Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

脑磁共振成像的顶叶萎缩评分是可靠的视觉量表

卷 17, 期 6, 2020

页: [534 - 539] 页: 6

弟呕挨: 10.2174/1567205017666200807193957

open access plus

conference banner
摘要

目的:该研究的目的是评估我们新的视觉量表的可靠性,以在不同专业人员的脑磁共振成像(MRI)上快速评估顶叶的萎缩。良好的协议将证明其可用于在临床环境中鉴别诊断神经退行性痴呆,特别是早发的阿尔茨海默氏病(AD)。 方法:视觉量表称为顶叶萎缩评分(PAS)是基于T1上三个顶叶结构(后扣带,前突,顶突,顶回)的从0(无萎缩)到2(突出性萎缩)的半定量评估。整个顶叶的MRI加权冠状切片。我们使用kappa统计数据评估了使用PAS独立评分顶壁萎缩的四个评估者之间的评估者内部和评估者之间的一致性。评分者1是神经解剖学家(JM),评分者2是MRI采集和分析专家(II),评分者3是医学生(OP),评分者4是神经科医生(DS),他们在3到3天内两次评估了顶叶萎缩。每个月的时间来评估评估者内部协议。根据神经科医生的评分,所有评估者在25名认知正常的人的大脑MRI上评估了相同的50个顶叶,并且在所有萎缩程度中分布均匀,从无到显着。 结果:评分者内部一致性几乎完美,kappa值为0.90。评分者之间的共识为中度至实质性,kappa值介于0.43-0.86之间。 结论:顶叶萎缩评分是不同专业评估者中可靠的视觉量表,可在1-2分钟内通过脑MRI快速评估顶叶。我们认为它可以作为痴呆,尤其是早发性AD的鉴别诊断的辅助手段。

关键词: 顶叶萎缩评分,可靠性,视觉范围,脑磁共振成像,阿尔茨海默氏病,痴呆。

[1]
LoBue C, Denney D, Hynan LS, et al. Self-reported traumatic brain injury and mild cognitive impairment: Increased risk and earlier age of diagnosis. J Alzheimers Dis 2016; 51(3): 727-36.
[http://dx.doi.org/10.3233/JAD-150895] [PMID: 26890760]
[2]
LoBue C, Wadsworth H, Wilmoth K, et al. Traumatic brain injury history is associated with earlier age of onset of Alzheimer disease. Clin Neuropsychol 2017; 31(1): 85-98.
[http://dx.doi.org/10.1080/13854046.2016.1257069] [PMID: 27855547]
[3]
LoBue C, Wilmoth K, Cullum CM, et al. Traumatic brain injury history is associated with earlier age of onset of frontotemporal dementia. J Neurol Neurosurg Psychiatry 2016; 87(8): 817-20.
[http://dx.doi.org/10.1136/jnnp-2015-311438] [PMID: 26359171]
[4]
Lye TC, Shores EA. Traumatic brain injury as a risk factor for Alzheimer’s disease: A review. Neuropsychol Rev 2000; 10(2): 115-29.
[http://dx.doi.org/10.1023/A:1009068804787] [PMID: 10937919]
[5]
Roberts GW, Gentleman SM, Lynch A, Graham DI. Beta A4 amyloid protein deposition in brain after head trauma. Lancet 1991; 338(8780): 1422-3.
[http://dx.doi.org/10.1016/0140-6736(91)92724-G] [PMID: 1683421]
[6]
Sivanandam TM, Thakur MK. Traumatic brain injury: A risk factor for Alzheimer’s disease. Neurosci Biobehav Rev 2012; 36(5): 1376-81.
[http://dx.doi.org/10.1016/j.neubiorev.2012.02.013] [PMID: 22390915]
[7]
Chen XH, Siman R, Iwata A, Meaney DF, Trojanowski JQ, Smith DH. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol 2004; 165(2): 357-71.
[http://dx.doi.org/10.1016/S0002-9440(10)63303-2] [PMID: 15277212]
[8]
Hussain I, Powell D, Howlett DR, et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 1999; 14(6): 419-27.
[http://dx.doi.org/10.1006/mcne.1999.0811] [PMID: 10656250]
[9]
Johnson VE, Stewart W, Smith DH. Axonal pathology in traumatic brain injury. Exp Neurol 2013; 246: 35-43.
[http://dx.doi.org/10.1016/j.expneurol.2012.01.013] [PMID: 22285252]
[10]
Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-β pathology: A link to Alzheimer’s disease? Nat Rev Neurosci 2010; 11(5): 361-70.
[http://dx.doi.org/10.1038/nrn2808] [PMID: 20216546]
[11]
Uryu K, Chen XH, Martinez D, et al. Multiple proteins implicated in neurodegenerative diseases accumulate in axons after brain trauma in humans. Exp Neurol 2007; 208(2): 185-92.
[http://dx.doi.org/10.1016/j.expneurol.2007.06.018] [PMID: 17826768]
[12]
Smith DH, Chen XH, Iwata A, Graham DI. Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg 2003; 98(5): 1072-7.
[http://dx.doi.org/10.3171/jns.2003.98.5.1072] [PMID: 12744368]
[13]
Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromolecular Med 2003; 4(1-2): 59-72.
[http://dx.doi.org/10.1385/NMM:4:1-2:59] [PMID: 14528053]
[14]
Smith DH, Chen XH, Nonaka M, et al. Accumulation of amyloid beta and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J Neuropathol Exp Neurol 1999; 58(9): 982-92.
[http://dx.doi.org/10.1097/00005072-199909000-00008] [PMID: 10499440]
[15]
Yuan Q, Su H, Zhang Y, et al. Amyloid pathology in spinal cord of the transgenic Alzheimer’s disease mice is correlated to the corticospinal tract pathway. J Alzheimers Dis 2013; 35(4): 675-85.
[http://dx.doi.org/10.3233/JAD-122323] [PMID: 23478304]
[16]
Janus C, Westaway D. Transgenic mouse models of Alzheimer’s disease. Physiol Behav 2001; 73(5): 873-86.
[http://dx.doi.org/10.1016/S0031-9384(01)00524-8] [PMID: 11566220]
[17]
Yuan Q, Su H, Zhang Y, et al. Existence of different types of senile plaques between brain and spinal cord of TgCRND8 mice. Neurochem Int 2013; 62(3): 211-20.
[http://dx.doi.org/10.1016/j.neuint.2013.01.006] [PMID: 23333593]
[18]
Aho L, Pikkarainen M, Hiltunen M, Leinonen V, Alafuzoff I. Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis 2010; 20(4): 1015-28.
[http://dx.doi.org/10.3233/JAD-2010-091681] [PMID: 20413866]
[19]
Joshi G, Gan KA, Johnson DA, Johnson JA. Increased Alzheimer’s disease-like pathology in the APP/PS1ΔE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 2015; 36(2): 664-79.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.09.004] [PMID: 25316599]
[20]
Fleminger S, Oliver DL, Lovestone S, Rabe-Hesketh S, Giora A. Head injury as a risk factor for Alzheimer’s disease: The evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry 2003; 74(7): 857-62.
[http://dx.doi.org/10.1136/jnnp.74.7.857] [PMID: 12810767]
[21]
Magnoni S, Brody DL. New perspectives on amyloid-beta dynamics after acute brain injury: moving between experimental approaches and studies in the human brain. Arch Neurol 2010; 67(9): 1068-73.
[http://dx.doi.org/10.1001/archneurol.2010.214] [PMID: 20837849]
[22]
Ikonomovic MD, Uryu K, Abrahamson EE, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2004; 190(1): 192-203.
[http://dx.doi.org/10.1016/j.expneurol.2004.06.011] [PMID: 15473992]
[23]
Marklund N, Blennow K, Zetterberg H, Ronne-Engström E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg 2009; 110(6): 1227-37.
[http://dx.doi.org/10.3171/2008.9.JNS08584] [PMID: 19216653]
[24]
Bird SM, Sohrabi HR, Sutton TA, et al. Cerebral amyloid-β accumulation and deposition following traumatic brain injury--A narrative review and meta-analysis of animal studies. Neurosci Biobehav Rev 2016; 64: 215-28.
[http://dx.doi.org/10.1016/j.neubiorev.2016.01.004] [PMID: 26899257]
[25]
Hannila SS, Siddiq MM, Filbin MT. Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord. Int Rev Neurobiol 2007; 77: 57-105.
[http://dx.doi.org/10.1016/S0074-7742(06)77003-9] [PMID: 17178472]
[26]
Ward RE, Huang W, Kostusiak M, Pallier PN, Michael-Titus AT, Priestley JV. A characterization of white matter pathology following spinal cord compression injury in the rat. Neuroscience 2014; 260: 227-39.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.024] [PMID: 24361176]
[27]
Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW. Beta-amyloid precursor protein (beta APP) as a marker for axonal injury after head injury. Neurosci Lett 1993; 160(2): 139-44.
[http://dx.doi.org/10.1016/0304-3940(93)90398-5] [PMID: 8247344]
[28]
Ropper AE, Zeng X, Anderson JE, et al. An efficient device to experimentally model compression injury of mammalian spinal cord. Exp Neurol 2015; 271: 515-23.
[http://dx.doi.org/10.1016/j.expneurol.2015.07.012] [PMID: 26210871]
[29]
Nakagawa Y, Nakamura M, McIntosh TK, et al. Traumatic brain injury in young, amyloid-beta peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Abeta deposition during aging. J Comp Neurol 1999; 411(3): 390-8.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990830)411:3<390: AID-CNE3>3.0.CO;2-#] [PMID: 10413774]
[30]
Nakagawa Y, Reed L, Nakamura M, et al. Brain trauma in aged transgenic mice induces regression of established abeta deposits. Exp Neurol 2000; 163(1): 244-52.
[http://dx.doi.org/10.1006/exnr.2000.7375] [PMID: 10785464]
[31]
Rezai-Zadeh K, Gate D, Gowing G, Town T. How to get from here to there: Macrophage recruitment in Alzheimer’s disease. Curr Alzheimer Res 2011; 8(2): 156-63.
[http://dx.doi.org/10.2174/156720511795256017] [PMID: 21345166]
[32]
Cameron B, Landreth GE. Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis 2010; 37(3): 503-9.
[http://dx.doi.org/10.1016/j.nbd.2009.10.006] [PMID: 19833208]

© 2024 Bentham Science Publishers | Privacy Policy