[2]
Strang, J.; Bearn, J.; Farrell, M.; Finch, E.; Gossop, M.; Griffiths, P.; Marsden, J.; Wolff, K. Route of drug use and its implications for drug effect, risk of dependence and health consequences. Drug Alcohol Rev., 1998, 17(2), 197-211. [http://dx.doi.org/10.1080/09595239800187001]. [PMID: 16203485].
[4]
Walley, A.Y.; Xuan, Z.; Hackman, H.H.; Quinn, E.; Doe-Simkins, M.; Sorensen-Alawad, A.; Ruiz, S.; Ozonoff, A. Opioid overdose rates and implementation of overdose education and nasal naloxone distribution in Massachusetts: interrupted time series analysis. BMJ, 2013, 346, f174. [http://dx.doi.org/10.1136/bmj.f174]. [PMID: 23372174].
[5]
Hale, M.E.; Moe, D.; Bond, M.; Gasior, M.; Malamut, R. Abuse-deterrent formulations of prescription opioid analgesics in the management of chronic noncancer pain. Pain Manag., 2016, 6(5), 497-508. [http://dx.doi.org/10.2217/pmt-2015-0005]. [PMID: 27050830].
[6]
Jones, C.M. Reprint of trends and key correlates of prescription opioid injection misuse in the United States. Addict. Behav., 2018, 86, 24-31. [http://dx.doi.org/10.1016/j.addbeh.2018.07.008]. [PMID: 30037685].
[7]
Webster, L.R.; Markman, J.; Cone, E.J.; Niebler, G. Current and future development of extended-release, abuse-deterrent opioid formulations in the United States. Postgrad. Med., 2017, 129(1), 102-110. [http://dx.doi.org/10.1080/00325481.2017.1268902]. [PMID: 27915497].
[8]
Crudele, N.; Giordano, J.; Mayock, S.P.; Saim, S.; Fleming, A.B. In Vitro drug release after crushing: evaluation of Xtampza® ER and other ER opioid formulations. Clin. Drug Investig., 2018, 38(8), 795-797. [http://dx.doi.org/10.1007/s40261-018-0663-z]. [PMID: 29949103].
[9]
Adler, J.A.; Mallick-Searle, T. An overview of abuse-deterrent opioids and recommendations for practical patient care. J. Multidiscip. Healthc., 2018, 11, 323-332. [http://dx.doi.org/10.2147/JMDH.S166915]. [PMID: 30026658].
[11]
Mastropietro, D.J.; Omidian, H. Abuse-deterrent formulations: part 2: commercial products and proprietary technologies. Expert Opin. Pharmacother., 2015, 16(3), 305-323. [http://dx.doi.org/10.1517/14656566.2014.970175]. [PMID: 25421961].
[12]
Rahman, Z.; Dharani, S.; Charoo, N.A.; Nutan, M.T.; Khan, M.A. Abuse deterrent formulations for reducing misuse and abuse of prescription opioids. Drug Abuse: Addict. Recover., 2016, 374, 1253-1263.
[14]
Cohen, J.P.; Mendoza, M.; Roland, C. Challenges involved in the development and delivery of abuse-deterrent formulations of opioid analgesics. Clin. Ther., 2018, 40(2), 334-344. [http://dx.doi.org/10.1016/j.clinthera.2018.01.003]. [PMID: 29398162].
[15]
Mastropietro, D.J.; Omidian, H. Abuse-deterrent formulations: part 1 - development of a formulation-based classification system. Expert Opin. Drug Metab. Toxicol., 2015, 11(2), 193-204. [http://dx.doi.org/10.1517/17425255.2015.979786]. [PMID: 25374404].
[16]
Stanos, S.P.; Bruckenthal, P.; Barkin, R.L. Strategies to reduce the tampering and subsequent abuse of long-acting opioids: potential risks and benefits of formulations with physical or pharmacologic deterrents to tampering. Mayo Clin. Proc., 2012, 87(7), 683-694. [http://dx.doi.org/10.1016/j.mayocp.2012.02.022]. [PMID: 22766088].
[17]
Davis, M.; Goforth, H.W.; Gamier, P. Oxycodone combined with opioid receptor antagonists: efficacy and safety. Expert Opin. Drug Saf., 2013, 12(3), 389-402. [http://dx.doi.org/10.1517/14740338.2013.783564]. [PMID: 23534906].
[18]
Mastropietro, D.J.; Omidian, H. Current approaches in tamper-resistant and abuse-deterrent formulations. Drug Dev. Ind. Pharm., 2013, 39(5), 611-624. [http://dx.doi.org/10.3109/03639045.2012.680468]. [PMID: 22537282].
[19]
Kumar, V.; Dixon, D.; Tewari, D.; Wadgaonkar, D.B. Methods and compositions for deterring abuse of opioid containing dosage forms., 2007.U.S. Patent 7,201,920 B2.
[20]
Maincent, J.; Zhang, F. Recent advances in abuse-deterrent technologies for the delivery of opioids. Int. J. Pharm., 2016, 510(1), 57-72. [http://dx.doi.org/10.1016/j.ijpharm.2016.06.012]. [PMID: 27291971].
[21]
Simon, K.; Worthy, S.L.; Barnes, M.C.; Tarbell, B. Abuse-deterrent formulations: transitioning the pharmaceutical market to improve public health and safety. Ther. Adv. Drug Saf., 2015, 6(2), 67-79. [http://dx.doi.org/10.1177/2042098615569726]. [PMID: 25922655].
[22]
Pergolizzi, J.V., Jr; Raffa, R.B.; Taylor, R., Jr; Vacalis, S. Abuse-deterrent opioids: an update on current approaches and considerations. Curr. Med. Res. Opin., 2018, 34(4), 711-723. [http://dx.doi.org/10.1080/03007995.2017.1419171]. [PMID: 29262730].
[23]
Altomare, C.; Kinzler, E.R.; Buchhalter, A.R.; Cone, E.J.; Costantino, A. Laboratory-based testing to evaluate abuse-deterrent formulations and satisfy the food and drug administration’s recommendation for category 1 testing. J. Opioid. Manag., 2017, 13(6), 441-448. [http://dx.doi.org/10.5055/jom.2017.0420]. [PMID: 29308590].
[24]
Cone, E.J.; Sokolowska, M.; Lindhardt, K. Striving for consensus on approaches to category 1 testing of abuse‐deterrent formulations of opioids: discussions from the first category 1 focus group meeting. Pain Pract., 2016, 16(7), 809-813. [http://dx.doi.org/10.1111/papr.12488]. [PMID: 27600925].
[26]
Kopecky, E.A.; Fleming, A.B.; Noonan, P.K.; Varanasi, R.K.; Grima, M.; Saim, S.; Mayock, S.P. Impact of physical manipulation on in vitro and in vivo release profiles of oxycodone DETERx®: an extended-release, abuse-deterrent formulation. J. Opioid. Manag., 2014, 10(4), 233-246. [http://dx.doi.org/10.5055/jom.2014.0211]. [PMID: 25162603].
[28]
Litman, R.S.; Pagán, O.H.; Cicero, T.J. Abuse-deterrent opioid formulations. Anesthesiology, 2018, 128(5), 1015-1026. [http://dx.doi.org/10.1097/ALN.0000000000002031]. [PMID: 29252508].
[29]
Meruva, S.; Donovan, M.D. Effects of drug-polymer interactions on tablet properties during the development of abuse-deterrent dosage forms. AAPS PharmSciTech, 2019, 20(3), 93. [http://dx.doi.org/10.1208/s12249-018-1221-y]. [PMID: 30690657].
[30]
Dharani, S.; Barakh Ali, S.F.; Afrooz, H.; Mohamed, E.M.; Cook, P.; Khan, M.A.; Rahman, Z. Development of methamphetamine abuse-deterrent formulations using sucrose acetate isobutyrate. J. Pharm. Sci., 2020, 109(3), 1338-1346. [http://dx.doi.org/10.1016/j.xphs.2019.12.003]. [PMID: 31862204].
[31]
Sarabu, S.; Bandari, S.; Kallakunta, V.R.; Tiwari, R.; Patil, H.; Repka, M.A. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: part II. Expert Opin. Drug Deliv., 2019, 16(6), 567-582. [http://dx.doi.org/10.1080/17425247.2019.1614912]. [PMID: 31046479].
[32]
Mendonsa, N.; Almutairy, B.; Kallakunta, V.R.; Sarabu, S.; Thipsay, P.; Bandari, S.; Repka, M.A. Manufacturing strategies to develop amorphous solid dispersions: an overview. J. Drug Deliv. Sci. Technol., 2019, 55101459 [http://dx.doi.org/10.1016/j.jddst.2019.101459].
[33]
Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs - an integrated review. Int. J. Pharm., 2018, 535(1-2), 68-85. [http://dx.doi.org/10.1016/j.ijpharm.2017.10.056]. [PMID: 29102700].
[34]
Breitenbach, J. Melt extrusion: from process to drug delivery technology. Eur. J. Pharm. Biopharm., 2002, 54(2), 107-117. [http://dx.doi.org/10.1016/S0939-6411(02)00061-9]. [PMID: 12191680].
[35]
Chokshi, R.; Zia, H. Hot-melt extrusion technique: a review. Iran. J. Pharm. Res., 2004, 3, 3-16.
[36]
Bandari, S.; Nyavanandi, D.; Kallakunta, V.R.; Janga, K.Y.; Sarabu, S.; Butreddy, A.; Repka, M.A. Continuous twin screw granulation - An advanced alternative granulation technology for use in the pharmaceutical industry. Int. J. Pharm., 2020, 580119215 [http://dx.doi.org/10.1016/j.ijpharm.2020.119215]. [PMID: 32194206].
[37]
Kallakunta, V.R.; Patil, H.; Tiwari, R.; Ye, X.; Upadhye, S.; Vladyka, R.S.; Sarabu, S.; Kim, D.W.; Bandari, S.; Repka, M.A. Exploratory studies in heat-assisted continuous twin-screw dry granulation: a novel alternative technique to conventional dry granulation. Int. J. Pharm., 2019, 555, 380-393. [http://dx.doi.org/10.1016/j.ijpharm.2018.11.045]. [PMID: 30458256].
[38]
Crowley, M.M.; Zhang, F.; Repka, M.A.; Thumma, S.; Upadhye, S.B.; Battu, S.K.; McGinity, J.W.; Martin, C. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev. Ind. Pharm., 2007, 33(9), 909-926. [http://dx.doi.org/10.1080/03639040701498759]. [PMID: 17891577].
[39]
Kallakunta, V.R.; Tiwari, R.; Sarabu, S.; Bandari, S.; Repka, M.A. Effect of formulation and process variables on lipid based sustained release tablets via continuous twin screw granulation: a comparative study. Eur. J. Pharm. Sci., 2018, 121, 126-138. [http://dx.doi.org/10.1016/j.ejps.2018.05.007]. [PMID: 29772273].
[40]
Young, C.R.; Koleng, J.J.; McGinity, J.W. Production of spherical pellets by a hot-melt extrusion and spheronization process. Int. J. Pharm., 2002, 242(1-2), 87-92. [http://dx.doi.org/10.1016/S0378-5173(02)00152-7]. [PMID: 12176229].
[41]
Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Batra, A.; Bi, V.; Durig, T.; Repka, M.A. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: effect of formulation and process parameters for a low glass transition temperature drug. J. Drug Deliv. Sci. Technol., 2020, 58101395 [http://dx.doi.org/10.1016/j.jddst.2019.101395].
[42]
McGinity, J.W.; Zhang, F.; Koleng, J.; Repka, M.A. Hot-melt extrusion as a pharmaceutical process. Am. Pharmaceut. Rev., 2001, 4, 25-37.
[43]
Sarabu, S.; Kallakunta, V.R.; Bandari, S.; Batra, A.; Bi, V.; Durig, T.; Zhang, F.; Repka, M.A. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohydr. Polym., 2020, 233115828 [http://dx.doi.org/10.1016/j.carbpol.2020.115828]. [PMID: 32059882].
[44]
Maddineni, S.; Battu, S.K.; Morott, J.; Soumyajit, M.; Repka, M.A. Formulation optimization of hot-melt extruded abuse deterrent pellet dosage form utilizing design of experiments. J. Pharm. Pharmacol., 2014, 66(2), 309-322. [http://dx.doi.org/10.1111/jphp.12129]. [PMID: 24433429].
[45]
Xu, X.; Siddiqui, A.; Srinivasan, C.; Mohammad, A.; Rahman, Z.; Korang-Yeboah, M.; Feng, X.; Khan, M.; Ashraf, M. Evaluation of abuse-deterrent characteristics of tablets prepared via hot-melt extrusion. AAPS PharmSciTech, 2019, 20(6), 230. [http://dx.doi.org/10.1208/s12249-019-1448-2]. [PMID: 31227939].
[46]
Nukala, P.K.; Palekar, S.; Patki, M.; Fu, Y.; Patel, K. Multi-dose oral abuse deterrent formulation of loperamide using hot melt extrusion. Int. J. Pharm., 2019, 569118629 [http://dx.doi.org/10.1016/j.ijpharm.2019.118629]. [PMID: 31425818].
[47]
Jedinger, N.; Schrank, S.; Fischer, J.M.; Breinhälter, K.; Khinast, J.; Roblegg, E. Development of an abuse-and alcohol-resistant formulation based on hot-melt extrusion and film coating. AAPS PharmSciTech, 2016, 17(1), 68-77. [http://dx.doi.org/10.1208/s12249-015-0373-2]. [PMID: 26206403].
[48]
Jedinger, N.; Schrank, S.; Mohr, S.; Feichtinger, A.; Khinast, J.; Roblegg, E. Alcohol dose dumping: the influence of ethanol on hot-melt extruded pellets comprising solid lipids. Eur. J. Pharm. Biopharm., 2015, 92, 83-95. [http://dx.doi.org/10.1016/j.ejpb.2015.02.022]. [PMID: 25733499].
[49]
Baronsky-Probst, J.; Möltgen, C.V.; Kessler, W.; Kessler, R.W. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production. Eur. J. Pharm. Sci., 2016, 87, 14-21. [http://dx.doi.org/10.1016/j.ejps.2015.09.010]. [PMID: 26386253].
[50]
Wening, K.; Schwier, S.; Stahlberg, H.J.; Galia, E.; Sokolowska, M. Application of hot-melt extrusion technology in immediate-release abuse-deterrent formulations. J. Opioid. Manag., 2017, 13(6), 473-484. [http://dx.doi.org/10.5055/jom.2017.0422]. [PMID: 29308593].
[51]
Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of pharmaceutical excipients, 6th ed; Pharmaceutical Press: London, 2009.
[52]
Zhang, F.; McGinity, J.W. Properties of sustained-release tablets prepared by hot-melt extrusion. Pharm. Dev. Technol., 1999, 4(2), 241-250. [http://dx.doi.org/10.1081/PDT-100101358]. [PMID: 10231885].
[53]
Muppalaneni, S.; Mastropietro, D.J.; Omidian, H. Crush resistance and insufflation potential of poly(ethylene oxide)-based abuse deterrent formulations. Expert Opin. Drug Deliv., 2016, 13(10), 1375-1382. [http://dx.doi.org/10.1080/17425247.2016.1211638]. [PMID: 27402156].
[54]
Arca, H.C.; Mosquera-Giraldo, L.I.; Bi, V.; Xu, D.; Taylor, L.S.; Edgar, K.J. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 2018, 19(7), 2351-2376. [http://dx.doi.org/10.1021/acs.biomac.8b00517]. [PMID: 29869877].
[55]
Tiwari, S.B.; Rajabi-Siahboomi, A.R. Extended-release oral drug delivery technologies: monolithic matrix systems. Methods Mol. Biol., 2008, 437, 217-243. [http://dx.doi.org/10.1007/978-1-59745-210-6_11]. [PMID: 18369971].
[56]
Jedinger, N.; Khinast, J.; Roblegg, E. The design of controlled-release formulations resistant to alcohol-induced dose dumping--a review. Eur. J. Pharm. Biopharm., 2014, 87(2), 217-226. [http://dx.doi.org/10.1016/j.ejpb.2014.02.008]. [PMID: 24613542].
[57]
Ma, D.; Djemai, A.; Gendron, C.M.; Xi, H.; Smith, M.; Kogan, J.; Li, L. Development of a HPMC-based controlled release formulation with Hot Melt Extrusion (HME). Drug Dev. Ind. Pharm., 2013, 39(7), 1070-1083. [http://dx.doi.org/10.3109/03639045.2012.702350]. [PMID: 22803806].
[59]
Rahman, Z.; Zidan, A.S.; Korang-Yeboah, M.; Yang, Y.; Siddiqui, A.; Shakleya, D.; Khan, M.A.; Cruz, C.; Ashraf, M. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int. J. Pharm., 2017, 517(1-2), 303-311. [http://dx.doi.org/10.1016/j.ijpharm.2016.12.015]. [PMID: 27956191].
[60]
Gómez-Carracedo, A.; Alvarez-Lorenzo, C.; Gómez-Amoza, J.; Concheiro, A. Chemical structure and glass transition temperature of non-ionic cellulose ethers. J. Therm. Anal. Calorim., 2003, 73(2), 587-596. [http://dx.doi.org/10.1023/A:1025434314396].
[61]
Vaka, S.R.K.; Bommana, M.M.; Desai, D.; Djordjevic, J.; Phuapradit, W.; Shah, N. Excipients for amorphous solid dispersions. Amorphous Solid Dispersions; Shah, N.; Sandhu, H.; Choi, D.; Chokshi, H.; Malick, A., Eds.; Springer: New York, 2014, pp. 123-161. [http://dx.doi.org/10.1007/978-1-4939-1598-9_4]
[64]
Schrank, S.; Jedinger, N.; Wu, S.; Piller, M.; Roblegg, E. Pore blocking: an innovative formulation strategy for the design of alcohol resistant multi-particulate dosage forms. Int. J. Pharm., 2016, 509(1-2), 219-228. [http://dx.doi.org/10.1016/j.ijpharm.2016.05.049]. [PMID: 27282540].
[66]
Malm, C.J.; Emerson, J.; Hiatt, G.D. Cellulose acetate phthalate as an enteric coating material. J. Am. Pharm. Assoc., 1951, 40(10), 520-525. [http://dx.doi.org/10.1002/jps.3030401014]. [PMID: 14907449].
[67]
Shanbhag, A.; Barclay, B.; Koziara, J.; Shivanand, P. Application of cellulose acetate butyrate-based membrane for osmotic drug delivery. Cellulose, 2007, 14(1), 65-71. [http://dx.doi.org/10.1007/s10570-006-9091-y].
[68]
Becker, K.; Salar-Behzadi, S.; Zimmer, A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm. Res., 2015, 32(5), 1519-1545. [http://dx.doi.org/10.1007/s11095-015-1661-y]. [PMID: 25788447].
[69]
Jannin, V.; Rodier, J.D.; Musakhanian, J. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing. Int. J. Pharm., 2014, 466(1-2), 109-121. [http://dx.doi.org/10.1016/j.ijpharm.2014.03.007]. [PMID: 24607211].
[70]
Ahmad, R.; Omidian, H. Development and in vitro evaluation of an abuse-deterrent formulation based on a crosslinked starch derivative. Int. J. Pharm., 2019, 569118602 [http://dx.doi.org/10.1016/j.ijpharm.2019.118602]. [PMID: 31394182].
[71]
Ravenelle, F.; Rahmouni, M. Contramid®: high-amylose starch for controlled drug delivery. Polysaccharides for drug delivery and pharmaceutical applications. Marchessault, R.H.; Ravenelle, F.; Zhu. X.X; ACS Publications: Washington, 2006, Vol. 934, pp. 79-104. [http://dx.doi.org/10.1021/bk-2006-0934.ch004]
[72]
Shah, U.; Augsburger, L. Multiple sources of sodium starch glycolate, NF: evaluation of functional equivalence and development of standard performance tests. Pharm. Dev. Technol., 2002, 7(3), 345-359. [http://dx.doi.org/10.1081/PDT-120005731]. [PMID: 12229266].
[74]
Nukala, P.K.; Palekar, S.; Patki, M.; Patel, K. Abuse deterrent immediate release egg-shaped tablet (egglets) using 3D printing technology: quality by design to optimize drug release and extraction. AAPS PharmSciTech, 2019, 20(2), 80. [http://dx.doi.org/10.1208/s12249-019-1298-y]. [PMID: 30645704].
[77]
D’Souza, S.; Mayock, S.; Salt, A. A review of in vivo and in vitro aspects of alcohol-induced dose dumping. AAPS Open, 2017, 3(5), 1-20. [http://dx.doi.org/10.1186/s41120-017-0014-9].
[79]
Rosiaux, Y.; Velghe, C.; Muschert, S.; Chokshi, R.; Leclercq, B.; Siepmann, F.; Siepmann, J. Ethanol-resistant ethylcellulose/guar gum coatings--importance of formulation parameters. Eur. J. Pharm. Biopharm., 2013, 85(3 Pt B), 1250-1258. [http://dx.doi.org/10.1016/j.ejpb.2013.07.014]. [PMID: 23891769].
[80]
Wasilewska, K.; Winnicka, K. Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials (Basel), 2019, 12(20), 3386. [http://dx.doi.org/10.3390/ma12203386]. [PMID: 31627271].
[83]
Loeser, K.C.; Rodriguez, R. Regulatory and evidence-based considerations for abuse-deterrent opioids. Am. J. Health Syst. Pharm., 2019, 76(2), 114-118. [http://dx.doi.org/10.1093/ajhp/zxy013]. [PMID: 30689701].