Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Isolation and Characterization of CD39-like Phosphodiesterase (Cc-PDE) from Cerastes cerastes Venom: Molecular Inhibitory Mechanism of Antiaggregation and Anticoagulation

Author(s): Hamida Kiheli, Fatah Chérifi, Meriem Ameziani, Samah Saoud, Ghania Hariti and Fatima Laraba-Djebari*

Volume 28, Issue 4, 2021

Published on: 13 August, 2020

Page: [426 - 441] Pages: 16

DOI: 10.2174/0929866527666200813200148

Price: $65

Abstract

Background: Cerastes cerastes venom contains several bioactive proteins with inhibitory potential of platelet aggregation and blood coagulation.

Objective: The current study deals with purification, characterization and determination of structural properties of Cc-PDE, the first phosphodiesterase from Cerastes cerastes venom.

Material and Methods: The purification process consists of three successive chromatographies including G75-Sephadex size exclusion, DEAE exchange chromatography and affinity using Sildenafil as a main PDEs’ specific inhibitor. The amino acid sequence of purified Cc-PDE was determined by liquid chromatography coupled off line to MALDI-TOF/TOF. Modeling and structural features were obtained using several bioinformatics tools. In vivo and in vitro antiplatelet aggregation and anticoagulant assays were performed.

Results: Cc-PDE (73 506.42 Da) is a 654-residue single polypeptide with 1-22 signal peptide and it is characterized by the presence of predominant basic amino acids suitable to alkaline pI (8.17). Cc-PDE structure is composed of β-strands (17%) and α-helices (24%) and it shares a high identity with homologous snake venom PDEs. Cc-PDE hydrolyzes both Bis-p-nitrophenyl phosphate (Km = 2.60 ± 0.95 mM, Vmax = 0.017 ± 0.002569 μmol.min-1) and p-nitrophenyl phosphate (Km = 7.13 mM ± 0.04490 mM, Vmax = 0.053 ±0.012 μmol.min-1). Cc-PDE prevents ADP- and ATP-induced platelet aggregation by hydrolyzing ADP and ATP, reducing surface P-selectin expression and attenuating platelet function. In addition, Cc-PDE inhibits coagulation factors involved in the intrinsic pathway demonstrated by a significant prolongation of activated partial thromboplastin time and in vivo long-lasting anticoagulation.

Conclusion: The obtained results revealed that Cc-PDE may have a therapeutic potential and could be a remedy for thromboembolic diseases as an alternative of anticoagulant and antiplatelet aggregation chemical origins.

Keywords: Cc-PDE, intrincis pathway blocker, anticoagulant, antiplatelet aggregation, ADP, thromboembolic diseases.

Graphical Abstract

[1]
Chérifi, F.; Rousselle, J-C.; Namane, A.; Laraba-Djebari, F. CCSV-MPase, a novel procoagulant metalloproteinase from Cerastes cerastes venom: purification, biochemical characterization and protein identification. Protein J., 2010, 29(7), 466-474.
[http://dx.doi.org/10.1007/s10930-010-9273-1] [PMID: 20717713]
[2]
Laraba-Djebari, F.; Martin-Eauclaire, M-F.; Marchot, P. A fibrinogen-clotting serine proteinase from Cerastes cerastes (horned viper) venom with arginine-esterase and amidase activities. Purification, characterization and kinetic parameter determination. Toxicon, 1992, 30(11), 1399-1410.
[http://dx.doi.org/10.1016/0041-0101(92)90515-7] [PMID: 1485336]
[3]
Laraba-Djebari, F.; Martin-Eauclaire, M-F.; Mauco, G.; Marchot, P. Afaâcytin, an alpha beta-fibrinogenase from Cerastes cerastes (horned viper) venom, activates purified factor X and induces serotonin release from human blood platelets. Eur. J. Biochem., 1995, 233(3), 756-765.
[http://dx.doi.org/10.1111/j.1432-1033.1995.756_3.x] [PMID: 8521839]
[4]
Chérifi, F.; Laraba-Djebari, F. Isolated biomolecules of pharmacological interest in hemostasis from Cerastes cerastes venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 2013, 19(1), 11.
[http://dx.doi.org/10.1186/1678-9199-19-11] [PMID: 23849477]
[5]
Cherifi, F.; Laraba-Djebari, F. CC3-SPase: A multifunctional thrombin-like protein from Cerastes cerastes venom with blood-clotting effect in human deficient plasma, interacting with fibrinogen and platelet receptors. Toxicon, 2016, 116, 81.
[http://dx.doi.org/10.1016/j.toxicon.2016.01.031]
[6]
Chérifi, F.; Saoud, S.; Laraba-Djebari, F. Molecular modeling, biochemical characterization, and pharmacological properties of Cc3 -SPase: A platelet-aggregating thrombin-like enzyme purified from Cerastes cerastes venom. J. Biochem. Mol. Toxicol., 2018, 32(7), e22165.
[http://dx.doi.org/10.1002/jbt.22165] [PMID: 29979475]
[7]
Saoud, S.; Chérifi, F.; Benhassine, T.; Laraba-Djebari, F. Purification and characterization of a platelet aggregation inhibitor and anticoagulant Cc 5_NTase, CD 73-like, from Cerastes cerastes venom. J. Biochem. Mol. Toxicol., 2017, 31(5), e21885.
[http://dx.doi.org/10.1002/jbt.21885] [PMID: 27925690]
[8]
Djebari, F.L.; Martin-Eauclaire, M.F. Purification and characterization of a phospholipase A2 from Cerastes cerastes (horn viper) snake venom. Toxicon, 1990, 28(6), 637-646.
[http://dx.doi.org/10.1016/0041-0101(90)90252-3] [PMID: 2402760]
[9]
Chérifi, F.; Namane, A.; Laraba-Djebari, F. Isolation, functional characterization and proteomic identification of CC2-PLA2 from Cerastes cerastes venom: a basic platelet-aggregation-inhibiting factor. Protein J., 2014, 33(1), 61-74.
[http://dx.doi.org/10.1007/s10930-013-9534-x] [PMID: 24384926]
[10]
Fatah, C.; Samah, S.; Fatima, L.D. Antiplatelet and anticoagulant activities of two phospholipase A2s purified from Cerastes cerastes venom: Structure-function relationship. J. Biochem. Mol. Toxicol., 2018, 32(12), e22219.
[http://dx.doi.org/10.1002/jbt.22219] [PMID: 30239061]
[11]
Samah, S.; Fatah, C.; Jean-Marc, B.; Safia, K-T.; Fatima, L-D. Purification and characterization of Cc-Lec, C-type lactose-binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. Int. J. Biol. Macromol., 2017, 102, 336-350.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.018] [PMID: 28400185]
[12]
Allane, D.; Oussedik-Oumehdi, H.; Harrat, Z.; Seve, M.; Laraba-Djebari, F. Isolation and characterization of an anti-leishmanial disintegrin from Cerastes cerastes venom. J. Biochem. Mol. Toxicol., 2018, 32(2), e22018.
[http://dx.doi.org/10.1002/jbt.22018] [PMID: 29278277]
[13]
Jeon, Y.H.; Heo, Y.S.; Kim, C.M.; Hyun, Y.L.; Lee, T.G.; Ro, S.; Cho, J.M. Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development. Cell. Mol. Life Sci., 2005, 62(11), 1198-1220.
[http://dx.doi.org/10.1007/s00018-005-4533-5] [PMID: 15798894]
[14]
Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: targets for drug development. Nat. Rev. Drug Discov., 2006, 5(8), 660-670.
[http://dx.doi.org/10.1038/nrd2058] [PMID: 16883304]
[15]
Tan, N-H.; Ponnudurai, G. A comparative study of the biological properties of krait (genus Bungarus) venoms. Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol., 1990, 95(1), 105-109.
[http://dx.doi.org/10.1016/0742-8413(90)90089-R] [PMID: 1971550]
[16]
Tan, N-H.; Ponnudurai, G. A comparative study of the biological activities of venoms from snakes of the genus Agkistrodon (moccasins and copperheads). Comp. Biochem. Physiol. B, 1990, 95(3), 577-582.
[http://dx.doi.org/10.1016/0305-0491(90)90024-N] [PMID: 2158874]
[17]
Mackessy, S.P. Enzymes from Snake Venom; Bailey, G.S., Ed.; Alaken Press, Inc.: Fort Collins, 1998, pp. 361-404.
[18]
Ho, N.W.Y.; Gilham, P.T. The analysis of polydeoxyribonucleotides by digestion with phosphatase and phosphodiesterases. Biochim. Biophys. Acta, 1973, 308(1), 53-58.
[http://dx.doi.org/10.1016/0005-2787(73)90121-4]
[19]
Holley, R.W. The nucleotide sequence of a nucleic acid. Sci. Am., 1966, 214(2), 30-39.
[http://dx.doi.org/10.1038/scientificamerican0266-30] [PMID: 5901288]
[20]
Razzell, W. Phosphodiesterases. Methods Enzymol., 1963, 6, 236-258.
[http://dx.doi.org/10.1016/0076-6879(63)06169-3]
[21]
Perron, S.; Mackessy, S.; Hyslop, R. Purification and characterization of exonuclease from rattlesnake venom. J. Colo-Wyo Acad. Sci., 1993, 25, 21-22.
[22]
Goetz, U.; Da Prada, M.; Pletscher, A. Adenine-, guanine- and uridine-5′-phosphonucleotides in blood platelets and storage organelles of various species. J. Pharmacol. Exp. Ther., 1971, 178(1), 210-215.
[PMID: 5087398]
[23]
Packham, M.A.; Guccione, M.A.; Perry, D.W.; Mustard, J.F. Interactions of nucleoside di- and triphosphates with rabbit platelets. Am. J. Physiol., 1974, 227(5), 1143-1148.
[http://dx.doi.org/10.1152/ajplegacy.1974.227.5.1143] [PMID: 4440755]
[24]
Packham, M.A.; Guccione, M.A.; Perry, D.W.; Kinlough-Rathbone, R.L.; Mustard, J.F. AMP inhibition of reactions of ADP with washed platelets from humans and rabbits. Am. J. Physiol., 1972, 223(2), 419-424.
[http://dx.doi.org/10.1152/ajplegacy.1972.223.2.419] [PMID: 5046757]
[25]
Segovia, M.; Figueroa, F.L. Detection of a 3′, 5′-cyclic-AMP phosphodiesterase activity in the lichenized fungus Evernia prunastri. Int. J. Deal. Asp. Plant Biol., 2007, 141(1), 123-127.
[http://dx.doi.org/10.1080/11263500601153610]
[26]
Jetter, R. Phytochemicals–Biosynthesis, Function and Application; Springer Science & Business Media, 2014. Vol. 44.
[http://dx.doi.org/10.1007/978-3-319-04045-5]
[27]
Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227(5259), 680-685.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[28]
Sulkowski, E.; Björk, W.; Laskowski, M., Sr A specific and nonspecific alkaline monophosphatase in the venom of Bothrops atrox and their occurrence in the purified venom phosphodiesterase. J. Biol. Chem., 1963, 238(7), 2477-2486.
[PMID: 13979193]
[29]
Tomás, M.; Sentí, M.; García-Faria, F.; Vila, J.; Torrents, A.; Covas, M.; Marrugat, J. Effect of simvastatin therapy on paraoxonase activity and related lipoproteins in familial hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol., 2000, 20(9), 2113-2119.
[http://dx.doi.org/10.1161/01.ATV.20.9.2113] [PMID: 10978257]
[30]
Sales, P.B.V.; Santoro, M.L. Nucleotidase and DNase activities in Brazilian snake venoms. Comp.Biochem and physio Part C, 2008, 147, 85-95.
[http://dx.doi.org/10.1016/j.cbpc.2007.08.003] [PMID: 15320456]
[31]
Kunitz, M. Crystalline soybean trypsin inhibitor: II. General properties. J. Gen. Physiol., 1947, 30(4), 291-310.
[http://dx.doi.org/10.1085/jgp.30.4.291] [PMID: 19873496]
[32]
Van der Walt, S.J.; Joubert, F.J. Studies on puff adder (Bitis arietans) venom. I. Purification and properties of protease A. Toxicon, 1971, 9(2), 153-161.
[http://dx.doi.org/10.1016/0041-0101(71)90009-2] [PMID: 5103561]
[33]
Stocker, K.; Fischer, H.; Meier, J.; Brogli, M.; Svendsen, L. Protein C activators in snake venoms. Behring Inst. Mitt., 1986, 79(79), 37-47.
[PMID: 3755037]
[34]
Nishikata, M. Trypsin-like protease from soybean seeds. Purification and some properties. J. Biochem., 1984, 95(4), 1169-1177.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a134706] [PMID: 6378896]
[35]
Kishimoto, M.; Takahashi, T. A spectrophotometric microplate assay for L-amino acid oxidase. Anal. Biochem., 2001, 298(1), 136-139.
[http://dx.doi.org/10.1006/abio.2001.5381] [PMID: 11673909]
[36]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[37]
Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21), 2947-2948.
[http://dx.doi.org/10.1093/bioinformatics/btm404] [PMID: 17846036]
[38]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[39]
Wallis, R.M.; Corbin, J.D.; Francis, S.H.; Ellis, P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol., 1999, 83(5A), 3C-12C.
[http://dx.doi.org/10.1016/S0002-9149(99)00042-9] [PMID: 10078537]
[40]
Al-Saleh, S.S.M.; Khan, S. Purification and characterization of phosphodiesterase i from Walterinnesia aegyptia venom. Prep. Biochem. Biotechnol., 2011, 41(3), 262-277.
[http://dx.doi.org/10.1080/10826068.2011.575319] [PMID: 21660866]
[41]
Ibrahim, N.M.; Salama, W.H.; Hakim, A.E.E. Phosphodiesitrase activity of some Egyptian snake venoms: Biochemical and immunological characteristics and effect on blood coagulation of phosphodiesterase enzyme from Naja nigricollis venom. J. Chem. Pharm. Res., 2016, 8, 160-170.
[42]
Santoro, M.L.; Vaquero, T.S.; Paes Leme, A.F.; Serrano, S.M.T. NPP-BJ, a nucleotide pyrophosphatase/phosphodiesterase from Bothrops jararaca snake venom, inhibits platelet aggregation. Toxicon, 2009, 54(4), 499-512.
[http://dx.doi.org/10.1016/j.toxicon.2009.05.016] [PMID: 19481561]
[r43]
Peng, L.; Xu, X.; Shen, D.; Zhang, Y.; Song, J.; Yan, X.; Guo, M. Purification and partial characterization of a novel phosphodiesterase from the venom of Trimeresurus stejnegeri: inhibition of platelet aggregation. Biochimie, 2011, 93(9), 1601-1609.
[http://dx.doi.org/10.1016/j.biochi.2011.05.027] [PMID: 21664407]
[44]
Koszalka, P.; Ozüyaman, B.; Huo, Y.; Zernecke, A.; Flögel, U.; Braun, N.; Buchheiser, A.; Decking, U.K.; Smith, M.L.; Sévigny, J.; Gear, A.; Weber, A.A.; Molojavyi, A.; Ding, Z.; Weber, C.; Ley, K.; Zimmermann, H.; Gödecke, A.; Schrader, J. Targeted disruption of cd73/ecto-5′-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ. Res., 2004, 95(8), 814-821.
[http://dx.doi.org/10.1161/01.RES.0000144796.82787.6f] [PMID: 15358667]
[45]
Gachet, C. Molecular mechanisms of platelet activation. Bull. Acad Natl. Med., 2013, 197(2), 361-373.
[http://dx.doi.org/10.1016/S0001-4079(19)31591-2] [PMID: 24919366]
[46]
Gachet, C. Regulation of platelet functions by P2 receptors. Annu. Rev. Pharmacol. Toxicol., 2006, 46(1), 277-300.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141207] [PMID: 16402906]
[47]
Gachet, C. P2 receptors, platelet function and pharmacological implications. Thromb. Haemost., 2008, 99(3), 466-472.
[http://dx.doi.org/10.1160/TH07-11-0673] [PMID: 18327393]
[48]
Rost, B. Twilight zone of protein sequence alignments. Protein Eng., 1999, 12(2), 85-94.
[http://dx.doi.org/10.1093/protein/12.2.85] [PMID: 10195279]
[49]
Gadhwal, M.K.; Patil, S.; D’Mello, P.; Joshi, A. Homology modeling of aryl hydrocarbon receptor and docking of agonists and antagonists. Int. J. Pharm. Pharm. Sci., 2013, 5(2), 7.
[50]
Mitra, J.; Bhattacharyya, D. Phosphodiesterase from Daboia russelli russelli venom: purification, partial characterization and inhibition of platelet aggregation. Toxicon, 2014, 88, 1-10.
[http://dx.doi.org/10.1016/j.toxicon.2014.06.004] [PMID: 24932740]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy