Generic placeholder image

Current Chemical Biology

Editor-in-Chief

ISSN (Print): 2212-7968
ISSN (Online): 1872-3136

Review Article

A Recent Review on Drug Modification Using 1,2,3-triazole

Author(s): Adarsh Sahu*, Preeti Sahu and Ramkishore Agrawal

Volume 14, Issue 2, 2020

Page: [71 - 87] Pages: 17

DOI: 10.2174/2212796814999200807214519

Price: $65

Abstract

Motivated by evidence garnered from literature probing the use of triazoles in drug discovery and development, we reported the utilization of bioisosteric replacement and molecular hybridization in this review. Bio-isosteric replacement has played a significant role in modulating rapid and versatile strategy in synthesizing molecules with multifaceted medicinal properties. Molecular hybridization seeks to conjugate two molecular fragments with diverse applications under very mild reaction conditions. In this regard, 1,2,3-triazole is a well-known scaffold with widespread occurrence in medicinal compounds. It is characterized to have several bioactivities such as anti-microbial, anti-cancer, anti-viral, analgesic, anti- inflammatory effects. Furthermore, the structural features of 1,2,3-triazoles enable it to mimic different functional groups justifying its use as bio-isostere for the synthesis of new molecules of medicinal interest, which we have reported briefly.

Keywords: 1, 2, 3-triazole, molecular hybridization, bioisosteric replacement, amide bond, molecular modification, efficacy.

Graphical Abstract

[1]
Drews J, Ryser S. The role of innovation in drug development. Nat Biotechnol 1997; 15(13): 1318-9.
[http://dx.doi.org/10.1038/nbt1297-1318] [PMID: 9415870]
[2]
DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ 2003; 22(2): 151-85.
[http://dx.doi.org/10.1016/S0167-6296(02)00126-1] [PMID: 12606142]
[3]
Lasagna L. Problems of drug development. Science 1964; 145(3630): 362-7.
[http://dx.doi.org/10.1126/science.145.3630.362] [PMID: 14175104]
[4]
Bassett IV, Freedberg KA, Walensky RP. Two drugs or three? Balancing efficacy, toxicity, and resistance in postexposure prophylaxis for occupational exposure to HIV. Clin Infect Dis 2004; 39(3): 395-401.
[http://dx.doi.org/10.1086/422459] [PMID: 15307008]
[5]
Rijal S, Chappuis F, Singh R, et al. Treatment of visceral leishmaniasis in south-eastern Nepal: decreasing efficacy of sodium stibogluconate and need for a policy to limit further decline. Trans R Soc Trop Med Hyg 2003; 97(3): 350-4.
[http://dx.doi.org/10.1016/S0035-9203(03)90167-2] [PMID: 15228258]
[6]
Misra DK, Humphreys SR, Friedkin M, Goldin A, Crawford EJ. Increased dihydrofolate reductase activity as a possible basis of drug resistance in leukaemia. Nature 1961; 189: 39-42.
[http://dx.doi.org/10.1038/189039a0] [PMID: 13771292]
[7]
Nayyar A, Jain R. Recent advances in new structural classes of anti-tuberculosis agents. Curr Med Chem 2005; 12(16): 1873-86.
[http://dx.doi.org/10.2174/0929867054546654] [PMID: 16101507]
[8]
Yao H, Liu J, Xu S, Zhu Z, Xu J. The structural modification of natural products for novel drug discovery. Expert Opin Drug Discov 2017; 12(2): 121-40.
[http://dx.doi.org/10.1080/17460441.2016.1272757] [PMID: 28006993]
[9]
Tishler M. Molecular Modification in Modern Drug Research 1964.
[http://dx.doi.org/10.1021/ba-1964-0045.ch001]
[10]
Thornber CW. Isosterism and molecular modification in drug design. Chem Soc Rev 1979; 8: 563-80.
[http://dx.doi.org/10.1039/cs9790800563]
[11]
Fraga CAM. Drug hybridization strategies: before or after lead identification? Expert Opin Drug Discov 2009; 4(6): 605-9.
[http://dx.doi.org/10.1517/17460440902956636] [PMID: 23489153]
[12]
Friedman HL. Influence of isosteric replacements upon biological activity. NAS-NRS Publication 1951; 206: 295-358.
[13]
Gnewuch CT, Friedman HL. Pyridine isosteres of the -adrenergic antagonists, 2-(p-nitrophenyl)-1-isopropylamino-2-ethanol and 3-(p-nitrophenoxy)-1-isopropylamino-2-propanol. J Med Chem 1972; 15(12): 1321-4.
[http://dx.doi.org/10.1021/jm00282a028] [PMID: 4404591]
[14]
Lima LM, Barreiro EJ. Bioisosterism: a useful strategy for molecular modification and drug design. Curr Med Chem 2005; 12(1): 23-49.
[http://dx.doi.org/10.2174/0929867053363540] [PMID: 15638729]
[15]
de Sá Alves FR, Barreiro EJ, Fraga CA, Fraga M, Alberto C. From nature to drug discovery: the indole scaffold as a ‘privileged structure’. Mini Rev Med Chem 2009; 9(7): 782-93.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[16]
Brown N. Bioisosteres and scaffold hopping in medicinal chemistry. Mol Inform 2014; 33(6-7): 458-62.
[http://dx.doi.org/10.1002/minf.201400037] [PMID: 27485983]
[17]
Friedman HL. Influence of Isosteric Replacements upon Biological Activity. Natl Acad Sci 1951; 206: 295.
[18]
Stepan AF, Subramanyam C, Efremov IV, et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J Med Chem 2012; 55(7): 3414-24.
[http://dx.doi.org/10.1021/jm300094u] [PMID: 22420884]
[19]
Bhatia R, Sharma V, Shrivastava B, Singla RK. A review on bioisosterism: a rational approach for drug design and molecular modification. Pharmacologyonline 2011; 1: 272-9.
[20]
Kalyani G, Sharma D, Vaishnav Y, Deshmukh VS. A review on drug designing, methods, its applications and prospects. Int J Pharm Res Dev 2013; 5: 15-30.
[21]
Nicolotti O, Pisani L, Catto M, et al. Discovery of a Potent and Selective Hetero-Bivalent AChE Inhibitor via Bioisosteric Replacement. Mol Inform 2011; 30(2-3): 133-6.
[http://dx.doi.org/10.1002/minf.201000126] [PMID: 27466764]
[22]
Wermuth CG. Analog design. Burger's Medicinal Chemistry and Drug Discovery 2003; pp. 167-80.
[23]
Soskić V, Joksimović J. Bioisosteric approach in the design of new dopaminergic/serotonergic ligands. Curr Med Chem 1998; 5(6): 493-512.
[PMID: 9873112]
[24]
Desai V, Desai S, Gaonkar SN, Palyekar U, Joshi SD, Dixit SK. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation. Bioorg Med Chem Lett 2017; 27(10): 2174-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.059] [PMID: 28372908]
[25]
Hanfling B, Bolton P, Harley M, Carvalho GR. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non‐indigenous carp species (Carassius spp. and Cyprinuscarpio). Freshw Biol 2005; 50: 403-17.
[http://dx.doi.org/10.1111/j.1365-2427.2004.01330.x]
[26]
Struhl K, Stinchcomb DT, Scherer S, Davis RW. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 1979; 76(3): 1035-9.
[http://dx.doi.org/10.1073/pnas.76.3.1035] [PMID: 375221]
[27]
Taylor GR, Carter GI, Crow TJ, et al. Recovery and measurement of RNA in Alzheimer’s disease by molecular hybridisation. J Neurol Neurosurg Psychiatry 1987; 50(3): 356.
[http://dx.doi.org/10.1136/jnnp.50.3.356] [PMID: 2435853]
[28]
Fortin S, Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Discov 2013; 8(8): 1029-47.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[29]
Kodela R, Chattopadhyay M, Kashfi K. NOSH-Aspirin: A novel nitric oxide–hydrogen sulfide-releasing hybrid: A new class of anti-inflammatory pharmaceuticals. ACS Med Chem Lett 2012; 3(3): 257-62.
[http://dx.doi.org/10.1021/ml300002m] [PMID: 22916316]
[30]
Mao F, Chen J, Zhou Q, Luo Z, Huang L, Li X. Novel tacrine-ebselen hybrids with improved cholinesterase inhibitory, hydrogen peroxide and peroxynitrite scavenging activity. Bioorg Med Chem Lett 2013; 23(24): 6737-42.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.034] [PMID: 24220172]
[31]
Muregi FW, Ishih A. Next‐generation antimalarial drugs: hybrid molecules as a new strategy in drug design. Drug Dev Res 2010; 71(1): 20-32.
[PMID: 21399701]
[32]
Thirumurugan P, Matosiuk D, Jozwiak K. Click chemistry for drug development and diverse chemical-biology applications. Chem Rev 2013; 113(7): 4905-79.
[http://dx.doi.org/10.1021/cr200409f] [PMID: 23531040]
[33]
Lo WK, Huff GS, Cubanski JR, et al. Comparison of inverse and regular 2-pyridyl-1,2,3-triazole “click” complexes: structures, stability, electrochemical, and photophysical properties. Inorg Chem 2015; 54(4): 1572-87.
[http://dx.doi.org/10.1021/ic502557w] [PMID: 25615621]
[34]
Aher NG, Pore VS, Mishra NN, et al. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg Med Chem Lett 2009; 19(3): 759-63.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[35]
Chen M, Lu S, Yuan G, Yang S, Du X. Synthesis and antibacterial activity of some heterocyclic β-enamino ester derivatives with 1,2,3-triazole. Heterocycl Commun 2000; 6: 421-6.
[http://dx.doi.org/10.1515/HC.2000.6.5.421]
[36]
Buckle DR, Rockell CJ, Smith H, Spicer BA. Studies on 1,2,3-triazoles. 10. Synthesis and antiallergic properties of 9-oxo-1H,9H-benzothiopyrano[2,3-d]-1,2,3-triazoles and their S-oxides. J Med Chem 1984; 27(2): 223-7.
[http://dx.doi.org/10.1021/jm00368a021] [PMID: 6694170]
[37]
Lazrek HB, Taourirte M, Oulih T, et al. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids 2001; 20(12): 1949-60.
[http://dx.doi.org/10.1081/NCN-100108325] [PMID: 11794800]
[38]
Costa MS, Boechat N, Rangel EA, et al. Synthesis, tuberculosis inhibitory activity, and SAR study of N-substituted-phenyl-1,2,3-triazole derivatives. Bioorg Med Chem 2006; 14(24): 8644-53.
[http://dx.doi.org/10.1016/j.bmc.2006.08.019] [PMID: 16949290]
[39]
Shafi S, Alam MM, Mulakayala N, et al. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur J Med Chem 2012; 49: 324-33.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[40]
Ferreira VF, Da Rocha DR, Da Silva FC, Ferreira PG, Boechat NA, Magalhães JL. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4-and 4H-1,2,4-triazole derivatives: a patent review (2008-2011). Expert Opin Ther Pat 2013; 23: 319-31.
[41]
Graham DW. Anticoccidial 1,2,3-triazole compounds Merck and Co Inc U.S. Patent 4, 752, 611, 1988.
[42]
Pachter IJ, Nicholas DL. Methods for reducing pain, reducing fever and alleviating inflammatory syndromes with heteroaromatic pyrrol-3-yl ketones U.S. Patent 3, 551, 571, 1970.
[43]
Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev 1996; 96(8): 3147-76.
[http://dx.doi.org/10.1021/cr950066q] [PMID: 11848856]
[44]
Bonandi E, Christodoulou MS, Fumagalli G, Perdicchia D, Rastelli G, Passarella D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov Today 2017; 22(10): 1572-81.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[45]
Lauria A, Delisi R, Mingoia F, et al. 1,2,3‐Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3‐dipolar cycloadditions. Eur J Org Chem 2014; 16: 3289-306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[46]
Agalave SG, Maujan SR, Pore VS. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem Asian J 2011; 6(10): 2696-718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[47]
Zhou CH, Wang Y. Recent researches in triazole compounds as medicinal drugs. Curr Med Chem 2012; 19(2): 239-80.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[48]
Gagne AP, Rochon K, Roy M, Albert PJ, Guerin B, Gendronb L. Dorya. Y L Bioorg Med Chem Lett 2013; 23: 5267-9.
[49]
Phillips OA, Udo EE, Ali AA, Al-Hassawi N. Synthesis and antibacterial activity of 5-substituted oxazolidinones. Bioorg Med Chem 2003; 11(1): 35-41.
[http://dx.doi.org/10.1016/S0968-0896(02)00423-6] [PMID: 12467705]
[50]
Monceaux CJ, Hirata-Fukae C, Lam PCH, Totrov MM, Matsuoka Y, Carlier PR. Triazole-linked reduced amide isosteres: an approach for the fragment-based drug discovery of anti-Alzheimer’s BACE1 inhibitors. Bioorg Med Chem Lett 2011; 21(13): 3992-6.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.007] [PMID: 21621412]
[51]
Brik A, Alexandratos J, Lin YC, et al. 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. ChemBioChem 2005; 6(7): 1167-9.
[http://dx.doi.org/10.1002/cbic.200500101] [PMID: 15934050]
[52]
Bock VD, Speijer D, Hiemstra H, van Maarseveen JH. 1,2,3-Triazoles as peptide bond isosteres: synthesis and biological evaluation of cyclotetrapeptide mimics. Org Biomol Chem 2007; 5(6): 971-5.
[http://dx.doi.org/10.1039/b616751a] [PMID: 17340013]
[53]
Lee T, Cho M, Ko SY, et al. Synthesis and evaluation of 1,2,3-triazole containing analogues of the immunostimulant α-GalCer. J Med Chem 2007; 50(3): 585-9.
[http://dx.doi.org/10.1021/jm061243q] [PMID: 17266209]
[54]
Pirali T, Pagliai F, Mercurio C, et al. Triazole-modified histone deacetylase inhibitors as a rapid route to drug discovery. J Comb Chem 2008; 10(5): 624-7.
[http://dx.doi.org/10.1021/cc800061c] [PMID: 18598089]
[55]
Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N. “Clicktophycin-52”: a bioactive cryptophycin-52 triazole analogue. Org Lett 2010; 12(5): 1064-7.
[http://dx.doi.org/10.1021/ol1000473] [PMID: 20131817]
[56]
Li YT, Wang JH, Pan CW, et al. Syntheses and biological evaluation of 1,2,3-triazole and 1,3,4-oxadiazole derivatives of imatinib. Bioorg Med Chem Lett 2016; 26(5): 1419-27.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.068] [PMID: 26850004]
[57]
Su N, Wang ZJ, Wang LZ, et al. Synthesis and biological evaluation of isosteric analogs of mandipropamid for the control of oomycete pathogens. Chem Biol Drug Des 2011; 78(1): 101-11.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01093.x] [PMID: 21457472]
[58]
Arioli F, Borrelli S, Colombo F, et al. N-[2-Methyl-5-(triazol-1-yl)phenyl]pyrimidin-2-amine as a scaffold for the synthesis of inhibitors of Bcr-Abl. ChemMedChem 2011; 6(11): 2009-18.
[http://dx.doi.org/10.1002/cmdc.201100304] [PMID: 21990039]
[59]
Valverde IE, Bauman A, Kluba CA, Vomstein S, Walter MA, Mindt TL. 1,2,3-Triazoles as amide bond mimics: triazole scan yields protease-resistant peptidomimetics for tumor targeting. Angew Chem Int Ed Engl 2013; 52(34): 8957-60.
[http://dx.doi.org/10.1002/anie.201303108] [PMID: 23832715]
[60]
Proteau-Gagné A, Rochon K, Roy M, et al. Systematic replacement of amides by 1,4-disubstituted[1,2,3]triazoles in Leu-enkephalin and the impact on the delta opioid receptor activity. Bioorg Med Chem Lett 2013; 23(19): 5267-9.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.020] [PMID: 23988352]
[61]
Kuznetsova NR, Svirshchevskaya EV, Sitnikov NS, et al. Lipophilic prodrugs of a triazole-containing colchicine analogue in liposomes: biological effects on human tumor cells. Bioorg Khim 2013; 39(5): 609-18.
[http://dx.doi.org/10.7868/S0132342313050102] [PMID: 25702420]
[62]
Christodoulou MS, Mori M, Pantano R, et al. Click reaction as a tool to combine pharmacophores: the case of vismodegib. ChemPlusChem 2015; 80(6): 938-43.
[http://dx.doi.org/10.1002/cplu.201402435] [PMID: 31973263]
[63]
Mohammed I, Kummetha IR, Singh G, et al. 1,2,3-triazoles as amide bioisosteres: discovery of a new class of potent HIV-1 Vif antagonists. J Med Chem 2016; 59(16): 7677-82.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00247] [PMID: 27509004]
[64]
Gabba A, Robakiewicz S, Taciak B, et al. Synthesis and biological evaluation of migrastatinmacrotriazoles. Eur J Org Chem 2017; 1: 60-9.
[http://dx.doi.org/10.1002/ejoc.201600988]
[65]
Doiron JE, Le CA, Ody BK, et al. Evaluation of 1,2,3-Triazoles as Amide Bioisosteres In Cystic Fibrosis Transmembrane Conductance Regulator Modulators VX-770 and VX-809. Chemistry 2019; 25(14): 3662-74.
[http://dx.doi.org/10.1002/chem.201805919] [PMID: 30650214]
[66]
Sahu A, Das D, Sahu P, et al. Bioisosteric replacement of amide group with 1, 2, 3-triazoles in Acetaminophen (AP) addresses ROS mediated hepatotoxic insult in Wistar albino rats. Chem Res Toxicol 2019.
[67]
Sahu A, Das D, Agrawal RK, Gajbhiye A. Bio-isosteric replacement of amide group with 1,2,3-triazole in phenacetin improves the toxicology and efficacy of phenacetin-triazole conjugates (PhTCs). Life Sci 2019; 228: 176-88.
[http://dx.doi.org/10.1016/j.lfs.2019.05.004] [PMID: 31059688]
[68]
Sahu A, Sahu P, Agrawal RK. Synthesis and systemic toxicity assessment of penicillin-triazole scaffold with antimicrobial potency. ACS Omega 2019; 4(17): 17230-5.
[http://dx.doi.org/10.1021/acsomega.9b01724] [PMID: 31656896]
[69]
Bahia SBB, Reis WJ, Jardim GA, et al. Molecular hybridization as a powerful tool towards multitargetquinoidal systems: synthesis, trypanocidal and antitumor activities of naphthoquinone-based 5-iodo-1, 4-disubstituted-1,4-and 1,5-disubstituted-1, 2, 3-triazoles. MedChemComm 2016; 7: 1555-63.
[http://dx.doi.org/10.1039/C6MD00216A]
[70]
Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem 2019; 27(16): 3511-31.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[71]
Boechat N, Ferreira VF, Ferreira SB, et al. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 2011; 54(17): 5988-99.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[72]
Patpi SR, Pulipati L, Yogeeswari P, et al. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J Med Chem 2012; 55(8): 3911-22.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[73]
Kumar K, Sagar S, Esau L, Kaur M, Kumar V. Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation. Eur J Med Chem 2012; 58: 153-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.008] [PMID: 23124212]
[74]
Duan YC, Ma YC, Zhang E, et al. Design and synthesis of novel 1,2,3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem 2013; 62: 11-9.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.046] [PMID: 23353743]
[75]
Singh J, Sharma S, Saxena AK, Nepali K, Bedi PMS. Synthesis of 1,2,3-triazole tethered bifunctional hybrids by click chemistry and their cytotoxic studies. Med Chem Res 2013; 22: 3160-9.
[http://dx.doi.org/10.1007/s00044-012-0312-7]
[76]
Raj R, Singh P, Haberkern NT, et al. Synthesis of 1H-b-lactameisatin bi-functional hybrids and preliminary analysis of in vitro activity against the protozoal parasite Trichomonas vaginalis. Eur J Med Chem 2013; 63: 7-906.
[77]
Kumar K, Pradines B, Madamet M, Amalvict R, Kumar V. 1H-1,2,3-triazole tethered mono- and bis-ferrocenylchalcone-β-lactam conjugates: synthesis and antimalarial evaluation. Eur J Med Chem 2014; 86: 113-21.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.053] [PMID: 25147153]
[78]
Ye XW, Zheng YC, Duan YC, et al. Synthesis and biological evaluation of coumarin-1,2,3-triazole–dithiocarbamate hybrids as potent LSD1 inhibitors. MedChemComm 2014; 5: 650-4.
[http://dx.doi.org/10.1039/C4MD00031E]
[79]
Boechat N, Ferreira Mde L, Pinheiro LC, et al. New compounds hybrids 1h-1,2,3-triazole-quinoline against Plasmodium falciparum. Chem Biol Drug Des 2014; 84(3): 325-32.
[http://dx.doi.org/10.1111/cbdd.12321] [PMID: 24803084]
[80]
Xu JM, Zhang E, Shi XJ, et al. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur J Med Chem 2014; 80: 593-604.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.022] [PMID: 24835817]
[81]
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. One-pot synthesis of new triazole--Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg Med Chem Lett 2015; 25(19): 4169-73.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.009] [PMID: 26298500]
[82]
Kant R, Kumar D, Agarwal D, et al. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur J Med Chem 2016; 113: 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[83]
Lal K, Yadav P, Kumar A, Kumar A, Paul AK. Design, synthesis, characterization, antimicrobial evaluation and molecular modeling studies of some dehydroacetic acid-chalcone-1,2,3-triazole hybrids. Bioorg Chem 2018; 77: 236-44.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.016] [PMID: 29421698]
[84]
Addla D, Jallapally A, Gurram D, Yogeeswari P, Sriram D, Kantevari S. Design, synthesis and evaluation of 1,2,3-triazole-adamantylacetamide hybrids as potent inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2014; 24(8): 1974-9.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.061] [PMID: 24679703]
[85]
Thatipamula RK, Narsimha S, Battula K, Chary VR, Mamidala E, Reddy NV. Synthesis, anticancer and antibacterial evaluation of novel (isopropylidene) uridine-[1, 2, 3] triazole hybrids. J Saudi Chem Soc 2017; 21: 795-802.
[http://dx.doi.org/10.1016/j.jscs.2015.12.001]
[86]
Akrami H, Mirjalili BF, Khoobi M, et al. 9H-Carbazole Derivatives Containing the N-Benzyl-1,2,3-triazole Moiety as New Acetylcholinesterase Inhibitors. Arch Pharm (Weinheim) 2015; 348(5): 366-74.
[http://dx.doi.org/10.1002/ardp.201400365] [PMID: 25820388]
[87]
Zheng YC, Wang LZ, Zhao LJ, et al. 1, 2, 3-triazole-dithiocarbamate hybrids, a group of novel cell active SIRT1 inhibitors. Cell Physiol Biochem 2016; 38(1): 185-93.
[http://dx.doi.org/10.1159/000438620] [PMID: 26784898]
[88]
Ashok D, Gundu S, Aamate VK, Devulapally MG, Bathini R, Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J Mol Struct 2018; 1157: 312-21.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[89]
Yan X, Lv Z, Wen J, Zhao S, Xu Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur J Med Chem 2018; 143: 899-904.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.090] [PMID: 29227930]
[90]
Yadav P, Lal K, Kumar L, et al. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur J Med Chem 2018; 155: 263-74.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.055] [PMID: 29890388]
[91]
Tehrani MB, Emani P, Rezaei Z, et al. Phthalimide-1, 2, 3-triazole hybrid compounds as tyrosinase inhibitors; synthesis, biological evaluation and molecular docking analysis. J Mol Struct 2019; 1176: 86-93.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.033]
[92]
Mishra S, Kaur M, Chander S, et al. Rational modification of a lead molecule: Improving the antifungal activity of indole - triazole - amino acid conjugates. Eur J Med Chem 2018; 155: 658-69.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.039] [PMID: 29936353]
[93]
Sahu A, Agrawal RK, Pandey R. Synthesis and systemic toxicity assessment of quinine-triazole scaffold with antiprotozoal potency. Bioorg Chem 2019.88102939
[http://dx.doi.org/10.1016/j.bioorg.2019.102939] [PMID: 31028993]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy