Generic placeholder image

Current Biotechnology

Editor-in-Chief

ISSN (Print): 2211-5501
ISSN (Online): 2211-551X

Research Article

Tabernaemontana divaricata Stem and Latex Proteases as Haemostatic Agent with Temporally Spaced Intense Fibrinogenolytic and Mild Fibrinolytic Activity

Author(s): Maheshwari K. Singh, Deepthi. N. Rao, Bedathur A. Sathish, Sunku P. Soundarya, Anusha Rajagopalan and Bindhu O. Sukumaran*

Volume 9, Issue 2, 2020

Page: [134 - 142] Pages: 9

DOI: 10.2174/2211550109999200801020116

Price: $65

Abstract

Background: Proteases play a crucial role in the pharmacological properties of latex producing plants. Some of them exhibited intervention with fibrinogenolysis and/or fibrinolysis, two crucial wound healing events.

Objective: To evaluate wound healing potential of crude and partially purified enzyme from Tabernaemontana divaricata (stem and latex).

Materials and Methods: Proteolytic activity, clot inducing/dissolving potential, fibrinogen polymerization, recalcification time, blood clot lysis and Tricine-SDS PAGE for enzyme treated fibrinogen and human plasma clot were performed.

Results: Latex PPE exhibited significant proteolytic activity (115.8 ± 0.3 U/ml) compared to that of the stem (28.78 ± 0.2 U/ml). Enzyme preparations exhibited temporally spaced clot inducing and subsequent dissolving properties favoring hemostatic effect, procoagulant effect being dominant and the first event. Significant reduction in fibrinogen absorbance at 540 nm with time, recalcification time and human fibrinogenolytic product analysis on Tricine PAGE substantiated procoagulant effect. Disappearance of Aα and Bβ fibrinopeptides by both stem and latex PPEs in the PAGE was observed. γ subunits were completely hydrolysed by latex PPE, however, it showed comparative resistance to stem PPE. Reduction in blood clot weight and fibrin subunit intensity supported thrombolytic property.

Conclusion: The study provides evidence of the procoagulant and thrombolytic activity associated with T. divaricata proteases.

Keywords: Hemostasis, procoagulant, proteases, T. divaricata, wound healing, fibrinolytic activity.

Graphical Abstract

[1]
Alam G, Singh MP, Singh A. Wound healing potential of some medicinal plants. Int J Pharm Sci Rev Res 2011; 9(1): 136-45.
[2]
Van Beek TA, Verpoorte R, Svendsen AB, Leeuwenberg AJ, Bisset NG, Tabernaemontana L. Apocynaceae): A review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnopharmacol 1984; 10(1): 1-156.
[http://dx.doi.org/10.1016/0378-8741(84)90046-1] [PMID: 6371388]
[3]
Ghani A. Medicinal plants of Bangladesh: Chemical constituents and uses. 2nd ed,Bangladesh: Asiatic society of Bangladesh 1998.
[4]
Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn S. Ethnobotany & ethnopharmacology of Tabernaemontana divaricata. Indian J Med Res 2008; 127(4): 317-35.
[PMID: 18577786]
[5]
Bhat P, Hegde G, Hegde GR. Ethnomedicinal practices in different communities of Uttara Kannada district of Karnataka for treatment of wounds. J Ethnopharmacol 2012; 143(2): 501-14.
[http://dx.doi.org/10.1016/j.jep.2012.07.003] [PMID: 22820243]
[6]
Kumar B, Vijayakumar M, Govindarajan R, Pushpangadan P. Ethnopharmacological approaches to wound healing--exploring medicinal plants of India. J Ethnopharmacol 2007; 114(2): 103-13.
[http://dx.doi.org/10.1016/j.jep.2007.08.010] [PMID: 17884316]
[7]
Ryan TJ. International Foundation for Dermatology--solving the problems of skin disease in the developing world. Trop Doct 1992; 22(Suppl. 1): 42-3.
[http://dx.doi.org/10.1177/00494755920220S108] [PMID: 1492377]
[8]
Rajesh R, Shivaprasad HV, Gowda CDR, Nataraju A, Dhananjaya BL, Vishwanath BS. Comparative study on plant latex proteases and their involvement in hemostasis: A special emphasis on clot inducing and dissolving properties. Planta Med 2007; 73(10): 1061-7.
[http://dx.doi.org/10.1055/s-2007-981575] [PMID: 17691056]
[9]
Uday P, Raghu RA, Bhat RP, Rinimol V, Bindu J, Nafeesa Z, et al. Laticiferous plant proteases in wound care 2015; 7(1): 44-9.
[10]
Shivaprasad HV, Rajesh R, Yariswamy M, Vishwanath BS. Procoagulant properties of plant latex proteases. In: Kini RM, Clemetson KJ, Markland FS, McLane MA, Morita T Toxins and Hemostasis: From bench and bedside . 2010; pp. 591-603.
[http://dx.doi.org/10.1007/978-90-481-9295-3]
[11]
Rajesh R, Raghavendra Gowda CD, Nataraju A, Dhananjaya BL, Kemparaju K, Vishwanath BS. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon 2005; 46(1): 84-92.
[http://dx.doi.org/10.1016/j.toxicon.2005.03.012] [PMID: 15922393]
[12]
Singh MK, Usha R, Hithayshree KR, Bindhu OS. Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. F.A. Zorn) Forsberg. J Thromb Thrombolysis 2015; 39(1): 43-9.
[http://dx.doi.org/10.1007/s11239-013-1012-y] [PMID: 25603786]
[13]
Anusha R, Singh MK, Bindhu OS. Characterisation of potential milk coagulants from Calotropis gigantea plant parts and their hydrolytic pattern of bovine casein. Eur Food Res Technol 2014; 238(6): 997-1006.
[http://dx.doi.org/10.1007/s00217-014-2177-0]
[14]
Ladd J, Butler J. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 1972; 4(1): 19-30.
[http://dx.doi.org/10.1016/0038-0717(72)90038-7]
[15]
Prasad S, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb J 2006; 4(1): 14.
[http://dx.doi.org/10.1186/1477-9560-4-14] [PMID: 16968529]
[16]
Lewis SM, Bain BJ, Bates I, Dacie JV. Dacie and Lewis practical haematology: Elsevier Health Sciences. 2006.
[17]
Shivaprasad HV, Rajesh R, Nanda BL, Dharmappa KK, Vishwanath BS. Thrombin like activity of Asclepias curassavica L. latex: Action of cysteine proteases. J Ethnopharmacol 2009; 123(1): 106-9.
[http://dx.doi.org/10.1016/j.jep.2009.02.016] [PMID: 19429347]
[18]
Pardo M, Bruno M, Sequeiros C, et al. New plant endopeptidases with potential application in cheesemaking. Acta Aliment 2010; 39(2): 211-21.
[http://dx.doi.org/10.1556/AAlim.39.2010.2.12]
[19]
Schägger H. Tricine-SDS-PAGE. Nat Protoc 2006; 1(1): 16-22.
[http://dx.doi.org/10.1038/nprot.2006.4] [PMID: 17406207]
[20]
Rajesh R, Nataraju A, Gowda CD, Frey BM, Frey FJ, Vishwanath BS. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: Action on human fibrinogen and fibrin clot. Biochimie 2006; 88(10): 1313-22.
[http://dx.doi.org/10.1016/j.biochi.2006.06.007] [PMID: 16997451]
[21]
Shivaprasad HV, Rajaiah R, Frey BM, Frey FJ, Vishwanath BS. ‘Pergularain e I’--a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb Res 2010; 125(3): e100-5.
[http://dx.doi.org/10.1016/j.thromres.2009.10.002] [PMID: 19853890]
[22]
Bindhu OS, Singh MK. Hemostatic, milk clotting and blood stain removal potential of cysteine proteases from Calotropis gigantea (L.) R. Br Latex Pharmacogn Mag 2014; 10(Suppl. 2): S350-6.
[http://dx.doi.org/10.4103/0973-1296.133294] [PMID: 24991114]
[23]
Patel GK, Kawale AA, Sharma AK. Purification and physicochemical characterization of a serine protease with fibrinolytic activity from latex of a medicinal herb Euphorbia hirta. Plant Physiol Biochem 2012; 52: 104-11.
[http://dx.doi.org/10.1016/j.plaphy.2011.12.004] [PMID: 22305073]
[24]
Costa Jde O, Fonseca KC, Garrote-Filho MS, et al. Structural and functional comparison of proteolytic enzymes from plant latex and snake venoms. Biochimie 2010; 92(12): 1760-5.
[http://dx.doi.org/10.1016/j.biochi.2010.09.002] [PMID: 20868725]
[25]
Swenson S, Markland FS Jr. Snake venom fibrin(ogen)olytic enzymes. Toxicon 2005; 45(8): 1021-39.
[http://dx.doi.org/10.1016/j.toxicon.2005.02.027] [PMID: 15882884]
[26]
Kim J, Sapkota K, Park S, Choi B, Kim S, Hiep NT, et al. A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. Journal of microbiology-seou 2006; 44(6): 622.
[27]
Lijnen HR. Matrix metalloproteinases and cellular fibrinolytic activity. Biochemistry (Mosc) 2002; 67(1): 92-8.
[http://dx.doi.org/10.1023/A:1013908332232] [PMID: 11841344]
[28]
Davie EW, Fujikawa K, Kurachi K, Kisiel W. The role of serine proteases in the blood coagulation cascade. Adv Enzymol Relat Areas Mol Biol 1979; 48: 277-318.
[http://dx.doi.org/10.1002/9780470122938.ch6] [PMID: 367103]
[29]
Kumar A. Some potential plants for medicine from India Ayurvedic medicines. Rajasthan: University of Rajasthan 1999; pp. 1-12.
[30]
Richter G, Schwarz HP, Dorner F, Turecek PL. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol 2002; 119(4): 1042-51.
[http://dx.doi.org/10.1046/j.1365-2141.2002.03954.x ] [PMID: 12472586]
[31]
Ramos MV, Viana CA, Silva AF, et al. Proteins derived from latex of C. procera maintain coagulation homeostasis in septic mice and exhibit thrombin- and plasmin-like activities. Naunyn Schmiedebergs Arch Pharmacol 2012; 385(5): 455-63.
[http://dx.doi.org/10.1007/s00210-012-0733-3] [PMID: 22315016]
[32]
Iwasaki A, Shieh T-C, Shimohigashi Y, Waki M, Kihara H, Ohno M. Purification and characterization of a coagulant enzyme, okinaxobin I, from the venom of Trimeresurus okinavensis (Himehabu snake) which releases fibrinopeptide B. J Biochem 1990; 108(5): 822-8.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123287 ] [PMID: 1964457]
[33]
Bolay E. Feigen und Würgefeigen. Pharm Unserer Zeit 1979; 8(4): 97-112.
[PMID: 482305]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy