Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

Ononis natrix L. Lowers the Blood Glucose Concentration in Wistar Rats with Streptozotocin-induced Diabetes Mellitus

Author(s): Baker F. Al-Mubideen, Ala-Aldeen Ahmad Al-Serhan, Justin Z. Amarin, Arwa Al-Dweikat, Ra'ad Z. Al-Muhaisen, Yusra Abu Shreikh, Haya H. Suradi, Hamzeh J. Al-Ameer and Malek A. Zihlif*

Volume 21, Issue 5, 2021

Published on: 18 August, 2020

Page: [854 - 858] Pages: 5

DOI: 10.2174/1871530320999200818140359

Price: $65

Abstract

Background: Practitioners of traditional medicine use the decoction of Ononis natrix L. to treat hyperglycemia. The literature offers no evidence to support the use.

Objective: To investigate the effect of the decoction of Ononis natrix L. on the blood glucose concentration in Wistar rats (Rattus norvegicus) with streptozotocin-induced diabetes mellitus.

Methods: We obtained 35 Wistar rats from the animal colony of The University of Jordan School of Medicine. We induced diabetes by a single intraperitoneal injection of streptozotocin (60 mg/kg body weight) and 23 rats (66%) survived to allocation. We randomly assigned the rats to one of four groups: negative control (1% Tween 80 in distilled water), positive control (100 mg/kg metformin), high-dose treatment (7.5 mL of the decoction), and low-dose treatment (3.5 mL of the decoction). We administered the doses twice daily by oral gavage for two weeks and measured the tailblood glucose concentration twice daily, once before the first dose and another time after the second dose. We used linear mixed-effects regression to model the change in blood glucose concentration as a function of the experimentation groups, with adjustments for pseudoreplication and temporal variation.

Results: The estimated mean change was 1 mmol/L (−30 to 31 mmol/L) for the negative control group, −26 mmol/L (−56 to 5 mmol/L) for the positive control group, −75 mmol/L (−108 to −42) for the low-dose treatment group, and −82 mmol/L (−111 to −53 mmol/L) for the high-dose treatment group.

Conclusion: In conclusion, we demonstrate, for the first time, the hypoglycemic effect of Ononis natrix L. in an animal model of diabetes.

Keywords: Traditional medicine, hypoglycemic agents, ononis, wistar rats, streptozotocin, experimental diabetes mellitus.

Graphical Abstract

[1]
King, A.J. The use of animal models in diabetes research. Br. J. Pharmacol., 2012, 166(3), 877-894.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01911.x] [PMID: 22352879]
[2]
Hudaib, M.; Mohammad, M.; Bustanji, Y.; Tayyem, R.; Yousef, M.; Abuirjeie, M.; Aburjai, T. Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J. Ethnopharmacol., 2008, 120(1), 63-71.
[http://dx.doi.org/10.1016/j.jep.2008.07.031] [PMID: 18760342]
[3]
Al-Aboudi, A.; Afifi, F.U. Plants used for the treatment of diabetes in Jordan: a review of scientific evidence. Pharm. Biol., 2011, 49(3), 221-239.
[http://dx.doi.org/10.3109/13880209.2010.501802] [PMID: 20979537]
[4]
Han, X.; Tao, Y.L.; Deng, Y.P.; Yu, J.W.; Cai, J.; Ren, G.F.; Sun, Y.N.; Jiang, G.J. Metformin ameliorates insulitis in STZ-induced diabetic mice. PeerJ, 2017, 5e3155
[http://dx.doi.org/10.7717/peerj.3155] [PMID: 28439456]
[5]
Szkudelski, T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol. Res., 2001, 50(6), 537-546.
[PMID: 11829314]
[6]
Desco, M.C.; Asensi, M.; Márquez, R.; Martínez-Valls, J.; Vento, M.; Pallardó, F.V.; Sastre, J.; Viña, J. Xanthine oxidase is involved in free radical production in type 1 diabetes: protection by allopurinol. Diabetes, 2002, 51(4), 1118-1124.
[http://dx.doi.org/10.2337/diabetes.51.4.1118] [PMID: 11916934]
[7]
Kuppusamy, U.R.; Indran, M.; Rokiah, P. Glycaemic control in relation to xanthine oxidase and antioxidant indices in Malaysian Type 2 diabetes patients. Diabet. Med., 2005, 22(10), 1343-1346.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01630.x] [PMID: 16176194]
[8]
Alali, F.Q.; Tawaha, K.; El-Elimat, T.; Syouf, M.; El-Fayad, M.; Abulaila, K.; Nielsen, S.J.; Wheaton, W.D.; Falkinham, J.O., III; Oberlies, N.H. Antioxidant activity and total phenolic content of aqueous and methanolic extracts of Jordanian plants: an ICBG project. Nat. Prod. Res., 2007, 21(12), 1121-1131.
[http://dx.doi.org/10.1080/14786410701590285] [PMID: 17852749]
[9]
Hudaib, M.M.; Tawaha, K.A.; Mohammad, M.K.; Assaf, A.M.; Issa, A.Y.; Alali, F.Q.; Aburjai, T.A.; Bustanji, Y.K. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants. Pharmacogn. Mag., 2011, 7(28), 320-324.
[http://dx.doi.org/10.4103/0973-1296.90413] [PMID: 22262935]
[10]
Prescott, M.J.; Lidster, K. Improving quality of science through better animal welfare: the NC3Rs strategy. Lab Anim. (NY), 2017, 46(4), 152-156.
[http://dx.doi.org/10.1038/laban.1217] [PMID: 28328893]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy