Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

General Research Article

Scaling up the Enzymatic Hydrolysis of Bovine Plasma Protein to Produce an Antioxidant from a Biological Source

Author(s): Nathalia A. Gómez Grimaldos* and José E.M. Zapata

Volume 22, Issue 1, 2021

Published on: 07 August, 2020

Page: [150 - 158] Pages: 9

DOI: 10.2174/1389201021666200807104636

Price: $65

Abstract

Background: In modern society, there is a tendency to consume products with natural origins and minimum chemical additives. This has encouraged the replacement of synthetic antioxidants for the ones obtained from natural sources, such as the antioxidants acquired from enzymatic protein hydrolysates.

Objective: In this study, the process of enzymatic hydrolysis of proteins from bovine plasma, which produces hydrolysates with an Antioxidant Capacity (AC), was scaled up from 1 to 5 L.

Methods: An experimental design was developed in 1 L to evaluate the effect of the Substrate concentration (So) on the time needed to reach a Degree of Hydrolysis (DH) of 20% as well as the AC.

Results: The best conditions in the 1 L reactor controlled by a Titrando 842 were transferred to 5L in a BioFlo310 reactor. These conditions were achieved at a ratio of 80g/L of the substrate and 0.89 AU of Alcalase 2.4L/g of the substrate in order to obtain a level of 16.36 ± 0.21min of the 20% of DH and antioxidant capacity of 58.98 ± 1.80%.

Conclusion: The results showed that DH depends significantly on So, while the antioxidant capacity only depends on the DH. Additionally, the dimensional analysis using Re as a scaling criterion allowed us to obtain the same results in the model (1 L) and the prototype (5 L).

Keywords: Natural antioxidants, antioxidant capacity, protein hydrolysates, scale-up, dimensional analysis, enzymatic hydrolysis.

Graphical Abstract

[1]
Burdock, G.A.; Carabin, I.G.; Griffiths, J.C. The importance of GRAS to the functional food and nutraceutical industries. Toxicology, 2006, 221(1), 17-27.
[http://dx.doi.org/10.1016/j.tox.2006.01.012] [PMID: 16483705]
[2]
Pellegrini, A. Antimicrobial peptides from food proteins. Curr. Pharm. Des., 2003, 9(16), 1225-1238.
[http://dx.doi.org/10.2174/1381612033454865] [PMID: 12769733]
[3]
Zhu, K.X.; Wang, X.P.; Guo, X.N. Isolation and charaterization of zinc-chelating peptides from wheat germ protein hydrolysates. J. Funct. Foods, 2015, 12, 23-32.
[http://dx.doi.org/10.1016/j.jff.2014.10.030]
[4]
Wu, W.; Li, B.; Hou, H.; Zhang, H.; Zhao, X. Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. J. Funct. Foods, 2017, 35, 418-427.
[http://dx.doi.org/10.1016/j.jff.2017.06.013]
[5]
Wanasundara, J.; Pegg, R.; Shand, P. Value added applications for plasma proteins from the beef processing industry., 2003, 10-15.
[6]
Witono, Y.; Taruna, I.; Windrati, W.; Azkiyah, L.; Sari, T. Wader (Rasbora jacobsoni) protein hydrolysates: Production, biochemical and functional properties. Agric. Agric. Sci. Procedia, 2016, 9, 482-492.
[7]
Catiu, L.; Traisnel, J. Chihib, N.; Le Flem, G.; Blanpain, A.; Melnyk, O.; Guillochon, D.; Nedjar-Arroume, N. RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibing an antimicrobial activity. Peptides, 2011, 32, 1463-1468.
[http://dx.doi.org/10.1016/j.peptides.2011.05.021]
[8]
Wu, Z.; Pan, D.; Zhen, X.; Cao, J. Angiotensin I-converting enzyme inhibitory peptides derived from bovine casein and identified by MALDI-TOF-MS/MS. J. Sci. Food Agric., 2013, 93(6), 1331-1337.
[http://dx.doi.org/10.1002/jsfa.5894] [PMID: 23015408]
[9]
Naso, L.G.; Lezama, L.; Valcarcel, M.; Salado, C.; Villacé, P.; Kortazar, D.; Ferrer, E.G.; Williams, P.A. Bovine serum albumin binding, antioxidant and anticancer properties of an oxidovanadium(IV) complex with luteolin. J. Inorg. Biochem., 2016, 157, 80-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.01.021] [PMID: 26828287]
[10]
Adoui, F.; Boughera, F. Chataigne, G.; Chihib, N.; El Hameur, H.; Dhulster, P. A simple method to separate the antimicrobial peptides from complex peptic casein hydrolysate and identification of a novel antibacterial domains within the sequence of bovine alfa-casein. IRECHE, 2013, 5(2), 179-187.
[11]
Park, K.; Hyun, C. Antigenotoxic effects of the peptides derived from bovine blood plasma proteins. Enzyme Microb. Technol., 2002, 30, 633-638.
[http://dx.doi.org/10.1016/S0141-0229(02)00024-8]
[12]
Salgado, P.; Fernández, G.; Drago, S.; Mauri, A. Addition of bovine plasma hydrolysates improves the antioxidant propierties of soybean and sunflower protein-based films. Food Hydrocoll., 2011, 25, 1433-1440.
[http://dx.doi.org/10.1016/j.foodhyd.2011.02.003]
[13]
DANE. Encuesta de sacrificio de ganado, II trimestre de 2019; DANE: Bogotá, D.C., 2019.
[14]
Castrillon, D. El reto de certificar una planta de beneficio en Colombia., 2016.https://www.fedegan.org.co/noticias/informe-el-reto-de-certificar-una-planta-de-beneficio-en-colombia
[15]
Konieczny, G.; Chaux, G.; Rojas, G.; Bolaρos, L. Producción más limpia y viabilidad de tratamiento biológico para efluentes de mataderos en pequeρas localidades. Rev. Fac. Cienc. Agropec., 2009, 7(1), 102-114.
[16]
Gómez, L.J.; Zapata, J.E. Effect of hydrolysis and digestion in vitro on teh activity of bovine plasma hydrolysates as inhibitors of the angiotensin I converting enzyme. Braz. Arch. Biol. Technol., 2014, 57(3), 386-393.
[http://dx.doi.org/10.1590/S1516-89132014005000004]
[17]
Morales, J.; Figueroa, O.; Zapata, J. Optimization of enzymatic hydrolysis of the globular fraction of bovine blood by surface methodology response and evaluation of its antioxidant properties. Inf. Tecnol., 2017, 28(2), 75-86.
[http://dx.doi.org/10.4067/S0718-07642017000200009]
[18]
Figueroa, O.A.; Zapata, J.E.; Sánchez, C.P. Optimization of enzymatic hydrolysis of protein bovine plasma. Inf. Tecnol., 2016, 27(2), 39-52.
[http://dx.doi.org/10.4067/S0718-07642016000200006]
[19]
Gómez, L.; Zapata, J. Obtaining of antioxidant peptide from bovine plasma hydrolysates and effect of the degree of hydrolysis on antioxidant capacity. Rev. Mex. Ing. Quim., 2016, 15(1), 101-109.
[20]
Gómez, N.A.; Gómez, L.J.; Zapata, J.E. Kinetics models to produce an Antioxidant by enzymatic hydrolysis of bovine plasma protein using a High substrate concentration. Curr. Enzym. Inhib., 2019, 15(2), 144-153.
[http://dx.doi.org/10.2174/1573408015666191009090742]
[21]
Isaza, Y.L.; Restrepo, D.A.; López, J.H.; Ochoa, O.A.; Cabrera, K.R. Evolution of the antioxidant capacity of frankfurter sausage model systems with added cherry extract (Prunus avium L.) during refrigerated storage. Vitae, 2011, 18(3), 251-260.
[22]
Thorat, I.D.; Jagtap, D.D.; Mohapatra, D.; Joshi, D.C.; Sutar, R.F.; Kapdi, S.S. Antioxidants, their properties, uses in food products and their legal implications. Int J Food Stud, 2013, 2, 81-104.
[http://dx.doi.org/10.7455/ijfs/2.1.2013.a7]
[23]
Mishra, R.; Bisht, S.S. Antioxidants and their characterization. J. Pharm. Res., 2011, 4(8), 2744-2746.
[24]
Celestino, M.T.; Magalhães, U.O.; Manssour, A.G.; Carmo, F.A.; Lione, V.; Castro, H.C.; Sousa, V.P.; Rodrigues, C.R.; Cabral, L.M. Rational use of antioxidants in solid oral pharmaceutical preparations. BJPS. Braz. J. Pharm. Sci., 2012, 48(3), 405-415.
[http://dx.doi.org/10.1590/S1984-82502012000300007]
[25]
Sahurkar, M.R.; Karadbhajne, S.V. Antioxidants: Extration and application in food industry. Int. J. Food Sci. Nutr., 2018, 3(6), 272-281.
[26]
Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of natural plant origins: From sources to food industry applications. Molecules, 2019, 24(22), 1-25.
[http://dx.doi.org/10.3390/molecules24224132] [PMID: 31731614]
[27]
Ruiz, A.; Álvarez, H. Scalling of chemical and biochemical processes based on a phenomenological model. Inf. Tecnol., 2011, 22, 33-52.
[http://dx.doi.org/10.4067/S0718-07642011000600005]
[28]
Zlokarnik, M. Scale-up in chemical engineering: second, completely revised and extended edition; Wiley & Sons: New York, 2006.
[29]
Levin, M. Pharmaceutical process scale-up; Marcel Dekker, Inc.: New York, 2001.
[http://dx.doi.org/10.1201/9780824741969]
[30]
Banerjee, G.; Car, S.; Liu, T.; Williams, D.L.; Meza, S.L.; Walton, J.D.; Hodge, D.B. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol. Bioeng., 2012, 109(4), 922-931.
[http://dx.doi.org/10.1002/bit.24385] [PMID: 22125119]
[31]
Rodrigues, Rde. C.; Rocha, G.J.; Rodrigues, D., Jr; Filho, H.J., Jr; Felipe, Md.; Pessoa, A.; Jr. Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresour. Technol., 2010, 101(4), 1247-1253.
[http://dx.doi.org/10.1016/j.biortech.2009.09.034] [PMID: 19846294]
[32]
Wang, R.; Unrean, P.; Franzén, C.J. Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol. Biofuels, 2016, 9, 88.
[http://dx.doi.org/10.1186/s13068-016-0500-7] [PMID: 27096006]
[33]
Hu, B.; Zhu, S.; Fang, S.; Huo, M.; Li, Y.; Yu, Y.; Yang, Z.; Zhu, M. Optimization and scale-up of enzymatic hydrolysis of wood pulp for cellulosic sugar production. BioResources, 2016, 11(3), 7242-7257.
[http://dx.doi.org/10.15376/biores.11.3.7242-7257]
[34]
Gelves, R.; Benavides, A.; Quintero, J. CFD prediction of hydrodynamic in the scale up of a stirred tank for aerobic processes. Ingeniare Rev. Chil. Ing., 2013, 21(3), 347-361.
[http://dx.doi.org/10.4067/S0718-33052013000300005]
[35]
Palmqvist, B.; Kadie, A.; Hagglund, K.; Petersson, A.; Liden, G. Scale-up of high-solid enzymatic hydrolysis of steam-pretreatment softwood: The effects of reactor flow conditions. Biomass Convers. Bior., 2016, 6, 173-180.
[http://dx.doi.org/10.1007/s13399-015-0177-3]
[36]
Martínez, D.; Menéndez, C.; Hernández, L.; Sobrino, A.; Trujillo, L.; Rodríguez, I. Scaling-up batch conditions for efficient sucrose hydrolysis catalyzed by an immobilized recombinant Pichia pastoris cells in a stirrer tank reactor. Electron. J. Biotechnol., 2017, 25, 39-42.
[http://dx.doi.org/10.1016/j.ejbt.2016.11.003]
[37]
Toldrá, F.; Mora, L.; Reig, M. New insights into meat by-product utilization. Meat Sci., 2016, 120, 54-59.
[http://dx.doi.org/10.1016/j.meatsci.2016.04.021] [PMID: 27156911]
[38]
Tian, X. Food processing by-products as natural sources of antioxidants: A mini review Adv. Adv. Food Technol. Nutr. Sci. Open J, 2016, SE(2), S7-17.
[39]
Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules, 2020, 25(3), 510-534.
[http://dx.doi.org/10.3390/molecules25030510] [PMID: 31991658]
[40]
Euromonitor international from trade interviews and industry sources Market Sizes of Preservatives/Antioxidants, 2020.https://go.euromonitor.com/via.html
[41]
Buzanovskii, V. Determination of proteins in blood. Part 1: Determination of total protein and albumin. Rev. J. Chem., 2017, 7(1), 79-124.
[http://dx.doi.org/10.1134/S2079978017010010]
[42]
Adler-Nissen, J. Enzymatic hydrolysis of food proteins; Elsevier Applied Science Publishers: London, 1986.
[43]
Guadix, A.; Guadix, E.M.; Páez-Dueρas, M.P.; González-Tello, P.; Camacho, F. Technological processes and methods of control in the hydrolysis of proteins. Ars Pharmaceutica, 2000, 41(1), 79-89.
[44]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[45]
Liu, Q.; Kong, B.; Jiang, L.; Cui, X.; Liu, J. Free radical scavening activity of porcine plasma protein hydrolysates determined by electron spin resonance spectrometer. Lebensm. Wiss. Technol., 2009, 42, 956-962.
[http://dx.doi.org/10.1016/j.lwt.2008.12.007]
[46]
Granato, D.; de Araújo Calado, V.; Jarvis, B. Observations on the use of statistical methods in food sciences and technology. Food Res. Int., 2014, 55, 137-149.
[http://dx.doi.org/10.1016/j.foodres.2013.10.024]
[47]
Miller, J.; Miller, J. Statistics and Chemometrics for Analytical Chemistry; Prentice Hall by Pearson: Gosport, U.K., 2010.
[48]
Figueroa, O.A.; Zapata, J.E.; Gutiérrez, G.A. Modeling of the kinetics of enzymatic hydrolysis of bovine plasma proteins. Revista EIA, 2012, 17, 71-84.
[49]
Qi, W.; He, Z. Enzymatic hydrolysis of protein: Mechanism and kinetic model. Front. Chem. China, 2006, 1(3), 308-314.
[http://dx.doi.org/10.1007/s11458-006-0026-9]
[50]
Bourseau, P.; Vandanjon, L.; Jaouen, P.; Chaplain-Derouiniot, M.; Massé, A.; Guérard, F.; Chabeaud, A.; Fouchereau-Péron, M.; Le Gal, Y.; Ravallec-Plé, R.; Bergé, J.P.; Picot, L.; Piot, J.M.; Batista, I.; Thorkelsson, G.; Delannoy, C.; Jakobsen, G. Fractionation of fish protein hydrolysates by ultrafiltration and nanofiltration: Impact on peptidic populations. Desalination, 2009, 244(1-3), 303-320.
[http://dx.doi.org/10.1016/j.desal.2008.05.026]
[51]
Seo, H.W.; Jung, E.Y.; Go, G.W.; Kim, G.D.; Joo, S.T.; Yang, H.S. Optimization of hydrolysis conditions for bovine plasma protein using response surface methodology. Food Chem., 2015, 185, 106-111.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.133] [PMID: 25952847]
[52]
Ketnawa, S.; Martínez-Alvarez, O.; Benjakul, S.; Rawdkuen, S. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem., 2016, 192(1), 34-42.
[http://dx.doi.org/10.1016/j.foodchem.2015.06.087] [PMID: 26304317]
[53]
Sheriff, S.A.; Sundaram, B.; Ramamoorthy, B.; Ponnusamy, P. Synthesis and in vitro antioxidant functions of protein hydrolysate from backbones of Rastrelliger kanagurta by proteolytic enzymes. Saudi J. Biol. Sci., 2014, 21(1), 19-26.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.009] [PMID: 24596496]
[54]
Klompong, V.; Benjakul, S.; Kantachote, D.; Shahidi, F. Antioxidative acitivity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem., 2007, 102, 1317-1327.
[http://dx.doi.org/10.1016/j.foodchem.2006.07.016]
[55]
Gbogouri, G.; Linder, M.; Fanni, J.; Parmentier, M. Influence of hydrolysis degree on the functional propierties of salmón hydrolysates. J. Food Sci., 2004, 69(8), 615-622.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb09909.x]
[56]
Hall, F.; Johnson, P.E.; Liceaga, A. Effect of enzymatic hydrolysis on bioactive properties and allergenicity of cricket (Gryllodes sigillatus) protein. Food Chem., 2018, 262(1), 39-47.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.058] [PMID: 29751919]
[57]
Berg, R.; Haenen, G.; Berg, H.; Bast, A. Applicability of an improved Trolox Equivalent Antioxidant Capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem., 1999, 66, 511-517.
[http://dx.doi.org/10.1016/S0308-8146(99)00089-8]
[58]
Arts, M.J.; Haenen, G.R.; Voss, H-P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol., 2004, 42(1), 45-49.
[http://dx.doi.org/10.1016/j.fct.2003.08.004] [PMID: 14630129]
[59]
Akbarirad, H.; Gohari, A.; Kazemeini, S.M.; Mousavi, A. An overview on some of important sources of natural antioxidants. Mini review. Int. Food Res. J., 2016, 13(3), 928-933.
[60]
Chiang, S-H.; Lin, C-C. Antioxidant properties of different protions of organic Anoectochilus formosanus Hayata with different drying treatments. Biosci. J., 2018, 34(1), 12-23.
[http://dx.doi.org/10.14393/BJ-v34n1a2018-37203]
[61]
Mbah, C.J.; Orabueze, I.; Okorie, N.H. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Sci Pharm Sci, 2019, 3(6), 28-42.
[http://dx.doi.org/10.31080/ASPS.2019.03.0273]
[62]
Junker, B.H. Scale-up methodologies for Escherichia coli and yeast fermentation processes. J. Biosci. Bioeng., 2004, 97(6), 347-364.
[http://dx.doi.org/10.1016/S1389-1723(04)70218-2] [PMID: 16233642]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy