Abstract
Aim: In this study, we aimed to compare the pharmacokinetics of nitrate (NO3) in patients with type 2 diabetes mellitus (T2DM) and healthy adults. Potential effects of salivary nitrate reductase (NR) activity on cardiometabolic responses to an acute dose of NO3 was also assessed.
Methods: Nine healthy adults and nine T2DM patients were recruited to consume a NO3-rich breakfast (~410 mg NO3). Pharmacokinetics of NO3 were examined using repeated measurements of NOx (nitrate+ nitrite) concentrations of serum and saliva over 8 hours and NO3 concentrations of spot and 24-h urine samples. Cardiometabolic parameters, including serum levels of glucose, insulin, and triglycerides as well as blood pressure were also measured.
Results: Compared to patients with T2DM, serum NOx concentration (Δ1= 16.7 vs. 4.4 μmol/L, P=0.057) of healthy subjects sharply increased within 1 hour after NO3 loading. Healthy subjects had a higher NR activity index, and higher peak salivary NO3 concentration with a lower time to peak. Diabetic patients with high- compared to low-NR values had a higher whole-body NOx exposure (103±31.4 vs. 58.9±22.1 μmol.h/L); they also showed a better glycemic response and more reduction of blood pressure following ingestion of a NO3-rich meal.
Conclusion: T2DM may be associated with a different pattern of NOx pharmacokinetics (especially salivary NOx metabolism). Salivary NR activity may have a critical role in postprandial metabolism of NO3, and diabetic patients with higher NR activity may take more advantages from NO3 supplementation.
Keywords: Beetroot, nitrate, nitric oxide, nitrite, type 2 diabetes mellitus, pharmacokinetics.
Graphical Abstract
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.05.016] [PMID: 24878261]
[http://dx.doi.org/10.1016/j.cmet.2018.06.007] [PMID: 29972800]
[http://dx.doi.org/10.1038/nrd2466] [PMID: 18167491]
[http://dx.doi.org/10.1007/s12272-009-1803-z] [PMID: 19727604]
[http://dx.doi.org/10.1186/s12986-015-0013-6] [PMID: 25991919]
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.01.024] [PMID: 23395779]
[http://dx.doi.org/10.1016/j.niox.2017.01.003] [PMID: 28089828]
(b)Gheibi, S.; Jeddi, S.; Carlstrom, M.; Kashfi, K.; Ghasemi, A. Hydrogen sulfide potentiates the favorable metabolic effects of inorganic nitrite in type 2 diabetic rats. Nitric Oxide, 2019, 92, 60-72.
[http://dx.doi.org/10.1016/j.niox.2019.08.006] [PMID: 31479766]
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.027] [PMID: 15223073]
(b)Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Ong, H.L.; Adams, D.; Gahl, W.A.; Zheng, C.; Qi, S.; Jin, L.; Zhang, C.; Gu, L.; He, J.; Deng, D.; Ambudkar, I.S.; Wang, S. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA, 2012, 109(33), 13434-13439.
[http://dx.doi.org/10.1073/pnas.1116633109] [PMID: 22778404]
[http://dx.doi.org/10.1042/bst0240780] [PMID: 8878847]
[http://dx.doi.org/10.1038/nrmicro929] [PMID: 15197394]
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.078] [PMID: 29807159]
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.013] [PMID: 23183324]
(b)Bondonno, C. P.; Liu, A. H.; Croft, K. D.; Considine, M. J.; Puddey, I. B.; Woodman, R. J.; Hodgson, J. M. Antibacterial mouthwash blunts oral nitrate reduction and increases blood pressure in treated hypertensive men and women. Am. J. Hypertens., 2014, 28(5), 572-575.
[http://dx.doi.org/10.1093/ajh/hpu192] [PMID: 25359409]
(c)Joshipura, K. J.; Muñoz-Torres, F. J.; Morou-Bermudez, E.; Patel, R. P. Over-the-counter mouthwash use and risk of prediabetes/diabetes. Nitric oxide : biology and chemistry, 2017, 71, 14-20.
[http://dx.doi.org/10.1016/j.niox.2017.09.004] [PMID: 28939409]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.116.08081] [PMID: 27802417]
[http://dx.doi.org/10.1089/dia.2011.0291] [PMID: 22468627]
[http://dx.doi.org/10.22087/hmj.v3i1.701]
[http://dx.doi.org/10.1016/j.jfca.2016.06.006]
[http://dx.doi.org/10.2337/dc12-1452] [PMID: 23275359]
[http://dx.doi.org/10.1111/j.1600-0722.2004.00153.x] [PMID: 15458501]
[http://dx.doi.org/10.1016/j.clinbiochem.2014.02.007] [PMID: 24530467]
[http://dx.doi.org/10.1006/niox.2000.0319] [PMID: 11178938]
(b)Ghasemi, A.; Hedayati, M.; Biabani, H. Protein precipitation methods evaluated for determination of serum nitric oxide end products by the Griess assay. JMSR, 2007, 2(15), 29-32.
[http://dx.doi.org/10.2165/00003088-200140080-00001] [PMID: 11523723]
(b)Chow, S-C. Bioavailability and bioequivalence in drug development. Wiley Interdiscip. Rev. Comput. Stat., 2014, 6(4), 304-312.
[http://dx.doi.org/10.1002/wics.1310] [PMID: 25215170]
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309832] [PMID: 27927683]
[http://dx.doi.org/10.3945/an.117.016717] [PMID: 29141968]
[http://dx.doi.org/10.5812/ijem.84775] [PMID: 30584441]
[http://dx.doi.org/10.3389/fphys.2019.01029] [PMID: 31456696]
[http://dx.doi.org/10.1016/j.niox.2018.12.003] [PMID: 30528912]
[http://dx.doi.org/10.1111/j.1600-0765.2012.01498.x] [PMID: 22762355]
[http://dx.doi.org/10.1186/s12903-019-0868-4] [PMID: 31387562]
[http://dx.doi.org/10.1016/0278-6915(89)90122-1] [PMID: 2606404]
[http://dx.doi.org/10.1073/pnas.1210412109] [PMID: 22851765]
[http://dx.doi.org/10.1016/j.niox.2017.12.001] [PMID: 29223585]
(b)Mitchell, H.; Shonle, H.; Grindley, H. The origin of the nitrates in the urine. J. Biol. Chem., 1916, 24(4), 461-490.
[http://dx.doi.org/10.1186/ar2030] [PMID: 16907988]
[http://dx.doi.org/10.1016/S0891-5849(02)01353-9] [PMID: 12614846]