Review Article

药物再利用:依达拉奉靶向药物治疗创伤性脑损伤的前景

卷 28, 期 12, 2021

发表于: 12 August, 2020

页: [2369 - 2391] 页: 23

弟呕挨: 10.2174/0929867327666200812221022

价格: $65

摘要

依达拉奉是一种有效的自由基清除剂,在市场上已有30多年的历史。它最初是在日本开发的,用于治疗中风,自2001年以来一直在日本使用。除抗氧化作用外,依达拉奉在促炎症反应、一氧化氮生成和凋亡细胞死亡方面表现出有益作用。有趣的是,依达拉奉在除中风以外的几种疾病动物模型中显示了神经保护作用。特别是,研究发现依达拉奉在早期阶段可以有效阻止肌萎缩侧索硬化症(ALS)的进展。因此,依达拉奉在III期临床试验中获得成功后,已被FDA批准作为ALS患者的治疗药物。考虑到依达拉奉对神经系统疾病的疗效和安全性,依达拉奉是一种值得关注的药物,可用于创伤性脑损伤(TBI)的治疗。药物再利用是一种新的药物开发方法,用于确定药物的用途,而不是其原来的适应症。本文综述依达拉奉的生化特性及其对几种神经功能障碍的作用,以期其在创伤性脑损伤治疗中得到应用。

关键词: 创伤性脑损伤(TBI),药物再利用,依达拉奉,肌萎缩侧索硬化症,中风,神经障碍

[1]
Abe, K.; Yuki, S.; Kogure, K. Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger. Stroke, 1988, 19(4), 480-485.
[http://dx.doi.org/10.1161/01.STR.19.4.480] [PMID: 2834836]
[2]
Kikuchi, K.; Miura, N.; Kawahara, K.I.; Murai, Y.; Morioka, M.; Lapchak, P.A.; Tanaka, E. Edaravone (Radicut), a free radical scavenger, is a potentially useful addition to thrombolytic therapy in patients with acute ischemic stroke. Biomed. Rep., 2013, 1(1), 7-12.
[http://dx.doi.org/10.3892/br.2012.7] [PMID: 24648884]
[3]
Adams, H.P. Jr.; del Zoppo, G.; Alberts, M.J.; Bhatt, D.L.; Brass, L.; Furlan, A.; Grubb, R.L.; Higashida, R.T.; Jauch, E.C.; Kidwell, C.; Lyden, P.D.; Morgenstern, L.B.; Qureshi, A.I.; Rosenwasser, R.H.; Scott, P.A.; Wijdicks, E.F.M.; American Heart Association; American Stroke Association Stroke Council; Clinical Cardiology Council; Cardiovascular Radiology and Intervention Council; Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups. Guidelines for the early management of adults with ischemic stroke: a guideline from the American heart association/American stroke association stroke council, clinical cardiology council, cardiovascular radiology and intervention council, and the atherosclerotic peripheral vascular disease and quality of care outcomes in research interdisciplinary working groups: the American Academy of neurology affirms the value of this guideline as an educational tool for neurologists. Stroke, 2007, 38(5), 1655-1711.
[http://dx.doi.org/10.1161/STROKEAHA.107.181486] [PMID: 17431204]
[4]
Watanabe, K.; Tanaka, M.; Yuki, S.; Hirai, M.; Yamamoto, Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J. Clin. Biochem. Nutr., 2018, 62(1), 20-38.
[http://dx.doi.org/10.3164/jcbn.17-62] [PMID: 29371752]
[5]
Higashi, Y.; Jitsuiki, D.; Chayama, K.; Yoshizumi, M. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a novel free radical scavenger, for treatment of cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov., 2006, 1(1), 85-93.
[http://dx.doi.org/10.2174/157489006775244191] [PMID: 18221078]
[6]
Parikh, A.; Kathawala, K.; Tan, C.C.; Garg, S.; Zhou, X.F. Self-nanomicellizing solid dispersion of edaravone: part I - oral bioavailability improvement. Drug Des. Devel. Ther., 2018, 12, 2051-2069.
[http://dx.doi.org/10.2147/DDDT.S161940] [PMID: 30013324]
[7]
Takei, K.; Watanabe, K.; Yuki, S.; Akimoto, M.; Sakata, T.; Palumbo, J. Edaravone and its clinical development for amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. Frontotemporal Degener., 2017, 18(sup1), 5-10.
[http://dx.doi.org/10.1080/21678421.2017.1353101] [PMID: 28872907]
[8]
Bailly, C. Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int. Immunopharmacol., 2019, 77, 105967.
[http://dx.doi.org/10.1016/j.intimp.2019.105967] [PMID: 31670091]
[9]
Marković, V.; Erić, S.; Juranić, Z.D.; Stanojković, T.; Joksović, L.; Ranković, B.; Kosanić, M.; Joksović, M.D. Synthesis, antitumor activity and QSAR studies of some 4-aminomethylidene derivatives of edaravone. Bioorg. Chem., 2011, 39(1), 18-27.
[http://dx.doi.org/10.1016/j.bioorg.2010.10.003] [PMID: 21078519]
[10]
Lapchak, P.A. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin. Pharmacother., 2010, 11(10), 1753-1763.
[http://dx.doi.org/10.1517/14656566.2010.493558] [PMID: 20491547]
[11]
Yoshida, H.; Sasaki, K.; Namiki, Y.; Sato, N.; Tada, N. Edaravone, a novel radical scavenger, inhibits oxidative modification of low-density lipoprotein (LDL) and reverses oxidized LDL-mediated reduction in the expression of endothelial nitric oxide synthase. Atherosclerosis, 2005, 179(1), 97-102.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.10.037] [PMID: 15721014]
[12]
Yamamoto, Y. Plasma marker of tissue oxidative damage and edaravone as a scavenger drug against peroxyl radicals and peroxynitrite. J. Clin. Biochem. Nutr., 2017, 60(1), 49-54.
[http://dx.doi.org/10.3164/jcbn.16-63] [PMID: 28163382]
[13]
Higashi, Y. Edaravone for the treatment of acute cerebral infarction: role of endothelium-derived nitric oxide and oxidative stress. Expert Opin. Pharmacother., 2009, 10(2), 323-331.
[http://dx.doi.org/10.1517/14656560802636888] [PMID: 19236202]
[14]
Banno, M.; Mizuno, T.; Kato, H.; Zhang, G.; Kawanokuchi, J.; Wang, J.; Kuno, R.; Jin, S.; Takeuchi, H.; Suzumura, A. The radical scavenger edaravone prevents oxidative neurotoxicity induced by peroxynitrite and activated microglia. Neuropharmacology, 2005, 48(2), 283-290.
[http://dx.doi.org/10.1016/j.neuropharm.2004.10.002] [PMID: 15695167]
[15]
Watanabe, T.; Tahara, M.; Todo, S. The novel antioxidant edaravone: from bench to bedside. Cardiovasc. Ther., 2008, 26(2), 101-114.
[http://dx.doi.org/10.1111/j.1527-3466.2008.00041.x] [PMID: 18485133]
[16]
Park, H.J.; Lee, H.J.; Choi, M.S.; Son, D.J.; Song, H.S.; Song, M.J.; Lee, J.M.; Han, S.B.; Kim, Y.; Hong, J.T. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin. J. Inflamm. (Lond.), 2008, 5, 7.
[http://dx.doi.org/10.1186/1476-9255-5-7] [PMID: 18507870]
[17]
Dhanasekaran, D.N.; Reddy, E.P. JNK signaling in apoptosis. Oncogene, 2008, 27(48), 6245-6251.
[http://dx.doi.org/10.1038/onc.2008.301] [PMID: 18931691]
[18]
Kikuchi, K.; Kawahara, K-I.; Uchikado, H.; Miyagi, N.; Kuramoto, T.; Miyagi, T.; Morimoto, Y.; Ito, T.; Tancharoen, S.; Miura, N.; Takenouchi, K.; Oyama, Y.; Shrestha, B.; Matsuda, F.; Yoshida, Y.; Arimura, S.; Mera, K.; Tada, K-I.; Yoshinaga, N.; Maenosono, R.; Ohno, Y.; Hashiguchi, T.; Maruyama, I.; Shigemori, M. Potential of edaravone for neuroprotection in neurologic diseases that do not involve cerebral infarction. Exp. Ther. Med., 2011, 2(5), 771-775.
[http://dx.doi.org/10.3892/etm.2011.281] [PMID: 22977573]
[19]
Katan, M.; Luft, A. Global burden of stroke. Semin. Neurol., 2018, 38(2), 208-211.
[http://dx.doi.org/10.1055/s-0038-1649503] [PMID: 29791947]
[20]
Liang, D.; Bhatta, S.; Gerzanich, V.; Simard, J.M. Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg. Focus, 2007, 22(5), E2.
[http://dx.doi.org/10.3171/foc.2007.22.5.3] [PMID: 17613233]
[21]
Abramov, A.Y.; Scorziello, A.; Duchen, M.R. Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci., 2007, 27(5), 1129-1138.
[http://dx.doi.org/10.1523/JNEUROSCI.4468-06.2007] [PMID: 17267568]
[22]
Shi, K.; Tian, D.C.; Li, Z.G.; Ducruet, A.F.; Lawton, M.T.; Shi, F.D. Global brain inflammation in stroke. Lancet Neurol., 2019, 18(11), 1058-1066.
[http://dx.doi.org/10.1016/S1474-4422(19)30078-X] [PMID: 31296369]
[23]
Jiang, X.; Andjelkovic, A.V.; Zhu, L.; Yang, T.; Bennett, M.V.L.; Chen, J.; Keep, R.F.; Shi, Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol., 2018, 163-164, 144-171.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.001] [PMID: 28987927]
[24]
Rodrigo, R.; Fernández-Gajardo, R.; Gutiérrez, R.; Matamala, J.M.; Carrasco, R.; Miranda-Merchak, A.; Feuerhake, W. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol. Disord. Drug Targets, 2013, 12(5), 698-714.
[http://dx.doi.org/10.2174/1871527311312050015] [PMID: 23469845]
[25]
Keep, R.F.; Zhou, N.; Xiang, J.; Andjelkovic, A.V.; Hua, Y.; Xi, G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS, 2014, 11, 18.
[http://dx.doi.org/10.1186/2045-8118-11-18] [PMID: 25120903]
[26]
Saver, J.L. Time is brain--quantified. Stroke, 2006, 37(1), 263-266.
[http://dx.doi.org/10.1161/01.STR.0000196957.55928.ab] [PMID: 16339467]
[27]
Bhatia, R.; Hill, M.D.; Shobha, N.; Menon, B.; Bal, S.; Kochar, P.; Watson, T.; Goyal, M.; Demchuk, A.M. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke, 2010, 41(10), 2254-2258.
[http://dx.doi.org/10.1161/STROKEAHA.110.592535] [PMID: 20829513]
[28]
Rha, J.H.; Saver, J.L. The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke, 2007, 38(3), 967-973.
[http://dx.doi.org/10.1161/01.STR.0000258112.14918.24] [PMID: 17272772]
[29]
Hacke, W.; Albers, G.; Al-Rawi, Y.; Bogousslavsky, J.; Davalos, A.; Eliasziw, M.; Fischer, M.; Furlan, A.; Kaste, M.; Lees, K.R.; Soehngen, M.; Warach, S. The desmoteplase in acute ischemic stroke trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke, 2005, 36(1), 66-73.
[http://dx.doi.org/10.1161/01.STR.0000149938.08731.2c] [PMID: 15569863]
[30]
English, J.D.; Yavagal, D.R.; Gupta, R.; Janardhan, V.; Zaidat, O.O.; Xavier, A.R.; Nogueira, R.G.; Kirmani, J.F.; Jovin, T.G. Mechanical thrombectomy-ready comprehensive stroke center requirements and endovascular stroke systems of care: recommendations from the endovascular stroke standards committee of the society of vascular and interventional neurology (SVIN). Intervent. Neurol., 2016, 4(3-4), 138-150.
[http://dx.doi.org/10.1159/000442715] [PMID: 27051410]
[31]
Yoshida, H.; Yanai, H.; Namiki, Y.; Fukatsu-Sasaki, K.; Furutani, N.; Tada, N. Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury. CNS Drug Rev., 2006, 12(1), 9-20.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00009.x] [PMID: 16834755]
[32]
Fujiwara, N.; Som, A.T.; Pham, L.D.; Lee, B.J.; Mandeville, E.T.; Lo, E.H.; Arai, K. A free radical scavenger edaravone suppresses systemic inflammatory responses in a rat transient focal ischemia model. Neurosci. Lett., 2016, 633, 7-13.
[http://dx.doi.org/10.1016/j.neulet.2016.08.048] [PMID: 27589890]
[33]
Zhang, N.; Komine-Kobayashi, M.; Tanaka, R.; Liu, M.; Mizuno, Y.; Urabe, T. Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke, 2005, 36(10), 2220-2225.
[http://dx.doi.org/10.1161/01.STR.0000182241.07096.06] [PMID: 16166574]
[34]
Wen, J.; Watanabe, K.; Ma, M.; Yamaguchi, K.; Tachikawa, H.; Kodama, M.; Aizawa, Y. Edaravone inhibits JNK-c-Jun pathway and restores anti-oxidative defense after ischemia-reperfusion injury in aged rats. Biol. Pharm. Bull., 2006, 29(4), 713-718.
[http://dx.doi.org/10.1248/bpb.29.713] [PMID: 16595905]
[35]
Kikuchi, K.; Tancharoen, S.; Matsuda, F.; Biswas, K.K.; Ito, T.; Morimoto, Y.; Oyama, Y.; Takenouchi, K.; Miura, N.; Arimura, N.; Nawa, Y.; Meng, X.; Shrestha, B.; Arimura, S.; Iwata, M.; Mera, K.; Sameshima, H.; Ohno, Y.; Maenosono, R.; Tajima, Y.; Uchikado, H.; Kuramoto, T.; Nakayama, K.; Shigemori, M.; Yoshida, Y.; Hashiguchi, T.; Maruyama, I.; Kawahara, K. Edaravone attenuates cerebral ischemic injury by suppressing aquaporin-4. Biochem. Biophys. Res. Commun., 2009, 390(4), 1121-1125.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.015] [PMID: 19737535]
[36]
Nakamura, T.; Kuroda, Y.; Yamashita, S.; Zhang, X.; Miyamoto, O.; Tamiya, T.; Nagao, S.; Xi, G.; Keep, R.F.; Itano, T. Edaravone attenuates brain edema and neurologic deficits in a rat model of acute intracerebral hemorrhage. Stroke, 2008, 39(2), 463-469.
[http://dx.doi.org/10.1161/STROKEAHA.107.486654] [PMID: 18096835]
[37]
Ishikawa, A.; Yoshida, H.; Metoki, N.; Toki, T.; Imaizumi, T.; Matsumiya, T.; Yamashita, K.; Taima, K.; Satoh, K. Edaravone inhibits the expression of vascular endothelial growth factor in human astrocytes exposed to hypoxia. Neurosci. Res., 2007, 59(4), 406-412.
[http://dx.doi.org/10.1016/j.neures.2007.08.008] [PMID: 17889387]
[38]
Otani, H.; Togashi, H.; Jesmin, S.; Sakuma, I.; Yamaguchi, T.; Matsumoto, M.; Kakehata, H.; Yoshioka, M. Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus. Eur. J. Pharmacol., 2005, 512(2-3), 129-137.
[http://dx.doi.org/10.1016/j.ejphar.2005.01.050] [PMID: 15840397]
[39]
Yokota, S.; Kumagai, Y.; Uchiumi, M.; Isawa, S.; Murasaki, M.; Akimoto, K.; Iwamoto, M.; Yuasa, T.; Iwano, M. A pharmacokinetic study of MCI-186, a novel drug for cerebrovascular disease in elderly and young healthy subjects. Japan. J. Clin. Pharmacol Therapeu., 1997, 28(3), 693-702.
[http://dx.doi.org/10.3999/jscpt.28.693]
[40]
Edaravone Acute Infarction Study Group. Effect of a novel free radical scavenger, edaravone (MCI-186), on acute brain infarction. Randomized, placebo-controlled, double-blind study at multicenters. Cerebrovasc. Dis., 2003, 15(3), 222-229.
[http://dx.doi.org/10.1159/000069318] [PMID: 12715790]
[41]
Toyoda, K.; Fujii, K.; Kamouchi, M.; Nakane, H.; Arihiro, S.; Okada, Y.; Ibayashi, S.; Iida, M. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J. Neurol. Sci., 2004, 221(1-2), 11-17.
[http://dx.doi.org/10.1016/j.jns.2004.03.002] [PMID: 15178207]
[42]
Ogasawara, K.; Yamadate, K.; Kobayashi, M.; Endo, H.; Fukuda, T.; Yoshida, K.; Terasaki, K.; Inoue, T.; Ogawa, A. Effects of the free radical scavenger, edaravone, on the development of postoperative cognitive impairment in patients undergoing carotid endarterectomy. Surg. Neurol., 2005, 64(4), 309-313.
[http://dx.doi.org/10.1016/j.surneu.2005.01.008] [PMID: 16182000]
[43]
Uno, M.; Kitazato, K.T.; Suzue, A.; Matsuzaki, K.; Harada, M.; Itabe, H.; Nagahiro, S. Inhibition of brain damage by edaravone, a free radical scavenger, can be monitored by plasma biomarkers that detect oxidative and astrocyte damage in patients with acute cerebral infarction. Free Radic. Biol. Med., 2005, 39(8), 1109-1116.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.06.001] [PMID: 16198237]
[44]
Imai, K.; Mori, T.; Izumoto, H.; Takabatake, N.; Kunieda, T.; Watanabe, M. Hyperbaric oxygen combined with intravenous edaravone for treatment of acute embolic stroke: a pilot clinical trial. Neurol. Med. Chir. (Tokyo), 2006, 46(8), 373-378.
[http://dx.doi.org/10.2176/nmc.46.373] [PMID: 16936457]
[45]
Munakata, A.; Ohkuma, H.; Nakano, T.; Shimamura, N.; Asano, K.; Naraoka, M. Effect of a free radical scavenger, edaravone, in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery, 2009, 64(3), 423-428.
[http://dx.doi.org/10.1227/01.NEU.0000338067.83059.EB] [PMID: 19240603]
[46]
Shinohara, Y.; Saito, I.; Kobayashi, S.; Uchiyama, S. Edaravone (radical scavenger) versus sodium ozagrel (antiplatelet agent) in acute noncardioembolic ischemic stroke (EDO trial). Cerebrovasc. Dis., 2009, 27(5), 485-492.
[http://dx.doi.org/10.1159/000210190] [PMID: 19321945]
[47]
Naritomi, H.; Moriwaki, H.; Metoki, N.; Nishimura, H.; Higashi, Y.; Yamamoto, Y.; Yuasa, H.; Oe, H.; Tanaka, K.; Saito, K.; Terayama, Y.; Oda, T.; Tanahashi, N.; Kondo, H. Effects of edaravone on muscle atrophy and locomotor function in patients with ischemic stroke: a randomized controlled pilot study. Drugs R D., 2010, 10(3), 155-163.
[http://dx.doi.org/10.2165/11586550-000000000-00000] [PMID: 20945946]
[48]
Nakase, T.; Yoshioka, S.; Suzuki, A. Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke. BMC Neurol., 2011, 11, 39.
[http://dx.doi.org/10.1186/1471-2377-11-39] [PMID: 21447190]
[49]
Sharma, P.; Sinha, M.; Shukla, R.; Garg, R.K.; Verma, R.; Singh, M.K. A randomized controlled clinical trial to compare the safety and efficacy of edaravone in acute ischemic stroke. Ann. Indian Acad. Neurol., 2011, 14(2), 103-106.
[http://dx.doi.org/10.4103/0972-2327.82794] [PMID: 21808471]
[50]
Kimura, K.; Aoki, J.; Sakamoto, Y.; Kobayashi, K.; Sakai, K.; Inoue, T.; Iguchi, Y.; Shibazaki, K. Administration of edaravone, a free radical scavenger, during t-PA infusion can enhance early recanalization in acute stroke patients--a preliminary study. J. Neurol. Sci., 2012, 313(1-2), 132-136.
[http://dx.doi.org/10.1016/j.jns.2011.09.006] [PMID: 21967833]
[51]
Li, H.; Xu, K.; Wang, Y.; Zhang, H.; Li, T.; Meng, L.; Gong, X.; Zhang, H.; Ou, N.; Ruan, J. Phase I clinical study of edaravone in healthy Chinese volunteers: safety and pharmacokinetics of single or multiple intravenous infusions. Drugs R D., 2012, 12(2), 65-70.
[http://dx.doi.org/10.2165/11634290-000000000-00000] [PMID: 22762844]
[52]
Kaste, M.; Murayama, S.; Ford, G.A.; Dippel, D.W.; Walters, M.R.; Tatlisumak, T. Safety, tolerability and pharmacokinetics of MCI-186 in patients with acute ischemic stroke: new formulation and dosing regimen. Cerebrovasc. Dis., 2013, 36(3), 196-204.
[http://dx.doi.org/10.1159/000353680] [PMID: 24135530]
[53]
Zheng, J.; Chen, X. Edaravone offers neuroprotection for acute diabetic stroke patients. Ir. J. Med. Sci., 2016, 185(4), 819-824.
[http://dx.doi.org/10.1007/s11845-015-1371-9] [PMID: 26597952]
[54]
Aoki, J.; Kimura, K.; Morita, N.; Harada, M.; Metoki, N.; Tateishi, Y.; Todo, K.; Yamagami, H.; Hayashi, K.; Terasawa, Y.; Fujita, K.; Yamamoto, N.; Deguchi, I.; Tanahashi, N.; Inoue, T.; Iwanaga, T.; Kaneko, N.; Mitsumura, H.; Iguchi, Y.; Ueno, Y.; Kuramoto, Y.; Ogata, T.; Fujimoto, S.; Yokoyama, M.; Nagahiro, S. YAMATO Study (tissue-type plasminogen activator and edaravone combination therapy). Stroke, 2017, 48(3), 712-719.
[http://dx.doi.org/10.1161/STROKEAHA.116.015042] [PMID: 28119434]
[55]
Sun, Z.; Xu, Q.; Gao, G.; Zhao, M.; Sun, C. Clinical observation in edaravone treatment for acute cerebral infarction. Niger. J. Clin. Pract., 2019, 22(10), 1324-1327.
[http://dx.doi.org/10.4103/njcp.njcp_367_18] [PMID: 31607719]
[56]
Kong, Z.; Jiang, J.; Deng, M.; Zhang, Z.; Wang, G. Edaravone reduces depression severity in patients with symptomatic intracranial stenosis and is associated with the serum expression of sex hormones. Medicine (Baltimore), 2020, 99(8), e19316.
[http://dx.doi.org/10.1097/MD.0000000000019316] [PMID: 32080148]
[57]
Yagi, K.; Kitazato, K.T.; Uno, M.; Tada, Y.; Kinouchi, T.; Shimada, K.; Nagahiro, S. Edaravone, a free radical scavenger, inhibits MMP-9-related brain hemorrhage in rats treated with tissue plasminogen activator. Stroke, 2009, 40(2), 626-631.
[http://dx.doi.org/10.1161/STROKEAHA.108.520262] [PMID: 19095969]
[58]
Lapchak, P.A. Development of thrombolytic therapy for stroke: a perspective. Expert Opin. Investig. Drugs, 2002, 11(11), 1623-1632.
[http://dx.doi.org/10.1517/13543784.11.11.1623] [PMID: 12437508]
[59]
Miyaji, Y.; Yoshimura, S.; Sakai, N.; Yamagami, H.; Egashira, Y.; Shirakawa, M.; Uchida, K.; Kageyama, H.; Tomogane, Y. Effect of edaravone on favorable outcome in patients with acute cerebral large vessel occlusion: subanalysis of RESCUE-Japan Registry. Neurol. Med. Chir. (Tokyo), 2015, 55(3), 241-247.
[http://dx.doi.org/10.2176/nmc.ra.2014-0219] [PMID: 25739433]
[60]
Takenaka, K.; Kato, M.; Yamauti, K.; Hayashi, K. Simultaneous administration of recombinant tissue plasminogen activator and edaravone in acute cerebral ischemic stroke patients. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2748-2752.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.016] [PMID: 25307430]
[61]
Sun, Y.Y.; Morozov, Y.M.; Yang, D.; Li, Y.; Dunn, R.S.; Rakic, P.; Chan, P.H.; Abe, K.; Lindquist, D.M.; Kuan, C.Y. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS One, 2014, 9(6), e98807.
[http://dx.doi.org/10.1371/journal.pone.0098807] [PMID: 24911517]
[62]
Kikuchi, K.; Setoyama, K.; Kawahara, K.I.; Nagasato, T.; Terashi, T.; Ueda, K.; Nakanishi, K.; Otsuka, S.; Miura, N.; Sameshima, H.; Hosokawa, K.; Harada, Y.; Shrestha, B.; Yamamoto, M.; Morimoto-Yamashita, Y.; Kikuchi, H.; Kiyama, R.; Kamikokuryo, C.; Tancharoen, S.; Sakakima, H.; Morioka, M.; Tanaka, E.; Ito, T.; Maruyama, I. Edaravone, a Synthetic Free Radical Scavenger, Enhances Alteplase-Mediated Thrombolysis. Oxid. Med. Cell. Longev., 2017, 2017, 6873281.
[http://dx.doi.org/10.1155/2017/6873281] [PMID: 29259732]
[63]
Wada, T.; Yasunaga, H.; Inokuchi, R.; Horiguchi, H.; Fushimi, K.; Matsubara, T.; Nakajima, S.; Yahagi, N. Effects of edaravone on early outcomes in acute ischemic stroke patients treated with recombinant tissue plasminogen activator. J. Neurol. Sci., 2014, 345(1-2), 106-111.
[http://dx.doi.org/10.1016/j.jns.2014.07.018] [PMID: 25085762]
[64]
Enomoto, M.; Endo, A.; Yatsushige, H.; Fushimi, K.; Otomo, Y. Clinical Effects of Early Edaravone Use in Acute Ischemic Stroke Patients Treated by Endovascular Reperfusion Therapy. Stroke, 2019, 50(3), 652-658.
[http://dx.doi.org/10.1161/STROKEAHA.118.023815] [PMID: 30741623]
[65]
Rolain, H.; Miranpuri, G.S.; Ahmed, A.S. Edaravone’s antioxidant capabilities and its therapeutic benefits for post-ischemic stroke: a mini review. On J Complement & Alt Med., 2019, 2(4), e101752366.
[http://dx.doi.org/10.33552/OJCAM.2019.02.000541]
[66]
Yuan, W.J.; Yasuhara, T.; Shingo, T.; Muraoka, K.; Agari, T.; Kameda, M.; Uozumi, T.; Tajiri, N.; Morimoto, T.; Jing, M.; Baba, T.; Wang, F.; Leung, H.; Matsui, T.; Miyoshi, Y.; Date, I. Neuroprotective effects of edaravone-administration on 6-OHDA-treated dopaminergic neurons. BMC Neurosci., 2008, 9, 75.
[http://dx.doi.org/10.1186/1471-2202-9-75] [PMID: 18671880]
[67]
Xiong, N.; Xiong, J.; Khare, G.; Chen, C.; Huang, J.; Zhao, Y.; Zhang, Z.; Qiao, X.; Feng, Y.; Reesaul, H.; Zhang, Y.; Sun, S.; Lin, Z.; Wang, T. Edaravone guards dopamine neurons in a rotenone model for Parkinson’s disease. PLoS One, 2011, 6(6), e20677.
[http://dx.doi.org/10.1371/journal.pone.0020677] [PMID: 21677777]
[68]
Bandookwala, M.; Sahu, A.K.; Thakkar, D.; Sharma, M.; Khairnar, A.; Sengupta, P. Edaravone-caffeine combination for the effective management of rotenone induced Parkinson’s disease in rats: an evidence based affirmative from a comparative analysis of behavior and biomarker expression. Neurosci. Lett., 2019, 711, 134438.
[http://dx.doi.org/10.1016/j.neulet.2019.134438] [PMID: 31422100]
[69]
Aoyama, T.; Hida, K.; Kuroda, S.; Seki, T.; Yano, S.; Shichinohe, H.; Iwasaki, Y. Edaravone (MCI-186) scavenges reactive oxygen species and ameliorates tissue damage in the murine spinal cord injury model. Neurol. Med. Chir. (Tokyo), 2008, 48(12), 539-545.
[http://dx.doi.org/10.2176/nmc.48.539] [PMID: 19106491]
[70]
Takahashi, G.; Sakurai, M.; Abe, K.; Itoyama, Y.; Tabayashi, K. MCI-186 prevents spinal cord damage and affects enzyme levels of nitric oxide synthase and Cu/Zn superoxide dismutase after transient ischemia in rabbits. J. Thorac. Cardiovasc. Surg., 2003, 126(5), 1461-1466.
[http://dx.doi.org/10.1016/S0022-5223(03)00693-7] [PMID: 14666020]
[71]
Ozgiray, E.; Serarslan, Y.; Oztürk, O.H.; Altaş, M.; Aras, M.; Söğüt, S.; Yurtseven, T.; Oran, I.; Zileli, M. Protective effects of edaravone on experimental spinal cord injury in rats. Pediatr. Neurosurg., 2011, 47(4), 254-260.
[http://dx.doi.org/10.1159/000335400] [PMID: 22310070]
[72]
Takahashi, G.; Sakurai, M.; Abe, K.; Itoyama, Y.; Tabayashi, K. MCI-186 reduces oxidative cellular damage and increases DNA repair function in the rabbit spinal cord after transient ischemia. Ann. Thorac. Surg., 2004, 78(2), 602-607.
[http://dx.doi.org/10.1016/j.athoracsur.2004.02.133] [PMID: 15276530]
[73]
Ohta, S.; Iwashita, Y.; Takada, H.; Kuno, S.; Nakamura, T. Neuroprotection and enhanced recovery with edaravone after acute spinal cord injury in rats. Spine, 2005, 30(10), 1154-1158.
[http://dx.doi.org/10.1097/01.brs.0000162402.79482.fd] [PMID: 15897829]
[74]
Zhang, T.; Li, Z.; Dong, J.; Nan, F.; Li, T.; Yu, Q. Edaravone promotes functional recovery after mechanical peripheral nerve injury. Neural Regen. Res., 2014, 9(18), 1709-1715.
[http://dx.doi.org/10.4103/1673-5374.141808] [PMID: 25374594]
[75]
Zhang, S.Q.; Wu, M.F.; Piao, Z.; Yao, J.; Li, J.H.; Wang, X.G.; Liu, J. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats. Neural Regen. Res., 2015, 10(2), 230-236.
[http://dx.doi.org/10.4103/1673-5374.152376] [PMID: 25883621]
[76]
Garg, S.; Chaudhari, D.; Renjen, P.; Mishra, A.; Kumar, A.; Pradhan, R. Edaravone: A new hope for patients with amyotrophic lateral sclerosis. Apollo Medicine, 2019, 16(3), 157-160.
[http://dx.doi.org/10.4103/am.am_48_19]
[77]
Mehta, P.; Kaye, W.; Raymond, J.; Wu, R.; Larson, T.; Punjani, R.; Heller, D.; Cohen, J.; Peters, T.; Muravov, O.; Horton, K. Prevalence of amyotrophic lateral sclerosis - United States, 2014. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(7), 216-218.
[http://dx.doi.org/10.15585/mmwr.mm6707a3] [PMID: 29470458]
[78]
Barber, S.C.; Shaw, P.J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic. Biol. Med., 2010, 48(5), 629-641.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.018] [PMID: 19969067]
[79]
Veyrat-Durebex, C.; Corcia, P.; Piver, E.; Devos, D.; Dangoumau, A.; Gouel, F.; Vourc’h, P.; Emond, P.; Laumonnier, F.; Nadal-Desbarats, L.; Gordon, P.H.; Andres, C.R.; Blasco, H. Disruption of TCA cycle and glutamate metabolism identified by metabolomics in an in vitro model of amyotrophic lateral sclerosis. Mol. Neurobiol., 2016, 53(10), 6910-6924.
[http://dx.doi.org/10.1007/s12035-015-9567-6] [PMID: 26666663]
[80]
Park, J.M.; Kim, S.Y.; Park, D.; Park, J.S. Effect of edaravone therapy in Korean amyotrophic lateral sclerosis (ALS) patients. Neurol. Sci., 2020, 41(1), 119-123.
[http://dx.doi.org/10.1007/s10072-019-04055-3] [PMID: 31471712]
[81]
Cruz, M.P. Edaravone (radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T, 2018, 43(1), 25-28.
[PMID: 29290672]
[82]
Bensimon, G.; Lacomblez, L.; Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med., 1994, 330(9), 585-591.
[http://dx.doi.org/10.1056/NEJM199403033300901] [PMID: 8302340]
[83]
Yoshino, H. Edaravone for the treatment of amyotrophic lateral sclerosis. Expert Rev. Neurother., 2019, 19(3), 185-193.
[http://dx.doi.org/10.1080/14737175.2019.1581610] [PMID: 30810406]
[84]
Ikeda, K.; Iwasaki, Y. Edaravone, a free radical scavenger, delayed symptomatic and pathological progression of motor neuron disease in the wobbler mouse. PLoS One, 2015, 10(10), e0140316.
[http://dx.doi.org/10.1371/journal.pone.0140316] [PMID: 26469273]
[85]
Aoki, M.; Warita, H.; Mizuno, H.; Suzuki, N.; Yuki, S.; Itoyama, Y. Feasibility study for functional test battery of SOD transgenic rat (H46R) and evaluation of edaravone, a free radical scavenger. Brain Res., 2011, 1382, 321-325.
[http://dx.doi.org/10.1016/j.brainres.2011.01.058] [PMID: 21276427]
[86]
Ito, H.; Wate, R.; Zhang, J.; Ohnishi, S.; Kaneko, S.; Ito, H.; Nakano, S.; Kusaka, H. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp. Neurol., 2008, 213(2), 448-455.
[http://dx.doi.org/10.1016/j.expneurol.2008.07.017] [PMID: 18718468]
[87]
Yamamoto, T.; Yuki, S.; Watanabe, T.; Mitsuka, M.; Saito, K.I.; Kogure, K. Delayed neuronal death prevented by inhibition of increased hydroxyl radical formation in a transient cerebral ischemia. Brain Res., 1997, 762(1-2), 240-242.
[http://dx.doi.org/10.1016/S0006-8993(97)00490-3] [PMID: 9262182]
[88]
Jaiswal, M.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med. Res. Rev., 2019, 39(2), 733-748.
[http://dx.doi.org/10.1002/med.21528] [PMID: 30101496]
[89]
Sawada, H. Clinical efficacy of edaravone for the treatment of amyotrophic lateral sclerosis. Expert Opin. Pharmacother., 2017, 18(7), 735-738.
[http://dx.doi.org/10.1080/14656566.2017.1319937] [PMID: 28406335]
[90]
Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci., 1999, 169(1-2), 13-21.
[http://dx.doi.org/10.1016/S0022-510X(99)00210-5] [PMID: 10540002]
[91]
Beydoun, S.R.; Rosenfeld, J. Edaravone in amyotrophic lateral sclerosis—lessons from the clinical development program and the importance of a strategic clinical trial design. US Neurol., 2018, 14(1), 47-53.
[http://dx.doi.org/10.17925/USN.2018.14.1.47]
[92]
Yoshino, H.; Kimura, A. Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph. Lateral Scler., 2006, 7(4), 241-245.
[http://dx.doi.org/10.1080/17482960600881870] [PMID: 17127563]
[93]
Abe, K.; Itoyama, Y.; Sobue, G.; Tsuji, S.; Aoki, M.; Doyu, M.; Hamada, C.; Kondo, K.; Yoneoka, T.; Akimoto, M.; Yoshino, H. Confirmatory double-blind, parallel-group, placebo-controlled study of efficacy and safety of edaravone (MCI-186) in amyotrophic lateral sclerosis patients. Amyotroph. Lateral Scler. Frontotemporal Degener., 2014, 15(7-8), 610-617.
[http://dx.doi.org/10.3109/21678421.2014.959024] [PMID: 25286015]
[94]
Writing Group- Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2017, 16(7), 505-512.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[95]
Edaravone (MCI-186) ALS 16 Study Group. A post-hoc subgroup analysis of outcomes in the first phase III clinical study of edaravone (MCI-186) in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener, 2017, 18(sup1), 11-19.
[http://dx.doi.org/10.1080/21678421.2017.1363780] [PMID: 28872917]
[96]
Castrillo-Viguera, C.; Grasso, D.L.; Simpson, E.; Shefner, J.; Cudkowicz, M.E. Clinical significance in the change of decline in ALSFRS-R. Amyotroph. Lateral Scler., 2010, 11(1-2), 178-180.
[http://dx.doi.org/10.3109/17482960903093710] [PMID: 19634063]
[97]
Writing Group On Behalf of the Edaravone (MCI-186) ALS 19 Study Group. Open-label 24-week extension study of edaravone (MCI-186) in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener, 2017, 18(sup1), 55-63.
[http://dx.doi.org/10.1080/21678421.2017.1364269] [PMID: 28872920]
[98]
Shefner, J.; Heiman-Patterson, T.; Pioro, E.P.; Wiedau-Pazos, M.; Liu, S.; Zhang, J.; Agnese, W.; Apple, S. Long-term edaravone efficacy in amyotrophic lateral sclerosis: post-hoc analyses of study 19 (MCI186-19). Muscle Nerve, 2020, 61(2), 218-221.
[http://dx.doi.org/10.1002/mus.26740] [PMID: 31621933]
[99]
Scannell, J.W.; Blanckley, A.; Boldon, H.; Warrington, B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat. Rev. Drug Discov., 2012, 11(3), 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[100]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]
[101]
Ashburn, T.T.; Thor, K.B. Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[102]
Munos, B. Lessons from 60 years of pharmaceutical innovation. Nat. Rev. Drug Discov., 2009, 8(12), 959-968.
[http://dx.doi.org/10.1038/nrd2961] [PMID: 19949401]
[103]
Nosengo, N. Can you teach old drugs new tricks? Nature, 2016, 534(7607), 314-316.
[http://dx.doi.org/10.1038/534314a] [PMID: 27306171]
[104]
Stein, D.G.; Sayeed, I. Repurposing and repositioning neurosteroids in the treatment of traumatic brain injury: a report from the trenches. Neuropharmacology, 2019, 147, 66-73.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.006] [PMID: 29630902]
[105]
DeWitt, D.S.; Hawkins, B.E.; Dixon, C.E.; Kochanek, P.M.; Armstead, W.; Bass, C.R.; Bramlett, H.M.; Buki, A.; Dietrich, W.D.; Ferguson, A.R.; Hall, E.D.; Hayes, R.L.; Hinds, S.R.; LaPlaca, M.C.; Long, J.B.; Meaney, D.F.; Mondello, S.; Noble-Haeusslein, L.J.; Poloyac, S.M.; Prough, D.S.; Robertson, C.S.; Saatman, K.E.; Shultz, S.R.; Shear, D.A.; Smith, D.H.; Valadka, A.B.; VandeVord, P.; Zhang, L. Pre-clinical testing of therapies for traumatic brain injury. J. Neurotrauma, 2018, 35(23), 2737-2754.
[http://dx.doi.org/10.1089/neu.2018.5778] [PMID: 29756522]
[106]
Gooch, C.L.; Pracht, E.; Borenstein, A.R. The burden of neurological disease in the United States: a summary report and call to action. Ann. Neurol., 2017, 81(4), 479-484.
[http://dx.doi.org/10.1002/ana.24897] [PMID: 28198092]
[107]
Clausen, F.; Lundqvist, H.; Ekmark, S.; Lewén, A.; Ebendal, T.; Hillered, L. Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J. Neurotrauma, 2004, 21(9), 1168-1182.
[http://dx.doi.org/10.1089/neu.2004.21.1168] [PMID: 15453987]
[108]
Miyamoto, N.; Maki, T.; Pham, L.D.; Hayakawa, K.; Seo, J.H.; Mandeville, E.T.; Mandeville, J.B.; Kim, K.W.; Lo, E.H.; Arai, K. Oxidative stress interferes with white matter renewal after prolonged cerebral hypoperfusion in mice. Stroke, 2013, 44(12), 3516-3521.
[http://dx.doi.org/10.1161/STROKEAHA.113.002813] [PMID: 24072001]
[109]
Yuan, Y.; Zha, H.; Rangarajan, P.; Ling, E.A.; Wu, C. Anti-inflammatory effects of edaravone and scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neurosci., 2014, 15, 125.
[http://dx.doi.org/10.1186/s12868-014-0125-3] [PMID: 25416145]
[110]
Shen, Y.; Liu, X.B.; Pleasure, D.E.; Deng, W. Axon-glia synapses are highly vulnerable to white matter injury in the developing brain. J. Neurosci. Res., 2012, 90(1), 105-121.
[http://dx.doi.org/10.1002/jnr.22722] [PMID: 21812016]
[111]
Eleuteri, C.; Olla, S.; Veroni, C.; Umeton, R.; Mechelli, R.; Romano, S.; Buscarinu, M.C.; Ferrari, F.; Calò, G.; Ristori, G.; Salvetti, M.; Agresti, C. A staged screening of registered drugs highlights remyelinating drug candidates for clinical trials. Sci. Rep., 2017, 7, 45780.
[http://dx.doi.org/10.1038/srep45780] [PMID: 28387380]
[112]
Gean, A.D.; Fischbein, N.J. Head trauma. Neuroimaging Clin. N. Am., 2010, 20(4), 527-556.
[http://dx.doi.org/10.1016/j.nic.2010.08.001] [PMID: 20974375]
[113]
Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma, 2008, 25(7), 719-738.
[http://dx.doi.org/10.1089/neu.2008.0586] [PMID: 18627252]
[114]
Bigler, E.D. Traumatic brain injury, neuroimaging, and neurodegeneration. Front. Hum. Neurosci., 2013, 7, 395.
[http://dx.doi.org/10.3389/fnhum.2013.00395] [PMID: 23964217]
[115]
Bramlett, H.M.; Dietrich, W.D. Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. J. Neurotrauma, 2015, 32(23), 1834-1848.
[http://dx.doi.org/10.1089/neu.2014.3352] [PMID: 25158206]
[116]
Ng, S.Y.; Lee, A.Y.W. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front. Cell. Neurosci., 2019, 13(528), 528.
[http://dx.doi.org/10.3389/fncel.2019.00528] [PMID: 31827423]
[117]
Black, K.L.; Hanks, R.A.; Wood, D.L.; Zafonte, R.D.; Cullen, N.; Cifu, D.X.; Englander, J.; Francisco, G.E. Blunt versus penetrating violent traumatic brain injury: frequency and factors associated with secondary conditions and complications. J. Head Trauma Rehabil., 2002, 17(6), 489-496.
[http://dx.doi.org/10.1097/00001199-200212000-00001] [PMID: 12802240]
[118]
Warden, D. Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil., 2006, 21(5), 398-402.
[http://dx.doi.org/10.1097/00001199-200609000-00004] [PMID: 16983225]
[119]
Ling, G.S.F.; Ecklund, J.M. Traumatic brain injury in modern war. Curr. Opin. Anaesthesiol., 2011, 24(2), 124-130.
[http://dx.doi.org/10.1097/ACO.0b013e32834458da] [PMID: 21301332]
[120]
Song, H.; Konan, L.M.; Cui, J.; Johnson, C.E.; Langenderfer, M.; Grant, D.; Ndam, T.; Simonyi, A.; White, T.; Demirci, U.; Mott, D.R.; Schwer, D.; Hubler, G.K.; Cernak, I.; DePalma, R.G.; Gu, Z. Ultrastructural brain abnormalities and associated behavioral changes in mice after low-intensity blast exposure. Behav. Brain Res., 2018, 347, 148-157.
[http://dx.doi.org/10.1016/j.bbr.2018.03.007] [PMID: 29526786]
[121]
Cernak, I.; Noble-Haeusslein, L.J. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab., 2010, 30(2), 255-266.
[http://dx.doi.org/10.1038/jcbfm.2009.203] [PMID: 19809467]
[122]
Risdall, J.E.; Menon, D.K. Traumatic brain injury. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1562), 241-250.
[http://dx.doi.org/10.1098/rstb.2010.0230] [PMID: 21149359]
[123]
Cernak, I. Understanding blast-induced neurotrauma: how far have we come? Concussion, 2017, 2(3), CNC42.
[http://dx.doi.org/10.2217/cnc-2017-0006] [PMID: 30202583]
[124]
Perez-Garcia, G.; Gama Sosa, M.A.; De Gasperi, R.; Tschiffely, A.E.; McCarron, R.M.; Hof, P.R.; Gandy, S.; Ahlers, S.T.; Elder, G.A. Blast-induced “PTSD”: evidence from an animal model. Neuropharmacology, 2019, 145(Pt B), 220-229.
[http://dx.doi.org/10.1016/j.neuropharm.2018.09.023] [PMID: 30227150]
[125]
Rosenblatt, A.S.; Li, R.; Fortier, C.; Liu, X.; Fonda, J.R.; Villalon, A.; McGlinchey, R.E.; Jorge, R.E. Latent factor structure of PTSD symptoms in veterans with a history of mild traumatic brain injury and close-range blast exposure. Psychol. Trauma, 2019, 11(4), 442-450.
[http://dx.doi.org/10.1037/tra0000399] [PMID: 30113187]
[126]
Narayan, R.K.; Michel, M.E.; Ansell, B.; Baethmann, A.; Biegon, A.; Bracken, M.B.; Bullock, M.R.; Choi, S.C.; Clifton, G.L.; Contant, C.F.; Coplin, W.M.; Dietrich, W.D.; Ghajar, J.; Grady, S.M.; Grossman, R.G.; Hall, E.D.; Heetderks, W.; Hovda, D.A.; Jallo, J.; Katz, R.L.; Knoller, N.; Kochanek, P.M.; Maas, A.I.; Majde, J.; Marion, D.W.; Marmarou, A.; Marshall, L.F.; McIntosh, T.K.; Miller, E.; Mohberg, N.; Muizelaar, J.P.; Pitts, L.H.; Quinn, P.; Riesenfeld, G.; Robertson, C.S.; Strauss, K.I.; Teasdale, G.; Temkin, N.; Tuma, R.; Wade, C.; Walker, M.D.; Weinrich, M.; Whyte, J.; Wilberger, J.; Young, A.B.; Yurkewicz, L. Clinical trials in head injury. J. Neurotrauma, 2002, 19(5), 503-557.
[http://dx.doi.org/10.1089/089771502753754037] [PMID: 12042091]
[127]
Machado, S.G.; Murray, G.D.; Teasdale, G.M. Evaluation of designs for clinical trials of neuroprotective agents in head injury. J. Neurotrauma, 1999, 16(12), 1131-1138.
[http://dx.doi.org/10.1089/neu.1999.16.1131] [PMID: 10619192]
[129]
Higgins, G.C.; Beart, P.M.; Shin, Y.S.; Chen, M.J.; Cheung, N.S.; Nagley, P. Oxidative stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J. Alzheimers Dis., 2010, 20(Suppl. 2), S453-S473.
[http://dx.doi.org/10.3233/JAD-2010-100321] [PMID: 20463398]
[130]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[131]
Tavazzi, B.; Vagnozzi, R.; Signoretti, S.; Amorini, A.M.; Belli, A.; Cimatti, M.; Delfini, R.; Di Pietro, V.; Finocchiaro, A.; Lazzarino, G. Temporal window of metabolic brain vulnerability to concussions: oxidative and nitrosative stresses--part II. Neurosurgery, 2007, 61(2), 390-395.
[http://dx.doi.org/10.1227/01.NEU.0000255525.34956.3F] [PMID: 17806141]
[132]
Hall, E.D.; Vaishnav, R.A.; Mustafa, A.G. Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 2010, 7(1), 51-61.
[http://dx.doi.org/10.1016/j.nurt.2009.10.021] [PMID: 20129497]
[133]
Petronilho, F.; Feier, G.; de Souza, B.; Guglielmi, C.; Constantino, L.S.; Walz, R.; Quevedo, J.; Dal-Pizzol, F. Oxidative stress in brain according to traumatic brain injury intensity. J. Surg. Res., 2010, 164(2), 316-320.
[http://dx.doi.org/10.1016/j.jss.2009.04.031] [PMID: 19691993]
[134]
Bains, M.; Hall, E.D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta, 2012, 1822(5), 675-684.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.017] [PMID: 22080976]
[135]
Chen, X.; Guo, C.; Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen. Res., 2012, 7(5), 376-385.
[http://dx.doi.org/10.3969/j.issn.1673-5374.2012.05.009] [PMID: 25774178]
[136]
Miyamoto, K.; Ohtaki, H.; Dohi, K.; Tsumuraya, T.; Song, D.; Kiriyama, K.; Satoh, K.; Shimizu, A.; Aruga, T.; Shioda, S. Therapeutic time window for edaravone treatment of traumatic brain injury in mice. BioMed Res. Int., 2013, 2013, 379206.
[http://dx.doi.org/10.1155/2013/379206] [PMID: 23710445]
[137]
Wang, G.H.; Jiang, Z.L.; Li, Y.C.; Li, X.; Shi, H.; Gao, Y.Q.; Vosler, P.S.; Chen, J. Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J. Neurotrauma, 2011, 28(10), 2123-2134.
[http://dx.doi.org/10.1089/neu.2011.1939] [PMID: 21732763]
[138]
Itoh, T.; Satou, T.; Nishida, S.; Tsubaki, M.; Hashimoto, S.; Ito, H. The novel free radical scavenger, edaravone, increases neural stem cell number around the area of damage following rat traumatic brain injury. Neurotox. Res., 2009, 16(4), 378-389.
[http://dx.doi.org/10.1007/s12640-009-9081-6] [PMID: 19590930]
[139]
Itoh, T.; Satou, T.; Nishida, S.; Tsubaki, M.; Imano, M.; Hashimoto, S.; Ito, H. Edaravone protects against apoptotic neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neurochem. Res., 2010, 35(2), 348-355.
[http://dx.doi.org/10.1007/s11064-009-0061-2] [PMID: 19768539]
[140]
Higashi, Y.; Hoshijima, M.; Yawata, T.; Nobumoto, A.; Tsuda, M.; Shimizu, T.; Saito, M.; Ueba, T. Suppression of oxidative stress and 5-lipoxygenase activation by edaravone improves depressive-like behavior after concussion. J. Neurotrauma, 2014, 31(20), 1689-1699.
[http://dx.doi.org/10.1089/neu.2014.3331] [PMID: 24849726]
[141]
Zhang, M.; Teng, C.H.; Wu, F.F.; Ge, L.Y.; Xiao, J.; Zhang, H.Y.; Chen, D.Q. Edaravone attenuates traumatic brain injury through anti-inflammatory and anti-oxidative modulation. Exp. Ther. Med., 2019, 18(1), 467-474.
[http://dx.doi.org/10.3892/etm.2019.7632] [PMID: 31281440]
[142]
Dohi, K.; Satoh, K.; Mihara, Y.; Nakamura, S.; Miyake, Y.; Ohtaki, H.; Nakamachi, T.; Yoshikawa, T.; Shioda, S.; Aruga, T. Alkoxyl radical-scavenging activity of edaravone in patients with traumatic brain injury. J. Neurotrauma, 2006, 23(11), 1591-1599.
[http://dx.doi.org/10.1089/neu.2006.23.1591] [PMID: 17115906]
[143]
Hosohata, K.; Inada, A.; Oyama, S.; Furushima, D.; Yamada, H.; Iwanaga, K. Surveillance of drugs that most frequently induce acute kidney injury: A pharmacovigilance approach. J. Clin. Pharm. Ther., 2019, 44(1), 49-53.
[http://dx.doi.org/10.1111/jcpt.12748] [PMID: 30014591]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy