Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Preparation of MnOx/CNTs Catalyst by In situ Precipitation Method for Low-Temperature NO Reduction with NH3

Author(s): Yanbing Zhang, Yingzan Chen, Jinhe Huang, Mingjie Ding, Xiaoyan Li* and Haipeng Zhao*

Volume 17, Issue 2, 2021

Published on: 12 August, 2020

Page: [298 - 306] Pages: 9

DOI: 10.2174/1573413716999200812130206

Price: $65

Abstract

Background: V2O5–WO3(MoO3)/TiO2 catalyst, as the core of selective catalytic reduction of NO with NH3 (SCR) has some drawbacks, such as high working temperature window (300- 400°C), toxicity of V-based catalyst and so on. Therefore, the development of the catalyst with better low temperature denitration activity and weaker toxicity are necessary.

Objective: The study aimed at the development of highly dispersed MnOx/CNTs catalysts with excellent denitration activity at 80-180°C, and weaker toxicity of MnOx. It is worth noting that an in-situ precipitation method based on the reaction of manganese acetate and sodium carbonate, is advantageous for the in-situ deposition of the active component, and the catalytic activity.

Methods: MnOx/CNTs catalysts with different Mn/C molar ratios were fabricated by in-situ precipitation method due to the reaction of manganese acetate and sodium carbonate. The microstructure, crystalline property, the content of the surface element, valence state, redox property, and catalytic activity were confirmed by FESEM, TEM, XRD, XPS, TPD, and fixed-bed reactor.

Results: The as-prepared MnOx/CNTs catalysts exhibited outstanding low temperature SCR activity. The NO conversion of the optimum 1.2% MnOx/CNTs catalyst reached 57.4-89.2% at 80-180oC, which resulted from the amorphous MnOx catalysts, having a higher ratio of Mn4+/Mn3+ and OS/(OS+OL).

Conclusion: MnOx/CNTs catalysts have been prepared by the in-situ precipitation method based on the reaction of manganese acetate and sodium carbonate. The resultant MnOx/CNTs catalysts presented excellent low temperature denitration activity between 80°C and 180°C. Among them, the 1.2% MnOx/CNTs catalyst exhibited the first rate low temperature denitration activity, and the denitration activity reached 57.4-89.2%, which may be due to the presence of the weakly crystalline or amorphous MnOx, having higher ratio of Mn4+/Mn3+ and OS/(OS+OL).

Keywords: Low-temperature, catalysts, CNTS, SCR, MnOX, NO.

Graphical Abstract

[1]
Yang, G.; Zhao, H.; Luo, X.; Shi, K.; Zhao, H.; Wang, W.; Chen, Q.; Fan, H.; Wu, T. Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts. Appl. Catal. B, 2019, 245, 743-752.
[http://dx.doi.org/10.1016/j.apcatb.2018.12.080]
[2]
Serhan, N.; Tsolakis, A.; Wahbi, A.; Martos, F.J.; Golunski, S. Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Appl. Catal. B, 2019, 241, 471-482.
[http://dx.doi.org/10.1016/j.apcatb.2018.09.068]
[3]
Zhu, N.; Shan, W.; Lian, Z.; Zhang, Y.; Liu, K.; He, H. A superior Fe-V-Ti catalyst with high activity and SO2 resistance for the selective catalytic reduction of NOx with NH3. J. Hazard. Mater., 2020, 382, 120970.
[http://dx.doi.org/10.1016/j.jhazmat.2019.120970] [PMID: 31465945]
[4]
Zeng, Y.; Song, W.; Wang, Y.; Zhang, S.; Wang, T.; Zhong, Q. Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: The role of Fe3+ ions. J. Hazard. Mater., 2020, 383, 121212.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121212] [PMID: 31546215]
[5]
Liu, Y.; Zhao, J.; Lee, J-M. Conventional and new materials for selective catalytic reduction (SCR) of NOx. ChemCatChem, 2018, 10, 1499-1511.
[http://dx.doi.org/10.1002/cctc.201701414]
[6]
Zha, K.; Kang, L.; Feng, C.; Han, L.; Li, H.; Yan, T.; Maitarad, P.; Shi, L.; Zhang, D. Improved NOx reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts. Environ. Sci. Nano, 2018, 5, 1408-1419.
[http://dx.doi.org/10.1039/C8EN00226F]
[7]
Yuan, H.; Sun, N.; Chen, J.; Jin, J.; Wang, H.; Hu, P. Insight into the NH3-assisted selective catalytic reduction of NO on β-MnO2(110): Reaction mechanism, activity descriptor, and evolution from a pristine state to a steady state. ACS Catal., 2018, 8(10), 9269-9279.
[http://dx.doi.org/10.1021/acscatal.8b02114]
[8]
Zhang, H.; Zhang, M.; Hao, L.; Wang, J.; Ma, Y.; Zhang, Y.; Jiao, T.; Zhang, W.; Chen, S.; Liang, P. Enhanced SO2 tolerance of FeCeOx/CNTs catalyst for NO and Hg0 removal by coating shell SiO2. Fuel Process. Technol., 2020, 201, 106342.
[http://dx.doi.org/10.1016/j.fuproc.2020.106342]
[9]
Han, L.; Cai, S.; Gao, M.; Hasegawa, J.Y.; Wang, P.; Zhang, J.; Shi, L.; Zhang, D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev., 2019, 119(19), 10916-10976.
[http://dx.doi.org/10.1021/acs.chemrev.9b00202] [PMID: 31415159]
[10]
Ye, B.; Lee, M.; Jeong, B.; Kim, J.; Lee, D.H.; Baik, J.M.; Kim, H-D. Partially reduced graphene oxide as a support of Mn-Ce/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Catal. Today, 2019, 328, 300-306.
[http://dx.doi.org/10.1016/j.cattod.2018.12.007]
[11]
Yan, Q.; Chen, S.; Zhang, C.; Wang, Q.; Louis, B. Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance. Appl. Catal. B, 2018, 238, 236-247.
[http://dx.doi.org/10.1016/j.apcatb.2018.07.035]
[12]
Wei, L.; Cheng, R.; Mao, H.; Geng, P.; Zhang, Y.; You, K. Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends. Energy, 2018, 144, 73-80.
[http://dx.doi.org/10.1016/j.energy.2017.12.012]
[13]
Ma, Y.; Zhang, D.; Sun, H.; Wu, J.; Liang, P.; Zhang, H. Fe–Ce mixed oxides supported on carbon nanotubes for simultaneous removal of NO and Hg0 in flue gas. Ind. Eng. Chem. Res., 2018, 57, 3187-3194.
[http://dx.doi.org/10.1021/acs.iecr.8b00015]
[14]
Zhang, Y.; Liu, L.; Chen, Y.; Cheng, X.; Song, C.; Ding, M.; Zhao, H. Synthesis of MnO2-CuO-Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism. Beilstein J. Nanotechnol., 2019, 10, 848-855.
[http://dx.doi.org/10.3762/bjnano.10.85] [PMID: 31019872]
[15]
Zhang, Y.; Ding, M.; Song, C.; Lv, Y.; Zhao, H. Selective catalytic reduction of NO with NH3 over MnO2/PDOPA@CNT catalysts prepared via poly(dopamine) functionalization. New J. Chem., 2018, 42, 11273-11275.
[http://dx.doi.org/10.1039/C8NJ02269K]
[16]
Wang, L.; Huang, B.; Su, Y.; Zhou, G.; Wang, K.; Luo, H.; Ye, D. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization. Chem. Eng. J., 2012, 192, 232-241.
[http://dx.doi.org/10.1016/j.cej.2012.04.012]
[17]
Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Wang, J.; Gu, T. Improvement of activity, selectivity and H2O&SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Appl. Surf. Sci., 2019, 466, 411-424.
[http://dx.doi.org/10.1016/j.apsusc.2018.09.227]
[18]
Yang, J.; Ren, S.; Zhang, T.; Su, Z.; Long, H.; Kong, M.; Yao, L. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO. Chem. Eng. J., 2020, 379, 122398.
[http://dx.doi.org/10.1016/j.cej.2019.122398]
[19]
Li, C.; Dong, X.; Zhang, Y.; Hu, J.; Liu, W.; Cui, X.; Hao, A. MnOx nanosheets anchored on a bio-derived porous carbon framework for high-performance asymmetric supercapacitors. Appl. Surf. Sci., 2020, 527, 146842.
[http://dx.doi.org/10.1016/j.apsusc.2020.146842]
[20]
Chen, G.; Wang, Z.; Lin, F.; Zhang, Z.; Yu, H.; Yan, B.; Wang, Z. Comparative investigation on catalytic ozonation of VOCs in different types over supported MnOx catalysts. J. Hazard. Mater., 2020, 391, 122218.
[http://dx.doi.org/10.1016/j.jhazmat.2020.122218] [PMID: 32044638]
[21]
Zhou, G.; Lan, H.; Wang, H.; Xie, H.; Zhang, G.; Zheng, X. Catalytic combustion of PVOCs on MnOx catalysts. J. Mol. Catal. Chem., 2014, 393, 279-288.
[http://dx.doi.org/10.1016/j.molcata.2014.06.028]
[22]
Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B, 1994, 3, 173-189.
[http://dx.doi.org/10.1016/0926-3373(93)E0034-9]
[23]
Kapteijn, F.; Vanlangeveld, A.D.; Moulijn, J.A.; Andreini, A.; Vuurman, M.A.; Turek, A.M.; Jehng, J-M.; Wachs, I.E. Alumina-supported manganese oxide catalysts: I. Characterization: effect of precursor and loading. J. Catal., 1994, 150, 94-104.
[http://dx.doi.org/10.1006/jcat.1994.1325]
[24]
Kapteijn, F.; Singoredjo, L.; Vandriel, M.; Andreini, A.; Moulijn, J.A.; Ramis, G.; Busca, G. Alumina-supported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric oxide. J. Catal., 1994, 150, 105-116.
[http://dx.doi.org/10.1006/jcat.1994.1326]
[25]
Liu, J.; Guo, R-T.; Li, M-Y.; Sun, P.; Liu, S-M.; Pan, W-G.; Liu, S-W.; Sun, X. Enhancement of the SO2 resistance of Mn/TiO2 SCR catalyst by Eu modification: A mechanism study. Fuel, 2018, 223, 385-393.
[http://dx.doi.org/10.1016/j.fuel.2018.03.062]
[26]
Gao, L.; Li, C.; Li, S.; Zhang, W.; Du, X.; Huang, L.; Zhu, Y.; Zhai, Y.; Zeng, G. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal. Chem. Eng. J., 2019, 371, 781-795.
[http://dx.doi.org/10.1016/j.cej.2019.04.104]
[27]
Zhao, C.; Zhou, X.; Xie, S.; Wei, H.; Chen, J.; Chen, X.; Chen, C. DFT study of electronic structure and properties of N, Si and Pd-doped carbon nanotubes. Ceram. Int., 2018, 44, 21027-21033.
[http://dx.doi.org/10.1016/j.ceramint.2018.08.138]
[28]
Soleymani, E.; Alinezhad, H.; Darvish Ganji, M.; Tajbakhsh, M. Enantioseparation performance of CNTs as chiral selectors for the separation of ibuprofen isomers: a dispersion corrected DFT study. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(33), 6920-6929.
[http://dx.doi.org/10.1039/C7TB00755H] [PMID: 32264341]
[29]
Chen, Y.; Yin, S.; Li, Y.; Cen, W.; Li, J.; Yin, H. Curvature dependence of single-walled carbon nanotubes for SO2 adsorption and oxidation. Appl. Surf. Sci., 2017, 404, 364-369.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.225]
[30]
Cai, S.; Hu, H.; Li, H.; Shi, L.; Zhang, D. Design of multi-shell Fe2O3@MnO(x)@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance. Nanoscale, 2016, 8(6), 3588-3598.
[http://dx.doi.org/10.1039/C5NR08701E] [PMID: 26805652]
[31]
Qu, Z.; Miao, L.; Wang, H.; Fu, Q. Highly dispersed Fe2O3 on carbon nanotubes for low-temperature selective catalytic reduction of NO with NH3. Chem. Commun. (Camb.), 2015, 51(5), 956-958.
[http://dx.doi.org/10.1039/C4CC06941B] [PMID: 25434305]
[32]
Tang, C.; Wang, H.; Dong, S.; Zhuang, J.; Qu, Z. Study of SO2 effect on selective catalytic reduction of NOx with NH3 over Fe/CNTs: The change of reaction route. Catal. Today, 2018, 307, 2-11.
[http://dx.doi.org/10.1016/j.cattod.2017.06.005]
[33]
Al-Rashed, A.A.; Kolsi, L.; Oztop, H.F.; Aydi, A.; Malekshah, E.H.; Abu-Hamdeh, N.; Borjini, M.N. 3D magneto-convective heat transfer in CNT-nanofluid filled cavity under partially active magnetic field. Physica E, 2018, 99, 294-303.
[http://dx.doi.org/10.1016/j.physe.2018.02.011]
[34]
Selimefendigil, F.; Öztop, H.F. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int. J. Heat Mass Transf., 2019, 129, 265-277.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.101]
[35]
Estellé, P.; Mahian, O.; Maré, T.; Öztop, H.F. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J. Therm. Anal. Calorim., 2017, 128, 1765-1770.
[http://dx.doi.org/10.1007/s10973-017-6102-1]
[36]
Long, R.Q.; Yang, R.T. Carbon nanotubes as a superior sorbent for nitrogen oxides. Ind. Eng. Chem. Res., 2001, 40, 4288-4291.
[http://dx.doi.org/10.1021/ie000976k]
[37]
Santucci, S.; Picozzi, S.; Di Gregorio, F.; Lozzi, L.; Cantalini, C.; Valentini, L.; Kenny, J.; Delley, B. NO2 and CO gas adsorption on carbon nanotubes: experiment and theory. J. Chem. Phys., 2003, 119, 10904-10910.
[http://dx.doi.org/10.1063/1.1619948]
[38]
Luo, J.Z.; Gao, L.Z.; Leung, Y.L.; Au, C.T. The decomposition of NO on CNTs and 1 wt% Rh/CNTs. Catal. Lett., 2000, 66, 91-97.
[http://dx.doi.org/10.1023/A:1019035220233]
[39]
Wang, S.J.; Zhu, W.X.; Liao, D.W.; Ng, C.F.; Au, C.T. In situ FTIR studies of NO reduction over carbon nanotubes (CNTs) and 1 wt.% Pd/CNTs. Catal. Today, 2004, 93-95, 711-714.
[http://dx.doi.org/10.1016/j.cattod.2004.06.101]
[40]
Chang, H.; Lee, J.D.; Lee, S.M.; Lee, Y.H. Adsorption of NH3 and NO2 molecules on carbon nanotubes. Appl. Phys. Lett., 2001, 79, 3863-3865.
[http://dx.doi.org/10.1063/1.1424069]
[41]
Su, Y.; Fan, B.; Wang, L.; Liu, Y.; Huang, B.; Fu, M.; Chen, L.; Ye, D. MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3. Catal. Today, 2013, 201, 115-121.
[http://dx.doi.org/10.1016/j.cattod.2012.04.063]
[42]
Pourkhalil, M.; Moghaddam, A.Z.; Rashidi, A.; Towfighi, J.; Mortazavi, Y. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3. Appl. Surf. Sci., 2013, 279, 250-259.
[http://dx.doi.org/10.1016/j.apsusc.2013.04.076]
[43]
Sing, K.; Everet, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem., 1985, 57, 603-619.
[http://dx.doi.org/10.1351/pac198557040603]
[44]
Wang, X.; Lee, J.S.; Tsouris, C.; DePaoli, D.W.; Dai, S. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. J. Mater. Chem., 2010, 20, 4602-4608.
[http://dx.doi.org/10.1039/b925957k]
[45]
Jiang, B.; Liu, Y.; Wu, Z. Low-temperature selective catalytic reduction of NO on MnO(x)/TiO(2) prepared by different methods. J. Hazard. Mater., 2009, 162(2-3), 1249-1254.
[http://dx.doi.org/10.1016/j.jhazmat.2008.06.013] [PMID: 18650000]
[46]
Liu, Z.; Yi, Y.; Zhang, S.; Zhu, T.; Zhu, J.; Wang, J. Selective catalytic reduction of NOx with NH3 over Mn-Ce mixed oxide catalyst at low temperatures. Catal. Today, 2013, 216, 76-81.
[http://dx.doi.org/10.1016/j.cattod.2013.06.009]
[47]
Li, X.; Li, Y. Selective catalytic reduction of NO with NH3 over Ce–Mo–Ox catalyst. Catal. Lett., 2014, 144, 165-171.
[http://dx.doi.org/10.1007/s10562-013-1103-6]
[48]
Wang, X.; Zheng, Y.; Xu, Z.; Wang, X.; Chen, X. Amorphous MnO2 supported on carbon nanotubes as a superior catalyst for low temperature NO reduction with NH3. RSC Advances, 2013, 3, 11539-11542.
[http://dx.doi.org/10.1039/c3ra41512k]
[49]
Zhang, L.; Zhang, D.; Zhang, J.; Cai, S.; Fang, C.; Huang, L.; Li, H.; Gao, R.; Shi, L. Design of meso-TiO2@MnO(x)-CeO(x)/CNTs with a core-shell structure as DeNO(x) catalysts: promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 5(20), 9821-9829.
[http://dx.doi.org/10.1039/c3nr03150k] [PMID: 23970126]
[50]
Zhang, D.; Zhang, L.; Shi, L.; Fang, C.; Li, H.; Gao, R.; Huang, L.; Zhang, J. In situ supported MnO(x)-CeO(x) on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale, 2013, 5(3), 1127-1136.
[http://dx.doi.org/10.1039/c2nr33006g] [PMID: 23282798]
[51]
Qi, G.; Yang, R.T.; Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B, 2004, 51, 93-106.
[http://dx.doi.org/10.1016/j.apcatb.2004.01.023]
[52]
Lauriol Garbey, P.; Postole, G.; Loridant, S.; Auroux, A.; Belliere Baca, V.; Rey, P.; Millet, J. Acid-base properties of niobium-zirconium mixed oxide catalysts for glycerol dehydration by calorimetric and catalytic investigation. Appl. Catal. B, 2011, 106, 94-102.
[http://dx.doi.org/10.1016/j.apcatb.2011.05.011]
[53]
Duffy, B.L.; Curryhyde, H.E.; Cant, N.W.; Nelson, P.F. 15N-labeling studies of the effect of water on the reduction of NO with NH3 over chromia SCR catalysts in the absence and presence of O2. J. Catal., 1995, 154, 107-114.
[http://dx.doi.org/10.1006/jcat.1995.1152]
[54]
Tang, X.; Hao, J.; Xu, W.; Li, J. Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal. Commun., 2007, 8, 329-334.
[http://dx.doi.org/10.1016/j.catcom.2006.06.025]
[55]
Chen, Z.; Yang, Q.; Li, H.; Li, X.; Wang, L.; Tsang, S.C. Cr-MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J. Catal., 2010, 276, 56-65.
[http://dx.doi.org/10.1016/j.jcat.2010.08.016]
[56]
Qi, G.; Yang, R.T. Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3. J. Phys. Chem. B, 2004, 108, 15738-15747.
[http://dx.doi.org/10.1021/jp048431h]
[57]
Zhang, X.; Wu, Q.; Diao, Q.; Wang, J.; Xiao, K.; Yang, B.; Wu, X. Performance study for NH3-SCR at low temperature based on different methods of Mnx/SEP catalyst. Chem. Eng. J., 2019, 370, 364-371.
[http://dx.doi.org/10.1016/j.cej.2019.03.065]
[58]
Wang, F.; Dai, H.; Deng, J.; Bai, G.; Ji, K.; Liu, Y. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol., 2012, 46(7), 4034-4041.
[http://dx.doi.org/10.1021/es204038j] [PMID: 22413904]
[59]
Pourkhalil, M.; Moghaddam, A.Z.; Rashidi, A.; Towfighi, J.; Jozani, K.J.; Bozorgzadeh, H. Synthesis of MnOx/oxidized-MWNTs for abatement of nitrogen oxides. Catal. Lett., 2013, 143, 184-192.
[http://dx.doi.org/10.1007/s10562-012-0938-6]
[60]
Fang, C.; Zhang, D.; Shi, L.; Gao, R.; Li, H.; Ye, L.; Zhang, J. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3. Catal. Sci. Technol., 2013, 3, 803-811.
[http://dx.doi.org/10.1039/C2CY20670F]
[61]
Holgado, J.; Munuera, G.; Espinós, J.; González-Elipe, A. XPS study of oxidation processes of CeOx defective layers. Appl. Surf. Sci., 2000, 158, 164-171.
[http://dx.doi.org/10.1016/S0169-4332(99)00597-8]
[62]
Larachi, F.; Pierre, J.; Adnot, A.; Bernis, A. Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl. Surf. Sci., 2002, 195, 236-250.
[http://dx.doi.org/10.1016/S0169-4332(02)00559-7]
[63]
Tian, W.; Yang, H.; Fan, X.; Zhang, X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. J. Hazard. Mater., 2011, 188(1-3), 105-109.
[http://dx.doi.org/10.1016/j.jhazmat.2011.01.078] [PMID: 21333446]
[64]
Wu, Z.; Jin, R.; Liu, Y.; Wang, H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature. Catal. Commun., 2008, 9, 2217-2220.
[http://dx.doi.org/10.1016/j.catcom.2008.05.001]
[65]
Bukowski, A.; Schill, L.; Nielsen, D.; Mossin, S.; Riisager, A.; Albert, J. NH3-SCR of NO with novel active, supported vanadium-containing Keggin-type heteropolyacid catalysts. React. Chem. Eng., 2020, 5, 935-948.
[http://dx.doi.org/10.1039/D0RE00033G]
[66]
Kang, L.; Han, L.; He, J.; Li, H.; Yan, T.; Chen, G.; Zhang, J.; Shi, L.; Zhang, D. Improved NOx reduction in the presence of SO2 by using Fe2O3-promoted halloysite-supported CeO2-WO3 catalysts. Environ. Sci. Technol., 2019, 53(2), 938-945.
[http://dx.doi.org/10.1021/acs.est.8b05637] [PMID: 30576117]
[67]
Han, L.; Gao, M.; Hasegawa, J.Y.; Li, S.; Shen, Y.; Li, H.; Shi, L.; Zhang, D. SO2-tolerant selective catalytic reduction of NOx over meso-TiO2@Fe2O3@Al2O3 metal-based monolith catalysts. Environ. Sci. Technol., 2019, 53(11), 6462-6473.
[http://dx.doi.org/10.1021/acs.est.9b00435] [PMID: 31063367]
[68]
Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO(x) with NH3. Chem. Commun. (Camb.), 2011, 47(28), 8046-8048.
[http://dx.doi.org/10.1039/c1cc12168e] [PMID: 21655619]
[69]
Park, T.S.; Jeong, S.K.; Hong, S.H.; Hong, S.C. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Ind. Eng. Chem. Res., 2001, 40, 4491-4495.
[http://dx.doi.org/10.1021/ie010218+]
[70]
Kang, M.; Park, E.D.; Kim, J.M.; Yie, J.E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl. Catal. A Gen., 2007, 327, 261-269.
[http://dx.doi.org/10.1016/j.apcata.2007.05.024]
[71]
Li, C.; Tang, X.; Yi, H.; Wang, L.; Cui, X.; Chu, C.; Li, J.; Zhang, R.; Yu, Q. Rational design of template-free MnOx-CeO2 hollow nanotube as de-NOx catalyst at low temperature. Appl. Surf. Sci., 2018, 428, 924-932.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.131]
[72]
Wang, X.; Kang, Q.; Li, D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts. Catal. Commun., 2008, 9, 2158-2162.
[http://dx.doi.org/10.1016/j.catcom.2008.04.021]
[73]
Li, H.; Zhang, D.; Maitarad, P.; Shi, L.; Gao, R.; Zhang, J.; Cao, W. In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chem. Commun. (Camb.), 2012, 48(86), 10645-10647.
[http://dx.doi.org/10.1039/c2cc34758j] [PMID: 23000843]
[74]
Ji, L.; Sreekanth, P.M.; Smirniotis, P.G.; Thiel, S.W.; Pinto, N.G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy Fuels, 2008, 22, 2299-2306.
[http://dx.doi.org/10.1021/ef700533q]
[75]
Zhang, Y.; Zheng, Y.; Wang, X.; Lu, X. Fabrication of Mn-CeOx/CNTs catalysts by redox method and their performance in low-temperature NO reduction with NH3. RSC Advances, 2015, 5, 28385-28388.
[http://dx.doi.org/10.1039/C5RA01129A]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy