Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Role of Opioidergic System in Regulating Depression Pathophysiology

Author(s): George Anderson* and Michael Maes

Volume 26, Issue 41, 2020

Page: [5317 - 5334] Pages: 18

DOI: 10.2174/1381612826666200806101744

Price: $65

Abstract

Background: There is a clear clinical need for a better understanding of the biological underpinnings of major depressive disorder (MDD), allowing for the development of a treatment that is targeted to pathophysiology. Recent data indicate a role for the endogenous opioidergic system in MDD. This article reviews the roles and physiological interactions of the endogenous opioidergic system in the pathophysiology and heterogeneity of MDD.

Methods: Articles on the pathophysiology of MDD, as well as on the endogenous opioidergic system and mitochondrial function, form the basis of this review article.

Results: The endogenous opioidergic system is intimately linked to wider MDD pathophysiology, including alterations in the gut microbiome, gut permeability, circadian rhythm, amygdala-prefrontal cortex interactions, and mitochondrial function. A decrease in the μ-/κ-opioid receptor ratio is an important mediator of the changes in mood in MDD, with effects not only on neurons, but also on glia and immune cells.

Conclusion: The endogenous opioidergic system is intimately interwoven with MDD pathophysiology and provides a relevant target for novel treatment development, as well as providing a focus for the integration of wider MDD pathophysiology.

Keywords: Depression, mitochondria, endogenous opioids, amygdala, gut dysbiosis, circadian rhythm, ceramide, melatonin, LPS, inflammation.

[1]
Baldessarini RJ. Epidemiology of suicide: recent developments. Epidemiol Psychiatr Sci 2019; 29e71
[http://dx.doi.org/10.1017/S2045796019000672] [PMID: 31696818]
[2]
Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018; 391(10128): 1357-66.
[http://dx.doi.org/10.1016/S0140-6736(17)32802-7] [PMID: 29477251]
[3]
Byerley WF, Risch SC. Depression and serotonin metabolism: rationale for neurotransmitter precursor treatment. J Clin Psychopharmacol 1985; 5(4): 191-206.
[http://dx.doi.org/10.1097/00004714-198508000-00002] [PMID: 2410463]
[4]
Slyepchenko A, Maes M, Machado-Vieira R, et al. Intestinal dysbiosis, gut hyperpermeability and bacterial translocation: missing links between depression, obesity and type 2 diabetes. Curr Pharm Des 2016; 22(40): 6087-106.
[http://dx.doi.org/10.2174/1381612822666160922165706] [PMID: 27669970]
[5]
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80(Pt C): 255-66.
[http://dx.doi.org/10.1016/j.pnpbp.2017.04.022] [PMID: 28433458]
[6]
Kowalczyk M, Szemraj J, Bliźniewska K, et al. An immune gate of depression - Early neuroimmune development in the formation of the underlying depressive disorder. Pharmacol Rep 2019; 71(6): 1299-307.
[http://dx.doi.org/10.1016/j.pharep.2019.05.022] [PMID: 31706254]
[7]
Anderson G, Maes M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des 2014; 20(23): 3812-47.
[http://dx.doi.org/10.2174/13816128113196660738] [PMID: 24180395]
[8]
Kumar P, Waiter GD, Dubois M, Milders M, Reid I, Steele JD. Increased neural response to social rejection in major depression. Depress Anxiety 2017; 34(11): 1049-56.
[http://dx.doi.org/10.1002/da.22665] [PMID: 28632961]
[9]
Coleman MY, McGlashan EM, Vidafar P, Phillips AJK, Cain SW. Advanced melatonin onset relative to sleep in women with unmedicated major depressive disorder. Chronobiol Int 2019; 36(10): 1373-83.
[http://dx.doi.org/10.1080/07420528.2019.1644652] [PMID: 31368377]
[10]
Nomura Y, Davey K, Pehme PM, et al. Influence of in utero exposure to maternal depression and natural disaster-related stress on infant temperament at 6 months: The children of superstorm sandy. Infant Ment Health J 2019; 40(2): 204-16.
[http://dx.doi.org/10.1002/imhj.21766] [PMID: 30723931]
[11]
Anderson G, Maes M. How Immune-inflammatory Processes Link CNS and Psychiatric Disorders: Classification and Treatment Implications. CNS Neurol Disord Drug Targets 2017; 16(3): 266-78.
[http://dx.doi.org/10.2174/1871527315666161122144659] [PMID: 27875954]
[12]
Al-Hakeim HK, Al-Fadhel SZ, Al-Dujaili AH, Carvalho A, Sriswasdi S, Maes M. Development of a novel neuro-immune and opioid-associated fingerprint with a cross-validated ability to identify and authenticate unknown patients with major depression: far beyond differentiation, discrimination and classification. Mol Neurobiol 2019; 56(11): 7822-35.
[http://dx.doi.org/10.1007/s12035-019-01647-0] [PMID: 31124079]
[13]
Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand 2014; 129(2): 83-97.
[http://dx.doi.org/10.1111/acps.12182] [PMID: 23952563]
[14]
Manning JS, Jackson WC. Depression, pain, and comorbid medical conditions. J Clin Psychiatry 2013; 74(2)e03
[http://dx.doi.org/10.4088/JCP.12049vs3c] [PMID: 23473354]
[15]
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103109976
[http://dx.doi.org/10.1016/j.pnpbp.2020.109976] [PMID: 32470498]
[16]
Tchalova K, Sadikaj G, Moskowitz DS, Zuroff DC, Bartz JA. Variation in the μ-opioid receptor gene (OPRM1) and experiences of felt security in response to a romantic partner’s quarrelsome behavior. Mol Psychiatry 2019.
[http://dx.doi.org/10.1038/s41380-019-0600-4] [PMID: 31772303]
[17]
Seo M, Anderson G. Gut-amygdala interactions in autism spectrum disorders: developmental roles via regulating mitochondria, exosomes, immunity and micrornas. Curr Pharm Des 2019; 25(41): 4344-56.
[http://dx.doi.org/10.2174/1381612825666191105102545] [PMID: 31692435]
[18]
Ashok AH, Myers J, Reis Marques T, Rabiner EA, Howes OD. Reduced mu opioid receptor availability in schizophrenia revealed with [11C]-carfentanil positron emission tomographic Imaging. Nat Commun 2019; 10(1): 4493.
[http://dx.doi.org/10.1038/s41467-019-12366-4] [PMID: 31582737]
[19]
Manninen S, Tuominen L, Dunbar RI, et al. Social laughter triggers endogenous opioid release in humans. J Neurosci 2017; 37(25): 6125-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0688-16.2017] [PMID: 28536272]
[20]
Margolis EB, Karkhanis AN. Dopaminergic cellular and circuit contributions to kappa opioid receptor mediated aversion. Neurochem Int 2019.129104504
[http://dx.doi.org/10.1016/j.neuint.2019.104504] [PMID: 31301327]
[21]
Anderson G. Pathoetiology and pathophysiology of borderline personality: Role of prenatal factors, gut microbiome, mu- and kappa-opioid receptors in amygdala-PFC interactions. Prog Neuropsychopharmacol Biol Psychiatry 2020.98109782
[http://dx.doi.org/10.1016/j.pnpbp.2019.109782] [PMID: 31689444]
[22]
Al-Fadhel SZ, Al-Hakeim HK, Al-Dujaili AH, Maes M. IL-10 is associated with increased mu-opioid receptor levels in major depressive disorder. Eur Psychiatry 2019; 57: 46-51.
[http://dx.doi.org/10.1016/j.eurpsy.2018.10.001] [PMID: 30677547]
[23]
Park JY, Chae S, Kim CS, et al. Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists. Korean J Physiol Pharmacol 2019; 23(6): 427-48.
[http://dx.doi.org/10.4196/kjpp.2019.23.6.427] [PMID: 31680765]
[24]
Tejeda HA, Bonci A. Dynorphin/kappa-opioid receptor control of dopamine dynamics: Implications for negative affective states and psychiatric disorders. Brain Res 2019; 1713: 91-101.
[http://dx.doi.org/10.1016/j.brainres.2018.09.023] [PMID: 30244022]
[25]
Henry MS, Gendron L, Tremblay ME, Drolet G. Enkephalins: Endogenous analgesics with an emerging role in stress resilience. Neural Plast 2017.20171546125
[http://dx.doi.org/10.1155/2017/1546125] [PMID: 28781901]
[26]
Peciña M, Karp JF, Mathew S, Todtenkopf MS, Ehrich EW, Zubieta JK. Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches. Mol Psychiatry 2019; 24(4): 576-87.
[http://dx.doi.org/10.1038/s41380-018-0117-2] [PMID: 29955162]
[27]
Todtenkopf MS, Marcus JF, Portoghese PS, Carlezon WA Jr. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats. Psychopharmacology (Berl) 2004; 172(4): 463-70.
[http://dx.doi.org/10.1007/s00213-003-1680-y] [PMID: 14727002]
[28]
Falcon E, Browne CA, Leon RM, et al. Antidepressant-like effects of buprenorphine are mediated by kappa opioid receptors. Neuropsychopharmacology 2016; 41(9): 2344-51.
[http://dx.doi.org/10.1038/npp.2016.38] [PMID: 26979295]
[29]
Carlezon WA Jr, Béguin C, Knoll AT, Cohen BM. Kappa-opioid ligands in the study and treatment of mood disorders. Pharmacol Ther 2009; 123(3): 334-43.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.008] [PMID: 19497337]
[30]
Post A, Smart TS, Krikke-Workel J, et al. A selective nociceptin receptor antagonist to treat depression: evidence from preclinical and clinical studies. Neuropsychopharmacology 2016; 41(7): 1803-12.
[http://dx.doi.org/10.1038/npp.2015.348] [PMID: 26585287]
[31]
Vitale G, Filaferro M, Micioni Di Bonaventura MV, et al. Effects of [Nphe1, Arg14, Lys15] N/OFQ-NH2 (UFP-101), a potent NOP receptor antagonist, on molecular, cellular and behavioural alterations associated with chronic mild stress. J Psychopharmacol (Oxford) 2017; 31(6): 691-703.
[http://dx.doi.org/10.1177/0269881117691456] [PMID: 28417659]
[32]
Le Maître E, Dourmap N, Vilpoux C, et al. Acute and subchronic treatments with selective serotonin reuptake inhibitors increase Nociceptin/Orphanin FQ (NOP) receptor density in the rat dorsal raphe nucleus; interactions between nociceptin/NOP system and serotonin. Brain Res 2013; 1520: 51-60.
[http://dx.doi.org/10.1016/j.brainres.2013.05.005] [PMID: 23669068]
[33]
Pfeiffer A, Pasi A, Mehraein P, Herz A. Opiate receptor binding sites in human brain. Brain Res 1982; 248(1): 87-96.
[http://dx.doi.org/10.1016/0006-8993(82)91150-7] [PMID: 6289997]
[34]
Kuhar MJ, Pert CB, Snyder SH. Regional distribution of opiate receptor binding in monkey and human brain. Nature 1973; 245(5426): 447-50.
[http://dx.doi.org/10.1038/245447a0] [PMID: 4127185]
[35]
Kennedy SE, Koeppe RA, Young EA, Zubieta JK. Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Arch Gen Psychiatry 2006; 63(11): 1199-208.
[http://dx.doi.org/10.1001/archpsyc.63.11.1199] [PMID: 17088500]
[36]
Peciña M, Heffernan J, Wilson J, Zubieta JK, Dombrovski AY. Prefrontal expectancy and reinforcement-driven antidepressant placebo effects. Transl Psychiatry 2018; 8(1): 222.
[http://dx.doi.org/10.1038/s41398-018-0263-y] [PMID: 30323205]
[37]
Nummenmaa L, Manninen S, Tuominen L, et al. Adult attachment style is associated with cerebral μ-opioid receptor availability in humans. Hum Brain Mapp 2015; 36(9): 3621-8.
[http://dx.doi.org/10.1002/hbm.22866] [PMID: 26046928]
[38]
Riters LV, Cordes MA, Stevenson SA. Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 2017; 320: 37-47.
[http://dx.doi.org/10.1016/j.bbr.2016.11.050] [PMID: 27913257]
[39]
Johnson KV, Dunbar RI. Pain tolerance predicts human social network size. Sci Rep 2016; 6: 25267.
[http://dx.doi.org/10.1038/srep25267] [PMID: 27121297]
[40]
Hsu DT, Sanford BJ, Meyers KK, et al. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Mol Psychiatry 2015; 20(2): 193-200.
[http://dx.doi.org/10.1038/mp.2014.185] [PMID: 25600108]
[41]
Peciña M, Love T, Stohler CS, Goldman D, Zubieta JK. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology 2015; 40(4): 957-65.
[http://dx.doi.org/10.1038/npp.2014.272] [PMID: 25308352]
[42]
Way BM, Taylor SE, Eisenberger NI. Variation in the mu-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proc Natl Acad Sci USA 2009; 106(35): 15079-84.
[http://dx.doi.org/10.1073/pnas.0812612106] [PMID: 19706472]
[43]
Gerner RH, Catlin DH, Gorelick DA, Hui KK, Li CH. beta-Endorphin. Intravenous infusion causes behavioral change in psychiatric inpatients. Arch Gen Psychiatry 1980; 37(6): 642-7.
[http://dx.doi.org/10.1001/archpsyc.1980.01780190040005] [PMID: 7387336]
[44]
Emrich HM, Vogt P, Herz A. Possible antidepressive effects of opioids: action of buprenorphine. Ann N Y Acad Sci 1982; 398: 108-12.
[http://dx.doi.org/10.1111/j.1749-6632.1982.tb39483.x] [PMID: 6760767]
[45]
Yovell Y, Bar G, Mashiah M, et al. Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: A randomized controlled trial. Am J Psychiatry 2016; 173(5): 491-8.
[http://dx.doi.org/10.1176/appi.ajp.2015.15040535] [PMID: 26684923]
[46]
Thase ME, Stanford AD, Memisoglu A, et al. Results from a long-term open-label extension study of adjunctive buprenorphine/samidorphan combination in patients with major depressive disorder. Neuropsychopharmacology 2019; 44(13): 2268-76.
[http://dx.doi.org/10.1038/s41386-019-0451-3] [PMID: 31254971]
[47]
Zajecka JM, Stanford AD, Memisoglu A, Martin WF, Pathak S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: results of a phase III clinical trial (FORWARD-3). Neuropsychiatr Dis Treat 2019; 15: 795-808.
[http://dx.doi.org/10.2147/NDT.S199245] [PMID: 31040679]
[48]
Fava M, Memisoglu A, Thase ME, et al. Opioid modulation with buprenorphine/samidorphan as adjunctive treatment for inadequate response to antidepressants: a randomized double-blind placebo-controlled trial. Am J Psychiatry 2016; 173(5): 499-508.
[http://dx.doi.org/10.1176/appi.ajp.2015.15070921] [PMID: 26869247]
[49]
Maes M. Evidence for an immune response in major depression: A review and hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 1995; 19(1): 11-38.
[http://dx.doi.org/10.1016/0278-5846(94)00101-M] [PMID: 7708925]
[50]
Maes M, Bosmans E, Meltzer HY, Scharpé S, Suy E. Interleukin-1 beta: A putative mediator of HPA axis hyperactivity in major depression? Am J Psychiatry 1993; 150(8): 1189-93.
[http://dx.doi.org/10.1176/ajp.150.8.1189] [PMID: 8328562]
[51]
Leemans JC, Cassel SL, Sutterwala FS. Sensing damage by the NLRP3 inflammasome. Immunol Rev 2011; 243(1): 152-62.
[http://dx.doi.org/10.1111/j.1600-065X.2011.01043.x] [PMID: 21884174]
[52]
Alcocer-Gómez E, de Miguel M, Casas-Barquero N, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 2014; 36: 111-7.
[http://dx.doi.org/10.1016/j.bbi.2013.10.017] [PMID: 24513871]
[53]
Slyepchenko A, Maes M, Köhler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: Proposal of an integrative model. Neurosci Biobehav Rev 2016; 64: 83-100.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.002] [PMID: 26898639]
[54]
Nothdurfter C, Milenkovic VM, Sarubin N, et al. The cytokine IL-17A as a marker of treatment resistance in major depressive disorder? Eur J Neurosci 2019.
[http://dx.doi.org/10.1111/ejn.14636] [PMID: 31793127]
[55]
Brunoni AR, Supasitthumrong T, Teixeira AL, et al. Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord 2020; 262: 8-15.
[http://dx.doi.org/10.1016/j.jad.2019.10.037] [PMID: 31693974]
[56]
Müller N, Krause D, Barth R, et al. Childhood adversity and current stress are related to pro- and anti-inflammatory cytokines in major depression. J Affect Disord 2019; 253: 270-6.
[http://dx.doi.org/10.1016/j.jad.2019.04.088] [PMID: 31063941]
[57]
Leday GGR, Vértes PE, Richardson S, et al. MRC immunopsychiatry consortium. Replicable and coupled changes in innate and adaptive immune gene expression in two case-control studies of blood microarrays in major depressive disorder. Biol Psychiatry 2018; 83(1): 70-80.
[http://dx.doi.org/10.1016/j.biopsych.2017.01.021] [PMID: 28688579]
[58]
Rahman S, Alzarea S. Glial mechanisms underlying major depressive disorder: Potential therapeutic opportunities. Prog Mol Biol Transl Sci 2019; 167: 159-78.
[http://dx.doi.org/10.1016/bs.pmbts.2019.06.010] [PMID: 31601403]
[59]
Enache D, Pariante CM, Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun 2019; 81: 24-40.
[http://dx.doi.org/10.1016/j.bbi.2019.06.015] [PMID: 31195092]
[60]
Meng Y, Gao X, Chen W, et al. Methionine enkephalin (MENK) mounts antitumor effect via regulating dendritic cells (DCs). Int Immunopharmacol 2017; 44: 61-71.
[http://dx.doi.org/10.1016/j.intimp.2017.01.004] [PMID: 28088065]
[61]
Börner C, Kraus J, Bedini A, Schraven B, Höllt V. T-cell receptor/CD28-mediated activation of human T lymphocytes induces expression of functional mu-opioid receptors. Mol Pharmacol 2008; 74(2): 496-504.
[http://dx.doi.org/10.1124/mol.108.046029] [PMID: 18463202]
[62]
Muxel SM, Pires-Lapa MA, Monteiro AW, et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One 2012; 7(12)e52010
[http://dx.doi.org/10.1371/journal.pone.0052010] [PMID: 23284853]
[63]
Franchi S, Moretti S, Castelli M, et al. Mu opioid receptor activation modulates Toll like receptor 4 in murine macrophages. Brain Behav Immun 2012; 26(3): 480-8.
[http://dx.doi.org/10.1016/j.bbi.2011.12.010] [PMID: 22240038]
[64]
Balog T, Sarić A, Sobocanec S, Kusić B, Marotti T. Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages. Neuropeptides 2010; 44(1): 25-9.
[http://dx.doi.org/10.1016/j.npep.2009.11.004] [PMID: 20004470]
[65]
Stanojević S, Vujić V, Mitić K, et al. Methionine-enkephalin modulation of hydrogen peroxide (H2O2) release by rat peritoneal macrophages involves different types of opioid receptors. Neuropeptides 2008; 42(2): 147-58.
[http://dx.doi.org/10.1016/j.npep.2007.12.004] [PMID: 18237778]
[66]
Inan S, Torres-Huerta A, Jensen LE, Dun NJ, Cowan A. Nalbuphine, a kappa opioid receptor agonist and mu opioid receptor antagonist attenuates pruritus, decreases IL-31, and increases IL-10 in mice with contact dermatitis. Eur J Pharmacol 2019; •••864172702
[http://dx.doi.org/10.1016/j.ejphar.2019.172702] [PMID: 31568781]
[67]
Basso L, Garnier L, Bessac A, et al. T-lymphocyte-derived enkephalins reduce Th1/Th17 colitis and associated pain in mice. J Gastroenterol 2018; 53(2): 215-26.
[http://dx.doi.org/10.1007/s00535-017-1341-2] [PMID: 28424989]
[68]
Li X, Meng Y, Plotnikoff NP, et al. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice. Cancer Biol Ther 2015; 16(3): 450-9.
[http://dx.doi.org/10.1080/15384047.2014.1003006] [PMID: 25701137]
[69]
Kirst A, Wack C, Lutz WK, Eggert A, Kämpgen E, Fischer WH. Expression of functional kappa-opioid receptors on murine dendritic cells. Immunol Lett 2002; 84(1): 41-8.
[http://dx.doi.org/10.1016/S0165-2478(02)00128-1] [PMID: 12161282]
[70]
Jenny M, Winkler C, Spetea M, Schennach H, Schmidhammer H, Fuchs D. Non-peptidic delta-opioid receptor antagonists suppress mitogen-induced tryptophan degradation in peripheral blood mononuclear cells in vitro. Immunol Lett 2008; 118(1): 82-7.
[http://dx.doi.org/10.1016/j.imlet.2008.03.006] [PMID: 18440650]
[71]
Wu HY, Mao XF, Tang XQ, et al. Spinal interleukin-10 produces antinociception in neuropathy through microglial β-endorphin expression, separated from antineuroinflammation. Brain Behav Immun 2018; 73: 504-19.
[http://dx.doi.org/10.1016/j.bbi.2018.06.015] [PMID: 29928964]
[72]
Zhang L, Belkowski JS, Briscoe T, Rogers TJ. Regulation of mu opioid receptor expression in developing T cells. J Neuroimmune Pharmacol 2012; 7(4): 835-42.
[http://dx.doi.org/10.1007/s11481-012-9396-6] [PMID: 22926418]
[73]
Börner C, Lanciotti S, Koch T, Höllt V, Kraus J. μ opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol 2013; 263(1-2): 35-42.
[http://dx.doi.org/10.1016/j.jneuroim.2013.07.012] [PMID: 23965172]
[74]
Maes M, Simeonova D, Stoyanov D, Leunis JC. Upregulation of the nitrosylome in bipolar disorder type 1 (BP1) and major depression, but not BP2: Increased IgM antibodies to nitrosylated conjugates are associated with indicants of leaky gut. Nitric Oxide 2019; 91: 67-76.
[http://dx.doi.org/10.1016/j.niox.2019.07.003] [PMID: 31323278]
[75]
Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett 2008; 29(1): 117-24.
[PMID: 18283240]
[76]
Anderson G. Integrating pathophysiology in migraine: role of the gut microbiome and melatonin. Curr Pharm Des 2019; 25(33): 3550-62.
[http://dx.doi.org/10.2174/1381612825666190920114611] [PMID: 31538885]
[77]
Anderson G. Endometriosis pathoetiology and pathophysiology: Roles of vitamin a, estrogen, immunity, adipocytes, gut microbiome and melatonergic pathway on mitochondria regulation. Biomol Concepts 2019; 10(1): 133-49.
[http://dx.doi.org/10.1515/bmc-2019-0017] [PMID: 31339848]
[78]
Anderson G, Mazzoccoli G. Left ventricular hypertrophy: roles of mitochondria CYP1B1 and melatonergic pathways in co-ordinating wider pathophysiology. Int J Mol Sci 2019; 20(16)E4068
[http://dx.doi.org/10.3390/ijms20164068] [PMID: 31434333]
[79]
Rodriguez M, Wootla B, Anderson G. Multiple sclerosis, gut microbiota and permeability: role of tryptophan catabolites, depression and the driving down of local melatonin. Curr Pharm Des 2016; 22(40): 6134-41.
[http://dx.doi.org/10.2174/1381612822666160915160520] [PMID: 27634184]
[80]
Anderson G, Rodriguez M, Reiter RJ. Multiple sclerosis: melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. Int J Mol Sci 2019; 20(21)E5500
[http://dx.doi.org/10.3390/ijms20215500] [PMID: 31694154]
[81]
Gracia-Garcia P, Rao V, Haughey NJ, et al. Elevated plasma ceramides in depression. J Neuropsychiatry Clin Neurosci 2011; 23(2): 215-8. [Erratum in: J Neuropsychiatry Clin Neurosci. 2015;27]. [4]. [:372. Banduru, Veera Venkata Ratnam ]. [corrected to Bandaru, Veera Venkata Ratnam].
[http://dx.doi.org/10.1176/jnp.23.2.jnp215] [PMID: 21677254]
[82]
Gulbins E, Walter S, Becker KA, et al. A central role for the acid sphingomyelinase/ceramide system in neurogenesis and major depression. J Neurochem 2015; 134(2): 183-92.
[http://dx.doi.org/10.1111/jnc.13145] [PMID: 25925550]
[83]
Jin CJ, Engstler AJ, Sellmann C, et al. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 116(10): 1-12.
[http://dx.doi.org/10.1017/S0007114516004025] [PMID: 27876107]
[84]
Wang J, Cheng A, Wakade C, Yu RK. Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. J Neurosci 2014; 34(41): 13790-800.
[http://dx.doi.org/10.1523/JNEUROSCI.2275-14.2014] [PMID: 25297105]
[85]
Vanuytsel T, van Wanrooy S, Vanheel H, et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014; 63(8): 1293-9.
[http://dx.doi.org/10.1136/gutjnl-2013-305690] [PMID: 24153250]
[86]
Ren M, Lotfipour S. The role of the gut microbiome in opioid use. Behav Pharmacol 2019; 31(2&3): 113-21.
[http://dx.doi.org/10.1097/FBP.0000000000000538] [PMID: 31895059]
[87]
Fichna J, Sobczak M, Mokrowiecka A, et al. Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS. Neurogastroenterol Motil 2014; 26(11): 1539-50.
[http://dx.doi.org/10.1111/nmo.12390] [PMID: 25041572]
[88]
Sternini C, Patierno S, Selmer IS, Kirchgessner A. The opioid system in the gastrointestinal tract. Neurogastroenterol Motil 2004; 16(Suppl. 2): 3-16.
[http://dx.doi.org/10.1111/j.1743-3150.2004.00553.x] [PMID: 15357847]
[89]
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019; 9(1): 19603.
[http://dx.doi.org/10.1038/s41598-019-56132-4] [PMID: 31862976]
[90]
Pol O, Sasaki M, Jiménez N, Dawson VL, Dawson TM, Puig MM. The involvement of nitric oxide in the enhanced expression of mu-opioid receptors during intestinal inflammation in mice. Br J Pharmacol 2005; 145(6): 758-66.
[http://dx.doi.org/10.1038/sj.bjp.0706227] [PMID: 15852037]
[91]
Bauman BD, Meng J, Zhang L, et al. Enteric glial-mediated enhancement of intestinal barrier integrity is compromised by morphine. J Surg Res 2017; 219: 214-21.
[http://dx.doi.org/10.1016/j.jss.2017.05.099] [PMID: 29078884]
[92]
Kraus J, Lehmann L, Börner C, Höllt V. Epigenetic mechanisms involved in the induction of the mu opioid receptor gene in Jurkat T cells in response to interleukin-4. Mol Immunol 2010; 48(1-3): 257-63.
[http://dx.doi.org/10.1016/j.molimm.2010.08.002] [PMID: 20828825]
[93]
Hou X, Weng Y, Ouyang B, et al. HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord. Brain Res 2017; 1669: 97-105.
[http://dx.doi.org/10.1016/j.brainres.2017.05.014] [PMID: 28559159]
[94]
Zalar B, Haslberger A, Peterlin B. The Role of Microbiota in Depression - a brief review. Psychiatr Danub 2018; 30(2): 136-41.
[http://dx.doi.org/10.24869/spsih.2018.136] [PMID: 29930222]
[95]
Anderson G. Gut dysbiosis dysregulates central and systemic homeostasis via decreased melatonin and suboptimal mitochondria functioning: pathoetiological and pathophysiological implications. Melatonin Res 2019; 2(2): 70-85.
[http://dx.doi.org/10.32794/mr11250022]
[96]
Dawson G, Dawson SA, Goswami R. Chronic exposure to kappa-opioids enhances the susceptibility of immortalized neurons (F-11kappa 7) to apoptosis-inducing drugs by a mechanism that may involve ceramide. J Neurochem 1997; 68(6): 2363-70.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68062363.x] [PMID: 9166729]
[97]
Fišar Z, Hansíková H, Křížová J, et al. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer’s disease and depressive disorder. Mitochondrion 2019; 48: 67-77.
[http://dx.doi.org/10.1016/j.mito.2019.07.013] [PMID: 31377247]
[98]
Ben-Shachar D, Bonne O, Chisin R, et al. Cerebral glucose utilization and platelet mitochondrial complex I activity in schizophrenia: A FDG-PET study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(4): 807-13.
[http://dx.doi.org/10.1016/j.pnpbp.2006.12.025] [PMID: 17329000]
[99]
Chung JK, Lee SY, Park M, Joo EJ, Kim SA. Investigation of mitochondrial DNA copy number in patients with major depressive disorder. Psychiatry Res 2019; 282112616
[http://dx.doi.org/10.1016/j.psychres.2019.112616] [PMID: 31639552]
[100]
Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology 2019; 44(5): 837-49.
[http://dx.doi.org/10.1038/s41386-018-0090-0] [PMID: 29855563]
[101]
Harper DG, Jensen JE, Ravichandran C, et al. Tissue Type-Specific Bioenergetic Abnormalities in Adults with Major Depression. Neuropsychopharmacology 2017; 42(4): 876-85.
[http://dx.doi.org/10.1038/npp.2016.180] [PMID: 27585738]
[102]
Wang Q, Dwivedi Y. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J Biol Psychiatry 2017; 18(8): 592-603.
[http://dx.doi.org/10.1080/15622975.2016.1197423] [PMID: 27269743]
[103]
Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol 2019; 10: 1462.
[http://dx.doi.org/10.3389/fimmu.2019.01462] [PMID: 31333642]
[104]
Liu H, Li H, Guo L, et al. Mechanisms involved in phosphatidylinositol 3-kinase pathway mediated up-regulation of the mu opioid receptor in lymphocytes. Biochem Pharmacol 2010; 79(3): 516-23.
[http://dx.doi.org/10.1016/j.bcp.2009.09.013] [PMID: 19765550]
[105]
Ji S, Wang L. μ-Opioid receptor signalling via PI3K/Akt pathway ameliorates lipopolysaccharide-induced acute respiratory distress syndrome. Exp Physiol 2019; 104(10): 1555-61.
[http://dx.doi.org/10.1113/EP087783] [PMID: 31272134]
[106]
Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis 2014. 5e1373
[http://dx.doi.org/10.1038/cddis.2014.328] [PMID: 25118933]
[107]
Mathew OP, Ranganna K, Mathew J, et al. Cellular effects of butyrate on vascular smooth muscle cells are mediated through disparate actions on dual targets, Histone Deacetylase (HDAC) activity and PI3K/Akt signaling network. Int J Mol Sci 2019; 20(12)E2902
[http://dx.doi.org/10.3390/ijms20122902] [PMID: 31197106]
[108]
Zhang Y, Yu B, Yu J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression1. J Anim Sci 2019; 97(8): 3180-92.
[http://dx.doi.org/10.1093/jas/skz187] [PMID: 31228349]
[109]
Treskatsch S, Shaqura M, Dehe L, et al. Evidence for MOR on cell membrane, sarcoplasmatic reticulum and mitochondria in left ventricular myocardium in rats. Heart Vessels 2016; 31(8): 1380-8.
[http://dx.doi.org/10.1007/s00380-015-0784-8] [PMID: 26686371]
[110]
Treskatsch S, Shaqura M, Dehe L, et al. Upregulation of the kappa opioidergic system in left ventricular rat myocardium in response to volume overload: Adaptive changes of the cardiac kappa opioid system in heart failure. Pharmacol Res 2015; 102: 33-41.
[http://dx.doi.org/10.1016/j.phrs.2015.09.005] [PMID: 26365878]
[111]
Ni H, Sun Q, Tian T, Feng X, Sun BL. Long-term expression of metabolism-associated genes in the rat hippocampus following recurrent neonatal seizures and its regulation by melatonin. Mol Med Rep 2015; 12(2): 2727-34.
[http://dx.doi.org/10.3892/mmr.2015.3691] [PMID: 25937089]
[112]
Shavali S, Ho B, Govitrapong P, et al. Melatonin exerts its analgesic actions not by binding to opioid receptor subtypes but by increasing the release of beta-endorphin an endogenous opioid. Brain Res Bull 2005; 64(6): 471-9.
[http://dx.doi.org/10.1016/j.brainresbull.2004.09.008] [PMID: 15639542]
[113]
Chuchuen U, Ebadi M, Govitrapong P. The stimulatory effect of mu- and delta-opioid receptors on bovine pinealocyte melatonin synthesis. J Pineal Res 2004; 37(4): 223-9.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00155.x] [PMID: 15485547]
[114]
Anderson G, Maes M, Berk M. Inflammation-related disorders in the tryptophan catabolite pathway in depression and somatization. Adv Protein Chem Struct Biol 2012; 88: 27-48.
[http://dx.doi.org/10.1016/B978-0-12-398314-5.00002-7] [PMID: 22814705]
[115]
Maes M, Mihaylova I, Ruyter MD, Kubera M, Bosmans E. The immune effects of TRYCATs (tryptophan catabolites along the IDO pathway): relevance for depression - and other conditions characterized by tryptophan depletion induced by inflammation. Neuroendocrinol Lett 2007; 28(6): 826-31.
[PMID: 18063923]
[116]
Bryleva EY, Brundin L. Kynurenine pathway metabolites and suicidality Neuropharmacology 2017; 112(Pt. B): 324-831.
[http://dx.doi.org/ 10.1016/j.neuropharm.2016.01.034]
[117]
Baran H, Staniek K, Bertignol-Spörr M, Attam M, Kronsteiner C, Kepplinger B. Effects of various kynurenine metabolites on respiratory parameters of rat brain, liver and heart mitochondria. Int J Tryptophan Res 2016; 9: 17-29.
[http://dx.doi.org/10.4137/IJTR.S37973] [PMID: 27226722]
[118]
Liu D, Ray B, Neavin DR, et al. Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry 2018; 8(1): 10.
[http://dx.doi.org/10.1038/s41398-017-0056-8] [PMID: 29317604]
[119]
Zador F, Samavati R, Szlavicz E, et al. Inhibition of opioid receptor mediated G-protein activity after chronic administration of kynurenic acid and its derivative without direct binding to opioid receptors. CNS Neurol Disord Drug Targets 2014; 13(9): 1520-9.
[http://dx.doi.org/10.2174/1871527314666141205164114] [PMID: 25478797]
[120]
Neradugomma NK, Liao MZ, Mao Q. Buprenorphine, norbuprenorphine, R-Methadone, and S-Methadone upregulate BCRP/ABCG2 expression by activating aryl hydrocarbon receptor in human placental trophoblasts. Mol Pharmacol 2017; 91(3): 237-49.
[http://dx.doi.org/10.1124/mol.116.107367] [PMID: 27974484]
[121]
Huang P, Ceccatelli S, Håkansson H, Grandison L, Rannug A. Constitutive and TCDD-induced expression of Ah receptor-responsive genes in the pituitary. Neurotoxicology 2002; 23(6): 783-93.
[http://dx.doi.org/10.1016/S0161-813X(02)00040-2] [PMID: 12520768]
[122]
Kramer BA, Katz JL. Circadian temperature variation and depressive illness. J Clin Psychiatry 1978; 39(5): 439-44.
[PMID: 641023]
[123]
Leibenluft E, Noonan BM, Wehr TA. Diurnal variation: reliability of measurement and relationship to typical and atypical symptoms of depression. J Affect Disord 1992; 26(3): 199-204.
[http://dx.doi.org/10.1016/0165-0327(92)90016-Y] [PMID: 1460170]
[124]
Lee HJ. Is advancing circadian rhythm the mechanism of antidepressants? Psychiatry Investig 2019; 16(7): 479-83.
[http://dx.doi.org/10.30773/pi.2019.06.20] [PMID: 31352729]
[125]
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2018; 175(16): 3239-50.
[http://dx.doi.org/10.1111/bph.14083] [PMID: 29105727]
[126]
Park M, Kim SA, Yee J, Shin J, Lee KY, Joo EJ. Significant role of gene-gene interactions of clock genes in mood disorder. J Affect Disord 2019; 257: 510-7.
[http://dx.doi.org/10.1016/j.jad.2019.06.056] [PMID: 31323592]
[127]
Beker MC, Caglayan B, Caglayan AB, et al. Interaction of melatonin and Bmal1 in the regulation of PI3K/AKT pathway components and cellular survival. Sci Rep 2019; 9(1): 19082.
[http://dx.doi.org/10.1038/s41598-019-55663-0] [PMID: 31836786]
[128]
Iranmanesh A, Lizarralde G, Johnson ML, Veldhuis JD. Circadian, ultradian, and episodic release of beta-endorphin in men, and its temporal coupling with cortisol. J Clin Endocrinol Metab 1989; 68(6): 1019-26.
[http://dx.doi.org/10.1210/jcem-68-6-1019] [PMID: 2524500]
[129]
Agapito M, Mian N, Boyadjieva NI, Sarkar DK. Period 2 gene deletion abolishes beta-endorphin neuronal response to ethanol. Alcohol Clin Exp Res 2010; 34(9): 1613-8.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01246.x] [PMID: 20586752]
[130]
Mitchell V, Prévot V, Beauvillain JC. Distribution and diurnal variations of the mu opioid receptor expression in the arcuate nucleus of the male rat. Neuroendocrinology 1998; 67(2): 94-100.
[http://dx.doi.org/10.1159/000054303] [PMID: 9508039]
[131]
Miguel Asai MA, Lilian Mayagoitia LM, David García DG, Gilberto Matamoros-Trejo GM, Marcela Valdés-Tovar MV, Phillipe Leff PL. Rat brain opioid peptides-circadian rhythm is under control of melatonin. Neuropeptides 2007; 41(6): 389-97.
[http://dx.doi.org/10.1016/j.npep.2007.09.001] [PMID: 17988732]
[132]
Govitrapong P, Sawlom S, Ebadi M. The presence of delta and mu-, but not kappa or ORL(1) receptors in bovine pinealocytes. Brain Res 2002; 951(1): 23-30.
[http://dx.doi.org/10.1016/S0006-8993(02)03100-1] [PMID: 12231452]
[133]
Young KD, Zotev V, Phillips R, Misaki M, Drevets WC, Bodurka J. Amygdala real-time functional magnetic resonance imaging neurofeedback for major depressive disorder: A review. Psychiatry Clin Neurosci 2018; 72(7): 466-81.
[http://dx.doi.org/10.1111/pcn.12665] [PMID: 29687527]
[134]
Brown SSG, Rutland JW, Verma G, et al. Structural MRI at 7T reveals amygdala nuclei and hippocampal subfield volumetric association with Major Depressive Disorder symptom severity. Sci Rep 2019; 9(1): 10166.
[http://dx.doi.org/10.1038/s41598-019-46687-7] [PMID: 31308432]
[135]
Anderson G. Neuronal-immune interactions in mediating stress effects in the etiology and course of schizophrenia: role of the amygdala in developmental co-ordination. Med Hypotheses 2011; 76(1): 54-60.
[http://dx.doi.org/10.1016/j.mehy.2010.08.029] [PMID: 20843610]
[136]
Light SN, Bieliauskas LA, Zubieta JK. “Top-Down” Mu-opioid system function in humans: Mu-opioid receptors in ventrolateral prefrontal cortex mediate the relationship between hedonic tone and executive function in major depressive disorder. J Neuropsychiatry Clin Neurosci 2017; 29(4): 357-64.
[http://dx.doi.org/10.1176/appi.neuropsych.16090171] [PMID: 28412878]
[137]
Callaghan CK, Rouine J, O’Mara SM. Potential roles for opioid receptors in motivation and major depressive disorder Prog Brain Res. 2018; 239: pp. 89-119.
[http://dx.doi.org/10.1016/bs.pbr.2018.07.009] [PMID: 30314570]
[138]
Arrázola MS, Andraini T, Szelechowski M, et al. Mitochondria in developmental and adult neurogenesis. Neurotox Res 2019; 36(2): 257-67.
[http://dx.doi.org/10.1007/s12640-018-9942-y] [PMID: 30215161]
[139]
Möhle L, Mattei D, Heimesaat MM, et al. Ly6C(hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep 2016; 15(9): 1945-56.
[http://dx.doi.org/10.1016/j.celrep.2016.04.074] [PMID: 27210745]
[140]
Malik A, Kondratov RV, Jamasbi RJ, Geusz ME. Circadian clock genes are essential for normal adult neurogenesis, differentiation, and fate determination. PLoS One 2015; 10(10)e0139655
[http://dx.doi.org/10.1371/journal.pone.0139655] [PMID: 26439128]
[141]
Hahn JW, Jagwani S, Kim E, et al. Mu and kappa opioids modulate mouse embryonic stem cell-derived neural progenitor differentiation via MAP kinases. J Neurochem 2010; 112(6): 1431-41.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06479.x] [PMID: 19895666]
[142]
Narita M, Kuzumaki N, Miyatake M, et al. Role of delta-opioid receptor function in neurogenesis and neuroprotection. J Neurochem 2006; 97(5): 1494-505.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03849.x] [PMID: 16696856]
[143]
Wang SY, Duan YL, Zhao B, Wang XR, Zhao Z, Zhang GM. Effect of delta opioid receptor activation on spatial cognition and neurogenesis in cerebral ischemic rats. Neurosci Lett 2016; 620: 20-6.
[http://dx.doi.org/10.1016/j.neulet.2016.03.035] [PMID: 27016387]
[144]
Persson AI, Thorlin T, Bull C, et al. Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 2003; 17(6): 1159-72.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02538.x] [PMID: 12670304]
[145]
Cominski TP, Ansonoff MA, Turchin CE, Pintar JE. Loss of the mu opioid receptor induces strain-specific alterations in hippocampal neurogenesis and spatial learning. Neuroscience 2014; 278: 11-9.
[http://dx.doi.org/10.1016/j.neuroscience.2014.07.039] [PMID: 25086317]
[146]
Hauser KF, Houdi AA, Turbek CS, Elde RP, Maxson W III. Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of mu and delta receptor activation on proliferation and neurite elongation. Eur J Neurosci 2000; 12(4): 1281-93.
[http://dx.doi.org/10.1046/j.1460-9568.2000.01015.x] [PMID: 10762357]
[147]
Anderson G, Maes M. Reconceptualizing adult neurogenesis: role for sphingosine-1-phosphate and fibroblast growth factor-1 in co-ordinating astrocyte-neuronal precursor interactions. CNS Neurol Disord Drug Targets 2014; 13(1): 126-36.
[http://dx.doi.org/10.2174/18715273113126660132] [PMID: 24040808]
[148]
Dyar KA, Ciciliot S, Wright LE, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 2013; 3(1): 29-41.
[http://dx.doi.org/10.1016/j.molmet.2013.10.005] [PMID: 24567902]
[149]
Molero P, Ramos-Quiroga JA, Martin-Santos R, Calvo-Sánchez E, Gutiérrez-Rojas L, Meana JJ. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs 2018; 32(5): 411-20.
[http://dx.doi.org/10.1007/s40263-018-0519-3] [PMID: 29736744]
[150]
Lumsden EW, Troppoli TA, Myers SJ, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA 2019; 116(11): 5160-9.
[http://dx.doi.org/10.1073/pnas.1816071116] [PMID: 30796190]
[151]
Petrocchi JA, de Almeida DL, Paiva-Lima P, et al. Peripheral antinociception induced by ketamine is mediated by the endogenous opioid system. Eur J Pharmacol 2019.865172808
[http://dx.doi.org/10.1016/j.ejphar.2019.172808] [PMID: 31738939]
[152]
Williams NR, Heifets BD, Bentzley BS, et al. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatry 2019; 24(12): 1779-86.
[http://dx.doi.org/10.1038/s41380-019-0503-4] [PMID: 31467392]
[153]
Klein ME, Chandra J, Sheriff S, Malinow R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc Natl Acad Sci USA 2020; 117(5): 2656-62.
[http://dx.doi.org/10.1073/pnas.1916570117] [PMID: 31941713]
[154]
Ho MF, Zhang C, Zhang L, Li H, Weinshilboum RM. ketamine and active ketamine metabolites regulate STAT3 and the type I interferon pathway in human microglia: molecular mechanisms linked to the antidepressant effects of Ketamine. Front Pharmacol 2019; 10: 1302.
[http://dx.doi.org/10.3389/fphar.2019.01302] [PMID: 31827434]
[155]
Welters ID, Hafer G, Menzebach A, et al. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines. Anesth Analg 2010; 110(3): 934-41.
[http://dx.doi.org/10.1213/ANE.0b013e3181c95cfa] [PMID: 20185670]
[156]
Nowak W, Grendas LN, Sanmarco LM, et al. Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR. EBioMedicine 2019; 50: 290-305.
[http://dx.doi.org/10.1016/j.ebiom.2019.10.063] [PMID: 31753725]
[157]
Pang CS, Mulnier C, Pang SF, Yang JC. Effects of halothane, pentobarbital and ketamine on serum melatonin levels in the early scotophase in New Zealand white rabbits. Biol Signals Recept 2001; 10(5): 310-6.
[http://dx.doi.org/10.1159/000046898] [PMID: 11490096]
[158]
Nemeth CL, Paine TA, Rittiner JE, et al. Role of kappa-opioid receptors in the effects of salvinorin A and ketamine on attention in rats. Psychopharmacology (Berl) 2010; 210(2): 263-74.
[http://dx.doi.org/10.1007/s00213-010-1834-7] [PMID: 20358363]
[159]
Tanimoto M, Fukuoka T, Miki K, Tokunaga A, Tashiro C, Noguchi K. Effects of halothane, ketamine and nitrous oxide on dynorphin mRNA expression in dorsal horn neurons after peripheral tissue injury. Brain Res 1998; 811(1-2): 88-95.
[http://dx.doi.org/10.1016/S0006-8993(98)00987-1] [PMID: 9804904]
[160]
Mihara T, Kikuchi T, Kamiya Y, et al. Day or night administration of ketamine and pentobarbital differentially affect circadian rhythms of pineal melatonin secretion and locomotor activity in rats. Anesth Analg 2012; 115(4): 805-13.
[http://dx.doi.org/10.1213/ANE.0b013e3182632bcb] [PMID: 22886841]
[161]
Dale RM, Bryant KA, Thompson NR. Metabolic syndrome rather than body mass index is associated with treatment response to ketamine infusions. J Clin Psychopharmacol 2020; 40(1): 75-9.
[http://dx.doi.org/10.1097/JCP.0000000000001149] [PMID: 31834094]
[162]
Akbari M, Ostadmohammadi V, Tabrizi R, et al. The effects of melatonin supplementation on inflammatory markers among patients with metabolic syndrome or related disorders: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 2018; 26(4): 899-907.
[http://dx.doi.org/10.1007/s10787-018-0508-7] [PMID: 29907916]
[163]
Choudhury A, Singh S, Palit G, Shukla S, Ganguly S. Administration of N-acetylserotonin and melatonin alleviate chronic ketamine-induced behavioural phenotype accompanying BDNF-independent and dependent converging cytoprotective mechanisms in the hippocampus. Behav Brain Res 2016; 297: 204-12.
[http://dx.doi.org/10.1016/j.bbr.2015.10.027] [PMID: 26475510]
[164]
Onaolapo AY, Aina OA, Onaolapo OJ. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed Pharmacother 2017; 92: 373-83.
[http://dx.doi.org/10.1016/j.biopha.2017.05.094] [PMID: 28554133]
[165]
da Silva Araújo T, Maia Chaves Filho AJ, Monte AS, et al. Reversal of schizophrenia-like symptoms and immune alterations in mice by immunomodulatory drugs. J Psychiatr Res 2017; 84: 49-58.
[http://dx.doi.org/10.1016/j.jpsychires.2016.09.017] [PMID: 27697587]
[166]
Budhiraja S, Singh J. Adjuvant effect of melatonin on anesthesia induced by thiopental sodium, ketamine, and ether in rats. Methods Find Exp Clin Pharmacol 2005; 27(10): 697-9.
[http://dx.doi.org/10.1358/mf.2005.27.10.948896] [PMID: 16395419]
[167]
Zhao W, Zhu DM, Zhang Y, et al. Pineal gland abnormality in major depressive disorder. Psychiatry Res Neuroimaging 2019; 289: 13-7.
[http://dx.doi.org/10.1016/j.pscychresns.2019.05.004] [PMID: 31121531]
[168]
Bellet MM, Vawter MP, Bunney BG, Bunney WE, Sassone-Corsi P. Ketamine influences CLOCK:BMAL1 function leading to altered circadian gene expression. PLoS One 2011; 6(8)e23982
[http://dx.doi.org/10.1371/journal.pone.0023982] [PMID: 21887357]
[169]
Duncan WC Jr, Slonena EE, Hejazi NS, et al. Are 24-hour motor activity patterns associated with continued rapid response to ketamine? Neuropsychiatr Dis Treat 2018; 14: 2739-48.
[http://dx.doi.org/10.2147/NDT.S172089] [PMID: 30410340]
[170]
Markham A, Cameron I, White SJ. The effect of ketamine hydrochloride, a non-barbiturate parenteral anaesthetic on oxidative phosphorylation in rat liver mitochondria. Biochem Pharmacol 1981; 30(15): 2165-8.
[http://dx.doi.org/10.1016/0006-2952(81)90238-0] [PMID: 6457604]
[171]
Faccio AT, Ruperez FJ, Singh NS, et al. Stereochemical and structural effects of (2R, 6R)-hydroxynorketamine on the mitochondrial metabolome in PC-12 cells. Biochim Biophys Acta, Gen Subj 2018; 1862(6): 1505-15.
[http://dx.doi.org/10.1016/j.bbagen.2018.03.008] [PMID: 29526507]
[172]
Weckmann K, Deery MJ, Howard JA, et al. Ketamine’s antidepressant effect is mediated by energy metabolism and antioxidant defense system. Sci Rep 2017; 7(1): 15788.
[http://dx.doi.org/10.1038/s41598-017-16183-x] [PMID: 29150633]
[173]
Smalheiser NR. Ketamine: a neglected therapy for alzheimer disease. Front Aging Neurosci 2019; 11: 186.
[http://dx.doi.org/10.3389/fnagi.2019.00186] [PMID: 31396078]
[174]
Vanle B, Olcott W, Jimenez J, Bashmi L, Danovitch I. IsHak WW. NMDA antagonists for treating the non-motor symptoms in Parkinson’s disease. Transl Psychiatry 2018; 8(1): 117.
[http://dx.doi.org/10.1038/s41398-018-0162-2] [PMID: 29907742]
[175]
Messer MM, Haller IV. Ketamine therapy for treatment-resistant depression in a patient with multiple sclerosis: a case report. Innov Clin Neurosci 2017; 14(1-2): 56-9.
[PMID: 28386522]
[176]
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Mult Scler Relat Disord 2015; 4(2): 112-23.
[http://dx.doi.org/10.1016/j.msard.2014.12.001] [PMID: 25787187]
[177]
Anderson G, Seo M, Berk M, Carvalho AF, Maes M. Gut permeability and microbiota in parkinson’s disease: role of depression, tryptophan catabolites, oxidative and nitrosative stress and melatonergic pathways. Curr Pharm Des 2016; 22(40): 6142-51.
[http://dx.doi.org/10.2174/1381612822666160906161513] [PMID: 27604608]
[178]
Anderson G, Maes M. Local melatonin regulates inflammation resolution: a common factor in neurodegenerative, psychiatric and systemic inflammatory disorders. CNS Neurol Disord Drug Targets 2014; 13(5): 817-27.
[http://dx.doi.org/10.2174/1871527313666140711091400] [PMID: 25012620]
[179]
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, et al. Venlafaxine prevents morphine antinociceptive tolerance: The role of neuroinflammation and the l-arginine-nitric oxide pathway. Exp Neurol 2018; 303: 134-41.
[http://dx.doi.org/10.1016/j.expneurol.2018.02.009] [PMID: 29453978]
[180]
Attal N. Pharmacological treatments of neuropathic pain: The latest recommendations. Rev Neurol (Paris) 2019; 175(1-2): 46-50.
[http://dx.doi.org/10.1016/j.neurol.2018.08.005] [PMID: 30318260]
[181]
Hagemeier NE. Introduction to the opioid epidemic: the economic burden on the healthcare system and impact on quality of life. Am J Manag Care 2018; 24(10)(Suppl.): S200-6.
[PMID: 29851449]
[182]
Kozlowski M, Nazimek K, Nowak B, Filipczak-Bryniarska I, Bryniarski K. Analgesic adjuvants modulate morphine-induced immune effects in mice. Pharmacol Rep 2019; 71(4): 573-82.
[http://dx.doi.org/10.1016/j.pharep.2019.04.016] [PMID: 31170658]
[183]
Roomruangwong C, Anderson G, Berk M, Stoyanov D, Carvalho AF, Maes M. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81: 262-74.
[http://dx.doi.org/10.1016/j.pnpbp.2017.09.015] [PMID: 28941769]
[184]
Zhu C, Xu Y, Duan Y, et al. Exogenous melatonin in the treatment of pain: a systematic review and meta-analysis. Oncotarget 2017; 8(59): 100582-92.
[http://dx.doi.org/10.18632/oncotarget.21504] [PMID: 29246003]
[185]
Russo R, De Caro C, Avagliano C, et al. Sodium butyrate and its synthetic amide derivative modulate nociceptive behaviors in mice. Pharmacol Res 2016; 103: 279-91.
[http://dx.doi.org/10.1016/j.phrs.2015.11.026] [PMID: 26675718]
[186]
Byrd JC, Naranjo JR, Lindberg I. Proenkephalin gene expression in the PC12 pheochromocytoma cell line: stimulation by sodium butyrate. Endocrinology 1987; 121(4): 1299-305.
[http://dx.doi.org/10.1210/endo-121-4-1299] [PMID: 3653029]
[187]
Li JY, Yu M, Pal S, et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J Clin Invest 2020. In press
[http://dx.doi.org/10.1172/JCI133473] [PMID: 31917685]
[188]
Reiter RJ, Sharma R, Ma Q, Rosales-Corral SA, Acuna-Castroviejo D, Escames G. Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by which melatonin causes cancer cells to overcome aerobic glycolysis, limit tumor growth and reverse insensitivity to chemotherapy. Melatonin Res 2019; 2: 105-19.
[http://dx.doi.org/10.32794/mr11250033]
[189]
Anderson G. Daytime orexin and night-time melatonin regulation of mitochondria melatonin: roles in circadian oscillations systemically and centrally in breast cancer symptomatology. Melatonin Res 2019; 2(4): 1-8.
[http://dx.doi.org/10.32794/mr11250037]
[190]
Jury Freitas J, Bertuol Xavier N, Comiran Tonon A, et al. 6-Sulfatoxymelatonin predicts treatment response to fluoxetine in major depressive disorder. Ther Adv Psychopharmacol 2019.92045125319881927
[http://dx.doi.org/10.1177/2045125319881927] [PMID: 31908762]
[191]
Vašíček O, Lojek A, Číž M. Serotonin and its metabolites reduce oxidative stress in murine RAW264.7 macrophages and prevent inflammation. J Physiol Biochem 2020; 76(1): 49-60.
[http://dx.doi.org/10.1007/s13105-019-00714-3] [PMID: 31900806]
[192]
Pontes GN, Cardoso EC, Carneiro-Sampaio MM, Markus RP. Pineal melatonin and the innate immune response: the TNF-alpha increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res 2007; 43(4): 365-71.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00487.x] [PMID: 17910605]
[193]
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659: 41-54.
[http://dx.doi.org/10.1016/j.brainres.2017.01.025] [PMID: 28119059]
[194]
Navinés R, Martín-Santos R, Gómez-Gil E, Martínez de Osaba MJ, Gastó C. Interaction between serotonin 5-HT1A receptors and beta-endorphins modulates antidepressant response. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(8): 1804-9.
[http://dx.doi.org/10.1016/j.pnpbp.2008.07.021] [PMID: 18725263]
[195]
Holanda VAD, Santos WB, Asth L, et al. NOP agonists prevent the antidepressant-like effects of nortriptyline and fluoxetine but not R-ketamine. Psychopharmacology (Berl) 2018; 235(11): 3093-102.
[http://dx.doi.org/10.1007/s00213-018-5004-7] [PMID: 30145654]
[196]
Zhou QG, Zhu LJ, Chen C, et al. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. J Neurosci 2011; 31(21): 7579-90.
[http://dx.doi.org/10.1523/JNEUROSCI.0004-11.2011] [PMID: 21613472]
[197]
Tranah GJ, Maglione JE, Yaffe K, et al. Health, Aging and Body Composition Study. Mitochondrial DNA m.13514G>A heteroplasmy is associated with depressive symptoms in the elderly. Int J Geriatr Psychiatry 2018; 33(10): 1319-26.
[http://dx.doi.org/10.1002/gps.4928] [PMID: 29984425]
[198]
Petschner P, Gonda X, Baksa D, et al. Genes linking mitochondrial function, cognitive impairment and depression are associated with endophenotypes serving precision medicine. Neuroscience 2018; 370: 207-17.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.049] [PMID: 28987512]
[199]
Cote B, Ross B, Fortner J, Rao D. The use and utility of low-dose naltrexone capsules for patients with fibromyalgia. Int J Pharm Compd 2018; 22(3): 252-6.
[PMID: 29878893]
[200]
Bolton MJ, Chapman BP, Van Marwijk H. Low-dose naltrexone as a treatment for chronic fatigue syndrome. BMJ Case Rep 2020; 13(1)e232502
[http://dx.doi.org/10.1136/bcr-2019-232502] [PMID: 31911410]
[201]
Mischoulon D, Hylek L, Yeung AS, et al. Randomized, proof-of-concept trial of low dose naltrexone for patients with breakthrough symptoms of major depressive disorder on antidepressants. J Affect Disord 2017; 208: 6-14. [Erratum in: J Affect Disord. 2017 Oct 27;227:198].
[http://dx.doi.org/10.1016/j.jad.2016.08.029] [PMID: 27736689]
[202]
Weinstock LB, Brook JB, Myers TL, Goodman B. Successful treatment of postural orthostatic tachycardia and mast cell activation syndromes using naltrexone,immunoglobulin and antibiotic treatment. BMJ Case Rep 2018.
[http://dx.doi.org/10.1136/bcr-2017-221405]
[203]
Brietzke E, Mansur RB, Subramaniapillai M, et al. Ketogenic diet as a metabolic therapy for mood disorders: Evidence and developments. Neurosci Biobehav Rev 2018; 94: 11-6.
[http://dx.doi.org/10.1016/j.neubiorev.2018.07.020] [PMID: 30075165]
[204]
Tognini P, Murakami M, Liu Y, et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab 2017; 26(3): 523-538.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.08.015] [PMID: 28877456]
[205]
Parker BA, Walton CM, Carr ST, et al. β-Hydroxybutyrate elicits favorable mitochondrial changes in skeletal muscle. Int J Mol Sci 2018; 19(8): E2247.
[http://dx.doi.org/10.3390/ijms19082247] [PMID: 30071599]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy