Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Conductivity, Dielectric and Modulus Study of NH4PF6 Based Zwitterionic Polymer Electrolyte

Author(s): Manindra Kumar* and Neelabh Srivastava

Volume 14, Issue 1, 2021

Published on: 07 August, 2020

Page: [71 - 79] Pages: 9

DOI: 10.2174/2405520413999200807151653

Price: $65

Abstract

Background and Objective: Zwitterionic polymer electrolyte has been successfully synthesized using NH4PF6 salt. The conductivity of the synthesized polymer membrane is found to be of the order of 10-3Scm-1. Dielectric and Modulus properties of the polymer electrolyte have also been studied which shows well relaxation peaks with both temperature and salt concentrations.

Results: Debye type relaxation behavior has observed from the electric modulus.

Conclusion: Frequency dependent conductivity data (fitted with Jonscher’s power law equation) confirmed the presence of NCL/SLPL type behavior in the studied frequency range.

Keywords: Polymer electrolyte, conductivity, dielectric, modulus, gel polymer electrolytes, semicircle.

« Previous
Graphical Abstract

[1]
Sulaiman M, Rahman AA, Mohamed NS. Structural, Thermal and Conductivity Studies of Magnesium Nitrate – Alumina Composite Solid Electrolytes Prepared via Sol-Gel Method. Int J Electrochem Sci 2013; 8: 6647-55.
[2]
Xu JJ, Ye H, Huang J. Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem Commun 2005; 7: 1309-17.
[http://dx.doi.org/10.1016/j.elecom.2005.09.011]
[3]
Yamagata M, Soeda K, Ikebe S, Yamazaki S, Ishikawa M. Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors. Electrochim Acta 2013; 100: 275-80.
[http://dx.doi.org/10.1016/j.electacta.2012.05.073]
[4]
Ohno H, Ed. Electrochemical aspects of ionic liquids. Hoboken: JohnWiley & Sons 2005.
[http://dx.doi.org/10.1002/0471762512]
[5]
Manindra K, Neelam S. Conductivity and dielectric investigation of NH4I-doped synthesized polymer electrolyte system. Ionics 2015; 21: 1301-10.
[http://dx.doi.org/10.1007/s11581-014-1294-x]
[6]
Lunkenheimer P, Loidl A. Response of disordered matter to electromagnetic fields. Phys Rev Lett 2003; 91(20)207601
[http://dx.doi.org/10.1103/PhysRevLett.91.207601 PMID: 14683394]
[7]
Manindra K, Tuhina T, Neelam S. Electrical transport behaviour of bio-polymer electrolyte system: Potato starch + ammonium iodide. Carbohydr Polym 2012; 88: 54-60.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.059]
[8]
Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T. ac impedance, DSC and FT-IR investigations on (x)PVAc–(1 − x) PVdF blends with LiClO4. Mater Chem Phys 2006; 98: 55-61.
[http://dx.doi.org/10.1016/j.matchemphys.2005.08.063]
[9]
Neelam S, Manindra K. Ion dynamics and relaxation behavior of NaPF6-doped polymer electrolyte systems. J Solid State Electrochem 2016; 20: 1421-8.
[http://dx.doi.org/10.1007/s10008-016-3147-1]
[10]
Kyritsis A, Pissis P, Grammatikakis J. Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J Polym Sci, B, Polym Phys 1995; 33: 1737-50.
[http://dx.doi.org/10.1002/polb.1995.090331205]
[11]
Ghosh S, Ghosh A. Relaxation dynamics of charge carriers in mixed alkali fluoride glasses. J Chem Phys 2003; 119: 9106.
[http://dx.doi.org/10.1063/1.1613638]
[12]
Almond DP, West AR. Anomalous conductivity prefactors in fast ion conductors. Nature 1983; 306: 456-7.
[http://dx.doi.org/10.1038/306456a0]
[13]
Karmakar A, Ghosh A. Dielectric permittivity and electric modulus of polyethylene oxide (PEO)-LiClO4 composite electrolytes. Curr Appl Phys 2012; 12: 539-43.
[http://dx.doi.org/10.1016/j.cap.2011.08.017]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy