Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Microwave Assisted, Antimicrobial Activity and Molecular Modeling of Some Synthesized Newly Pyrimidine Derivatives Using 1, 4- diazabicyclo[2.2.2]octane as a Catalyst

Author(s): Nadia Ali Ahmed Elkanzi and Rania Badaway Bakr*

Volume 17, Issue 12, 2020

Page: [1538 - 1551] Pages: 14

DOI: 10.2174/1570180817999200802033351

Price: $65

Abstract

Background: Pyrimidine ring is one of the most important heterocyclic scaffolds due to its biological benefits as antimicrobial agents via acting as competitive suppressors of dihydropteroate synthase (DHPS) enzyme, inhibiting dihydrofolate reductase or glucosamine N-phosphate synthase.

Objective: The objective of this work is preparing twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f via a facile one step reaction with antimicrobial potential.

Methods: Novel twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f were prepared via a facile one step reaction by treating substituted aldehydes, urea and / or thiourea and active methylene derivatives (diethyl malonate and / or ethyl cyanoacetate) using 1,4- diazabicyclo[2.2.2]octane (DABCO) as a basic catalyst. The chemical structures of all these novel targets were proved by 1HNMR, 13CNMR, MS and elemental analyses. All the twenty four new targets 1a-f, 2a-f, 3a-f and 4a-f were assessed for their antimicrobial activity towards bacteria as Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and against fungi represented by Aspergillus flavus and Candida albicans.

Results: Most of the compounds exhibited very good antimicrobial activity, especially; compound (1c) exhibited the most activity against three types of bacteria Escherichia coli, Bacillus subtilis, Staphylococcus aureus. Moreover, this derivative 1c displayed similar antifungal activity towards Candida albicans as that exhibited by amphotericin B.

Conclusion: All the screened compounds 1a-f, 2a-f, 3a-f and 4a-f showed antibacterial activity with inhibition zone diameter range 6-21 mm/mg, while, regarding the antifungal activity, all the novel derivatives except 2b, 2d, 3a, 3c, 3e did not have any effect towards Aspergillus flavus and 3d did not reveal any inhibitory activity towards both fungal species.

Keywords: Antimicrobial activity, pyrimidine heterocycle, active methylene derivatives, molecular modeling, Glc-N-6-P, DABCO.

Graphical Abstract

[1]
Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry, 2000, 6(18), 3321-3329.
[http://dx.doi.org/10.1002/1521-3765(20000915)6:18<3321:AID-CHEM3321>3.0.CO;2-A] [PMID: 11039522]
[2]
Dax, S.L.; McNally, J.J.; Youngman, M.A. Multi-component methodologies synthesis. Curr. Med. Chem., 1999, 6, 255.
[PMID: 10219102]
[3]
Ramachary, D.B.; Jain, S. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: An emerging technology in organic synthesis. Org. Biomol. Chem., 2011, 9(5), 1277-1300.
[http://dx.doi.org/10.1039/C0OB00611D] [PMID: 21120241]
[4]
Mohamed, M.S.; Awad, S.M.; Sayed, A.I. Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents. Molecules, 2010, 15(3), 1882-1890.
[http://dx.doi.org/10.3390/molecules15031882] [PMID: 20336018]
[5]
Rostom, S.A.; Ashour, H.M.; Abd El Razik, H.A. Synthesis and biological evaluation of some novel polysubstituted pyrimidine derivatives as potential antimicrobial and anticancer agents. Arch. Pharm. (Weinheim), 2009, 342(5), 299-310.
[http://dx.doi.org/10.1002/ardp.200800223] [PMID: 19415663]
[6]
Rostom, S.A.; Badr, M.H.; Abd El Razik, H.A.; Ashour, H.M.; Abdel Wahab, A.E. Synthesis of some pyrazolines and pyrimidines derived from polymethoxy chalcones as anticancer and antimicrobial agents. Arch. Pharm. (Weinheim), 2011, 344(9), 572-587.
[http://dx.doi.org/10.1002/ardp.201100077] [PMID: 21755528]
[7]
Carr, H.S.; Wlodkowski, T.J.; Rosenkranz, H.S. Silver sulfadiazine: In vitro antibacterial activity. Antimicrob. Agents Chemother., 1973, 4(5), 585-587.
[http://dx.doi.org/10.1128/AAC.4.5.585] [PMID: 4791493]
[8]
Seydel, J.K.; Wempe, E.G.; Rosenfeld, M. Bacterial growth kinetics of Escherichia coli and mycobacteria in the presence of brodimoprim and metioprim alone and in combination with sulfamerazine and dapsone (VI). Chemotherapy, 1983, 29(4), 249-261.
[http://dx.doi.org/10.1159/000238206] [PMID: 6347548]
[9]
Gaffer, H.; Gouda, M.; Abdel-Latif, E. Antibacterial activity of cotton fabrics treated with sulfadimidine azo dye/chitosan colloid. J. Ind. Text., 2013, 42, 392-399.
[http://dx.doi.org/10.1177/1528083712441959]
[10]
Patel, U.; Haridas, M.; Singh, T. Structure of the 1: 1 complex between 4-amino-N-(4, 6-dimethyl-2-pyrimidinyl) benzenesulfonamide (sulfadimidine) and 2-hydroxybenzoic acid (salicylic acid). Acta Crystallogr. C, 1988, 44, 1264-1267.
[http://dx.doi.org/10.1107/S0108270188003579]
[11]
Awasthi, P.; Devi, K. Structural characterization, photoluminescence, computational studies and bioassay of newly synthesized N-(3-oxo-3-morpholino-1-phenyl-propyl) benzo sulfonamide with multifunctional application. Res. Chem. Intermed., 2019, 45, 581-598.
[http://dx.doi.org/10.1007/s11164-018-3620-9]
[12]
Triglia, T.; Cowman, A.F. The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resist. Updat., 1999, 2(1), 15-19.
[http://dx.doi.org/10.1054/drup.1998.0060] [PMID: 11504465]
[13]
Vinnicombe, H.G.; Derrick, J.P. Dihydropteroate synthase from Streptococcus pneumoniae: characterization of substrate binding order and sulfonamide inhibition. Biochem. Biophys. Res. Commun., 1999, 258(3), 752-757.
[http://dx.doi.org/10.1006/bbrc.1999.0695] [PMID: 10329458]
[14]
Rubin, R.H.; Swartz, M.N. Trimethoprim-sulfamethoxazole. N. Engl. J. Med., 1980, 303(8), 426-432.
[http://dx.doi.org/10.1056/NEJM198008213030804] [PMID: 6967184]
[15]
Frey, K.M.; Lombardo, M.N.; Wright, D.L.; Anderson, A.C. Towards the understanding of resistance mechanisms in clinically isolated trimethoprim-resistant, methicillin-resistant Staphylococcus aureus dihydrofolate reductase. J. Struct. Biol., 2010, 170(1), 93-97.
[http://dx.doi.org/10.1016/j.jsb.2009.12.011] [PMID: 20026215]
[16]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs. Bioorg. Med. Chem. Lett., 2014, 24(14), 3126-3130.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.002] [PMID: 24856067]
[17]
Chandrasekaran, B.; Cherukupalli, S.; Karunanidhi, S.; Kajee, A.; Aleti, R.R.; Sayyad, N. Design and synthesis of novel heterofused pyrimidine analogues as effective antimicrobial agents. J. Mol. Struct., 2019, 1183, 246-255.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.105]
[18]
Gokhale, N.; Dalimba, U.; Kumsi, M. Facile synthesis of indole-pyrimidine hybrids and evaluation of their anticancer and antimicrobial activity. J. Saudi Chem. Soc., 2017, 21, 761-775.
[http://dx.doi.org/10.1016/j.jscs.2015.09.003]
[19]
Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.; Riedle, E.; Mayr, H. DABCO and DMAP--why are they different in organocatalysis? Angew. Chem. Int. Ed. Engl., 2007, 46(32), 6176-6179.
[http://dx.doi.org/10.1002/anie.200701489] [PMID: 17628470]
[20]
Ameer, F.; Drewes, S.E.; Freese, S.; Kaye, P.T. Rate enhancement effects in the DABCO catalysed synthesis of hydroxyalkenoate esters. Synth. Commun., 1988, 18, 495-500.
[http://dx.doi.org/10.1080/00397918808060742]
[21]
Ballester, P.; Costa, A.; Castilla, A.M.; Deyà, P.M.; Frontera, A.; Gomila, R.M.; Hunter, C.A. DABCO-directed self-assembly of bisporphyrins (DABCO=1,4-diazabicyclo[2.2.2]octane). Chemistry, 2005, 11(7), 2196-2206.
[http://dx.doi.org/10.1002/chem.200400772] [PMID: 15714460]
[22]
Braga, D.; Maini, L.; Mazzeo, P.P.; Ventura, B. Reversible interconversion between luminescent isomeric metal-organic frameworks of [Cu(4)I(4)(DABCO)(2)] (DABCO=1,4-diazabicyclo[2.2.2]octane). Chemistry, 2010, 16(5), 1553-1559.
[http://dx.doi.org/10.1002/chem.200900743] [PMID: 20013775]
[23]
Shi, Y-L.; Shi, M. DABCO-catalyzed reaction of allenic esters and ketones with salicyl N-tosylimines: Synthesis of highly functionalized chromenes. Org. Lett., 2005, 7(14), 3057-3060.
[http://dx.doi.org/10.1021/ol051044l] [PMID: 15987204]
[24]
Bakr, R.B.; Elkanzi, N.A.; Ghoneim, A.A.; Moustafa, S. Synthesis, molecular docking studies and in vitro antimicrobial evaluation of novel pyrimido [1, 2-a] quinoxaline and triazino [4, 3-a] Quinoxaline derivatives. Heterocycles, 2018, 96, 1941-1957.
[http://dx.doi.org/10.3987/COM-18-13955]
[25]
Ghoneim, A.A.; Ahmed Elkanzi, N.A.; Bakr, R.B. Synthesis and studies molecular docking of some new thioxobenzo [g] pteridine derivatives and 1, 4-dihydroquinoxaline derivatives with glycosidic moiety. J. Taibah Univ. Sci., 2018, 12, 774-782.
[http://dx.doi.org/10.1080/16583655.2018.1510163]
[26]
Elkanzi, N.A.; Bakr, R.B.; Ghoneim, A.A. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano [2, 3-b] pyridine andpPyrrolo [2, 3-b] pyrano [2.3-d] pyridine derivatives. J. Heterocycl. Chem., 2019, 56, 406-416.
[http://dx.doi.org/10.1002/jhet.3412]]
[27]
Abdelgawad, M.A.; Bakr, R.B.; Ahmad, W.; Al-Sanea, M.M.; Elshemy, H.A.H. New pyrimidine-benzoxazole/benzimidazole hybrids: Synthesis, antioxidant, cytotoxic activity, in vitro cyclooxygenase and phospholipase A2-V inhibition. Bioorg. Chem., 2019.92103218
[http://dx.doi.org/10.1016/j.bioorg.2019.103218] [PMID: 31536956]
[28]
Bakr, R.B.; Ghoneim, A.A.; Azouz, A.A. Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo[4,5-d]pyrimidine scaffold. Bioorg. Chem., 2019, 88, 102964-102964.
[http://dx.doi.org/10.1016/j.bioorg.2019.102964] [PMID: 31075742]
[29]
Bakr, R.B.; Mehany, A. (3, 5-Dimethylpyrazol-1-yl)-[4-(1-phenyl-1H-pyrazolo [3, 4-d] pyrimidin-4-ylamino) phenyl] methanone. Molbank, 2016, 2016, M915.
[http://dx.doi.org/10.3390/M915]
[30]
Elkanzi, N.A.A.; Ghoneim, A.A.; Bakr, R.B. design, efficient synthesis and antimicrobial evaluation of some novel pyrano[2, 3-b][1, 8]naphthyridine and pyrrolo [2,3-f][1,8] naphth- yridine derivatives. Der Pharma Chem., 2019, 11(2), 6-13.
[31]
Bakr, R.B.; Mehany, A.B.M.; Abdellatif, K.R.A. Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3, 6-dimethyl-1-phenyl-4-(substituted-methoxy) pyrazolo [3, 4-d] pyrimidine Derivatives. Anti-Cancer. Agents Med. Chem., 2017, 17, 1389-1400.
[32]
Al-Sanea, M.M.; Elkamhawy, A.; Paik, S.; Lee, K.; El Kerdawy, A.M.; Syed Nasir Abbas, B.; Joo Roh, E.; Eldehna, W.M.; Elshemy, H.A.H.; Bakr, R.B.; Ali Farahat, I.; Alzarea, A.I.; Alzarea, S.I.; Alharbi, K.S.; Abdelgawad, M.A. Sulfonamide-based 4-anilinoquinoline derivatives as novel dual Aurora kinase (AURKA/B) inhibitors: Synthesis, biological evaluation and in silico insights. Bioorg. Med. Chem., 2020, 28(13)115525
[http://dx.doi.org/10.1016/j.bmc.2020.115525] [PMID: 32371117]
[33]
Al-Sanea, M.; Parambi, D.; Shaker, M.; Elsherif, H.; Elshemy, H.; Bakr, R. design, synthesis, and in vitro cytotoxic activity of certain 2-[3-phenyl-4-(pyrimidin-4-yl)-1 h-pyrazol1-yl] acetamide derivatives. Russ. J. Org. Chem., 2020, 56, 514-520.
[http://dx.doi.org/10.1134/S1070428020030239]
[34]
Komykhov, S.A.; Ostras, K.S.; Kostanyan, A.R.; Desenko, S.M.; Orlov, V.D.; Meier, H. The reaction of amino-imidazoles,-pyrazoles and-triazoles with α, β-unsaturated nitriles. J. Heterocycl. Chem., 2005, 42, 1111-1116.
[http://dx.doi.org/10.1002/jhet.5570420612]
[35]
Lamie, P.F.; Azmey, A.F. Synthesis and biological evaluation of tetrazole derivatives as TNF-α, IL-6 and COX-2 inhibitors with antimicrobial activity: Computational analysis, molecular modeling study and region-specific cyclization using 2D NMR tools. Bioorg. Chem., 2019.92103301
[http://dx.doi.org/10.1016/j.bioorg.2019.103301] [PMID: 31563696]
[36]
Lagoja, I.M. Pyrimidine as constituent of natural biologically active compounds. Chem. Biodivers., 2005, 2(1), 1-50.
[http://dx.doi.org/10.1002/cbdv.200490173] [PMID: 17191918]
[37]
Slavícek, P.; Winter, B.; Faubel, M.; Bradforth, S.E.; Jungwirth, P. Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations. J. Am. Chem. Soc., 2009, 131(18), 6460-6467.
[http://dx.doi.org/10.1021/ja8091246] [PMID: 19374336]
[38]
Abdellatif, K.; Abdelall, E.; Abdelgawad, M.A.; Ahmed, R.R.; Bakr, R.B. Synthesis, docking study and antitumor evaluation of certain newly synthesized pyrazolo [3, 4-d] pyrimidine derivatives. Organ Chem. Indian J., 2014, 10, 157-167.
[39]
Bakr, R.B.; Abdelall, E.K.; Abdel-Hamid, M.K.; Kandeel, M.M. Design and synthesis of new EGFR-tyrosine kinase inhibitors containing pyrazolo [3, 4-d] pyrimidine cores as anticancer agents. Bull. Pharm. Sci. Assiut., 2012, 35, 27-42.
[http://dx.doi.org/10.21608/bfsa.2012.64596]
[40]
Sondhi, S.M.; Singh, N.; Johar, M.; Kumar, A. Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorg. Med. Chem., 2005, 13(22), 6158-6166.
[http://dx.doi.org/10.1016/j.bmc.2005.06.063] [PMID: 16115773]
[41]
Bhalgat, C.M.; Ali, M.I.; Ramesh, B.; Ramu, G. Novel pyrimidine and its triazole fused derivatives: Synthesis and investigation of antioxidant and anti-inflammatory activity. Arab. J. Chem., 2014, 7, 986-993.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.021]
[42]
Ikeda, M.; Maruyama, K.; Nobuhara, Y.; Yamada, T.; Okabe, S. Synthesis and cytoprotective antiulcer activity of 2- or 4-(1H-pyrazol-1-yl)pyrimidine derivatives related to mepirizole and dulcerozine. Chem. Pharm. Bull. (Tokyo), 1996, 44(9), 1700-1706.
[http://dx.doi.org/10.1248/cpb.44.1700] [PMID: 8855364]
[43]
Sharma, P.; Rane, N.; Gurram, V.K. Synthesis and QSAR studies of pyrimido[4,5-d]pyrimidine-2,5-dione derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2004, 14(16), 4185-4190.
[http://dx.doi.org/10.1016/j.bmcl.2004.06.014] [PMID: 15261267]
[44]
Pandeya, S.N.; Sriram, D.; Nath, G.; De Clercq, E. Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Farmaco, 1999, 54(9), 624-628.
[http://dx.doi.org/10.1016/S0014-827X(99)00075-0] [PMID: 10555264]
[45]
Movassaghi, M.; Hill, M.D. Single-step synthesis of pyrimidine derivatives. J. Am. Chem. Soc., 2006, 128(44), 14254-14255.
[http://dx.doi.org/10.1021/ja066405m] [PMID: 17076488]
[46]
Hill, M.D.; Movassaghi, M. New strategies for the synthesis of pyrimidine derivatives. Chemistry, 2008, 14(23), 6836-6844.
[http://dx.doi.org/10.1002/chem.200800014] [PMID: 18384023]
[47]
Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J.N. Biginelli reaction: An overview. Tetrahedron Lett., 2016, 57, 5135-5149.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.047]
[48]
Kumar, K.A.; Kasthuraiah, M.; Reddy, C.S.; Reddy, C.D. Mn (OAc) 3• 2H2O-mediated three-component, one-pot, condensation reaction: An efficient synthesis of 4-aryl-substituted 3, 4-dihydropyrimidin-2-ones. Tetrahedron Lett., 2001, 42, 7873-7875.
[http://dx.doi.org/10.1016/S0040-4039(01)01603-3]
[49]
Suzuki, I.; Suzumura, Y.; Takeda, K. Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Lett., 2006, 47, 7861-7864.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.019]
[50]
Cepanec, I.; Litvić, M.; Filipan-Litvić, M.; Grüngold, I. Antimony (III) chloride-catalysed Biginelli reaction: A versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron, 2007, 63, 11822-11827.
[http://dx.doi.org/10.1016/j.tet.2007.09.045]
[51]
Qiu, Y.; Sun, H.; Ma, Z.; Xia, W. Efficient, stable, and reusable Lewis acid-surfactant-combined catalyst: One-pot Biginelli and solvent-free esterification reactions. J. Mol. Catal. Chem., 2014, 392, 76-82.
[http://dx.doi.org/10.1016/j.molcata.2014.04.031]
[52]
Ramalinga, K.; Vijayalakshmi, P.; Kaimal, T. Bismuth (III)-catalyzed synthesis of dihydropyrimidinones: Improved protocol conditions for the Biginelli reaction Synlett, 2001, 0863-0865.
[53]
Shutalev, A.D.; Kishko, E.A.; Sivova, N.V.; Kuznetsov, A.Y. A New Convenient Synthesis of 5-Acyl-1, 2, 3, 4-tetrahydropyrimidine-2-thiones/ones. Molecules, 1998, 3, 100-106.
[http://dx.doi.org/10.3390/30300100]
[54]
Mansoor, S.; Shafi, S.; Ahmed, S. An efficient one-pot synthesis of 3, 4-dihydropyrimidines via a Lewis base catalyzed three-component Biginelli-type reaction under solvent-free conditions. Arab. J. Chem., 2011, 9, S846-S851.
[55]
Deshmukh, M.B.; Salunkhe, S.M.; Patil, D.R.; Anbhule, P.V. A novel and efficient one step synthesis of 2-amino-5-cyano-6-hydroxy-4-aryl pyrimidines and their anti-bacterial activity. Eur. J. Med. Chem., 2009, 44(6), 2651-2654.
[http://dx.doi.org/10.1016/j.ejmech.2008.10.018] [PMID: 19036478]

© 2025 Bentham Science Publishers | Privacy Policy