Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover. Eur. J. Pharm. Sci., 2019, 134, 194-204.
[http://dx.doi.org/10.1016/j.ejps.2019.04.026] [PMID: 31047967]
[151]
Kinoshita, N.; Yamaguchi, Y.; Hou, X.L.; Takahashi, K.; Takahashi, K. Experimental adjustment on drug interactions through intestinal CYP3A activity in rat: impacts of kampo medicines repeat administered. Evid. Based Complement. Alternat. Med., 2011, 2011827435
[http://dx.doi.org/10.1093/ecam/nep159] [PMID: 19884115]
[152]
Wang, Y.; Zou, M.; Zhao, N.; Ren, J.; Zhou, H.; Cheng, G. Effect of diallyl trisulfide on the pharmacokinetics of dipyridamole in rats. Arch. Pharm. Res., 2011, 34(11), 1957-1964.
[http://dx.doi.org/10.1007/s12272-011-1116-x] [PMID: 22139695]
[153]
Mekjaruskul, C.; Jay, M.; Sripanidkulchai, B. Modulatory effects of Kaempferia parviflora extract on mouse hepatic cytochrome P450 enzymes. J. Ethnopharmacol., 2012, 141(3), 831-839.
[http://dx.doi.org/10.1016/j.jep.2012.03.023] [PMID: 22465145]
[154]
Perera, V.; Gross, A.S.; McLachlan, A.J. Measurement of CYP1A2 activity: a focus on caffeine as a probe. Curr. Drug Metab., 2012, 13(5), 667-678.
[http://dx.doi.org/10.2174/1389200211209050667] [PMID: 22554278]
[155]
Lai, L.; Hao, H.; Wang, Q.; Zheng, C.; Zhou, F.; Liu, Y.; Wang, Y.; Yu, G.; Kang, A.; Peng, Y.; Wang, G.; Chen, X. Effects of short-term and long-term pretreatment of Schisandra lignans on regulating hepatic and intestinal CYP3A in rats. Drug Metab. Dispos., 2009, 37(12), 2399-2407.
[http://dx.doi.org/10.1124/dmd.109.027433] [PMID: 19741040]
[156]
Fang, H.; Wang, K.; Zhang, J. Transcriptome and proteome analyses of drug interactions with natural products. Curr. Drug Metab., 2008, 9(10), 1038-1048.
[http://dx.doi.org/10.2174/138920008786927802] [PMID: 19075620]
[157]
Karahalil, B. Overview of systems biology and omics technologies. Curr. Med. Chem., 2016, 23(37), 4221-4230.
[http://dx.doi.org/10.2174/0929867323666160926150617] [PMID: 27686657]
[158]
Couvillion, S.P.; Zhu, Y.; Nagy, G.; Adkins, J.N.; Ansong, C.; Renslow, R.S.; Piehowski, P.D.; Ibrahim, Y.M.; Kelly, R.T.; Metz, T.O. New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst (Lond.), 2019, 144(3), 794-807.
[http://dx.doi.org/10.1039/C8AN01574K] [PMID: 30507980]
[159]
Guo, M.Z.; Wang, T.Y.; Yang, J.; Chang, H.; Ji, S.; Tang, D.Q. Interaction of clopidogrel and fufang danshen dripping pills assay in coronary heart disease based on non-target metabolomics. J. Ethnopharmacol., 2019, 234, 189-196.
[http://dx.doi.org/10.1016/j.jep.2019.01.030] [PMID: 30703494]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy