Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Synthesis, Characterization and Antimicrobial Activities of 1,4- Disubstituted 1,2,3-Triazole Compounds

Author(s): Seck Insa, Fall Alioune, Ba Lalla Aicha, Ndoye Samba Fama, Ka Seydou, Diop Abdoulaye, Ciss Ismaïla, Ba Abda, Diop Amadou, Boye Cheikh Sadibou, Gomez Generosa, Fall Yagamare* and Seck Matar*

Volume 20, Issue 25, 2020

Page: [2289 - 2299] Pages: 11

DOI: 10.2174/1568026620666200819143029

Price: $65

conference banner
Abstract

Background: 1,2,3-triazoles are five-membered heterocyclic scaffold; their broad-spectrum biological activities are known. Researchers around the world are increasingly being interested in this emerging area, owing to its immense pharmacological scope.

Objective: This work summarizes the synthesis of 1,2,3-triazoles and the significance of this pattern as a lead structure for new drug molecules discovery.

Methods: 1,2,3-triazoles can be obtained on a multigram scale through “click chemistry” under ambient conditions.

Results: Sixteen compounds were synthesized and evaluated on five microbial strains E. coli, E. faecalis, P. aeruginosa, S. aureus and C. albicans. NMR, MS and IR were used to characterize all compounds. They were evaluated with their Minimum Inhibitory Concentrations (MICs) and interesting results were obtained with compounds 12a, 12b, 3, 2a and 2c, with MIC 0.14 μM (P. aeruginosa), 1.08 μM (E. coli), 1.20 μM (E. faecalis and C. albicans), 3.5 μM (E. faecalis) and 4.24 μM (C. albicans), respectively. P. aeruginosa and C. albicans were the most sensitive among all the strains.

Conclusion: The synthesized compounds were found as potential antimicrobial agents against Gram (+), Gram (-) strains and fungi.

Keywords: Triazoles, Click chemistry, Minimal inhibitory concentrations, Activities, Antimicrobial, Biological activities.

Graphical Abstract

[1]
Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am. J. Infect. Control, 2007, 35(10 Suppl. 2), S165-S193.
[http://dx.doi.org/10.1016/j.ajic.2007.10.006 ] [PMID: 18068814]
[2]
Mitscher, L.A. Coevolution: Mankind and microbes. J. Nat. Prod., 2008, 71(3), 497-509.
[http://dx.doi.org/10.1021/np078017j ] [PMID: 18298076]
[3]
Bassetti, M.; Merelli, M.; Temperoni, C.; Astilean, A. New antibiotics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob., 2013, 12(1), 22.
[http://dx.doi.org/10.1186/1476-0711-12-22 ] [PMID: 23984642]
[4]
Falagas, M.E.; Bliziotis, I.A. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era? Int. J. Antimicrob. Agents, 2007, 29(6), 630-636.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.12.012 ] [PMID: 17306965]
[5]
Baumann, M.; Baxendale, I.R. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 2013, 9(1), 2265-2319.
[http://dx.doi.org/10.3762/bjoc.9.265 ] [PMID: 24204439]
[6]
Hopkinson, M.N.; Richter, C.; Schedler, M.; Glorius, F. An overview of N-heterocyclic carbenes. Nature, 2014, 510(7506), 485-496.
[http://dx.doi.org/10.1038/nature13384 ] [PMID: 24965649]
[7]
Selvam, T.P.; James, C.R.; Dniandev, P.V.; Valzita, S.K. A mini review of pyrimidine and fused pyrimidine marketed drugs. Research in Pharmacy , 2012, 2(4)
[8]
Welsch, M.E.; Snyder, S.A.; Stockwell, B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol., 2010, 14(3), 347-361.
[http://dx.doi.org/10.1016/j.cbpa.2010.02.018 ] [PMID: 20303320]
[9]
Dua, R.; Shrivastava, S.; Sonwane, S.K.; Srivastava, S.K. Pharmacological significance of synthetic heterocycles scaffold: a review. Adv. Biol. Res. (Faisalabad), 2011, 5(3), 120-144.
[10]
Kumar, B.; Singhb, V.; Shankar, R.; Kumar, S.K.; Rawal, R.K. Synthetic and medicinal prospective of structurally modified curcumins. Curr. Top. Med. Chem., 2017, 17(2), 148-161.
[http://dx.doi.org/10.2174/1568026616666160605050052 ] [PMID: 27280465]
[11]
Singh, U.S.; Shankar, R.; Kumar, A.; Trivedi, R.; Chattopadhyay, N.; Shakya, N.; Palne, S.; Gupta, S.; Hajela, K. Synthesis and biological evaluation of indolyl bisphosphonates as anti-bone resorptive and anti-leishmanial agents. Bioorg. Med. Chem., 2008, 16(18), 8482-8491.
[http://dx.doi.org/10.1016/j.bmc.2008.08.024 ] [PMID: 18752963]
[12]
Dheer, D.; Reddy, K.R.; Rath, S.K.; Sangwan, P.L.; Das, P.; Shankar, R. Cu (I)-catalyzed double C–H amination: synthesis of 2-iodo-imidazo [1, 2-a] pyridines. RSC Advances, 2016, 6(44), 38033-38036.
[http://dx.doi.org/10.1039/C6RA02953A]
[13]
Hoffmann, T.; Metternich, R. The future of medicinal chemistry. Angew. Chem. Int. Ed. Engl., 2012, 51(35), 8670-8671.
[http://dx.doi.org/10.1002/anie.201201677 ] [PMID: 22556033]
[14]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3‐dipolar cycloadditions. Eur. J. Org. Chem., 2014, 2014(16), 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[15]
Altimari, J.M.; Niranjan, B.; Risbridger, G.P.; Schweiker, S.S.; Lohning, A.E.; Henderson, L.C. Preliminary investigations into triazole derived androgen receptor antagonists. Bioorg. Med. Chem., 2014, 22(9), 2692-2706.
[http://dx.doi.org/10.1016/j.bmc.2014.03.018 ] [PMID: 24726305]
[16]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432 ] [PMID: 21954075]
[17]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 ] [PMID: 11433435]
[18]
Seck, I.; Ndoye, S.F.; Ba, L.A.; Fall, A.; Diop, A.; Ciss, I.; Ba, A.; Sall, C.; Diop, A.; Boye, C.S.; Gomez, G.; Fall, Y.; Seck, M. Access to a library of 1,3-disubstituted-1,2,3-triazenes and evaluation of their antimicrobial properties. Curr. Top. Med. Chem., 2020, 20(9), 713-719.
[http://dx.doi.org/10.2174/1568026620666200127143005 ] [PMID: 31985378]
[19]
Norman, A.W.; Bishop, J.E.; Collins, E.D.; Seo, E-G.; Satchell, D.P.; Dormanen, M.C.; Zanello, S.B.; Farach-Carson, M.C.; Bouillon, R.; Okamura, W.H. Differing shapes of 1 α,25- dihydroxyvitamin D3 function as ligands for the D-binding protein, nuclear receptor and membrane receptor: A status report. J. Steroid Biochem. Mol. Biol. , 1996, 56(1-6 Spec No ), 13-22.
[http://dx.doi.org/10.1016/0960-0760(95)00219-7] [PMID: 8603033]
[20]
Posner, G.H.; Kahraman, M. Organic chemistry of vitamin D analogues (deltanoids). Eur. J. Org. Chem., 2003, 2003(20), 3889-3895.
[http://dx.doi.org/10.1002/ejoc.200300264]
[21]
Carmack, M.; Kelley, C.J. Synthesis of optically active Cleland’s reagent. J. Org. Chem., 1968, 33(5), 2171-2173.
[http://dx.doi.org/10.1021/jo01269a123]
[22]
Feit, P.W. 1,4-Bismethanesulfonates of the stereoisomeric butanetetraols and related compounds. J. Med. Chem., 1964, 7(1), 14-17.
[http://dx.doi.org/10.1021/jm00331a004 ] [PMID: 14186016]
[23]
Rubin, L.J.; Lardy, H.A.; Fischer, H.O. Synthesis of the Optically Active Enantiomorphic 2,3-Butanediols. J. Am. Chem. Soc., 1952, 74(2), 425-428.
[http://dx.doi.org/10.1021/ja01122a043]
[24]
Bauer, A.W.; Kirby, W.M.M. Antibiotic susceptibility testing by a standardized single disk method. American J. Clin. Path., 1966, 45(4), 493-496.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy