Review Article

基于磁性粒子的生物传感器和生物分析设备:综述

卷 28, 期 14, 2021

发表于: 30 July, 2020

页: [2828 - 2841] 页: 14

弟呕挨: 10.2174/0929867327666200730213721

价格: $65

摘要

磁性粒子在当前技术中发挥着重要作用,并且该技术领域延伸到更广泛的进展。 术语磁性颗粒通常涵盖顺磁性颗粒和超顺磁性颗粒。 氧化铁等各种材料很常见,但也可以使用其他材料; 这项工作包括对此类材料的调查。 它们可用于技术目的,如化学产品或有毒废物的分离和隔离、病理诊断、药物输送和其他类似应用。 在这篇综述中,讨论了生物传感器、生物分析装置和生物测定。 这里描述了用于磁性粒子制备的材料、测定方法、生物传感器和在固定和流通装置中工作的生物测定。 还提供了对实际文献的调查。

关键词: 抗体、生物测定、生物传感器、酶、流通、磁分离、磁性、磁阻、纳米粒子、探针。

[1]
Mirzaei, M.; Akbari, M.E.; Mohagheghi, M.A.; Ziaee, S.A.M.; Mohseni, M. A novel biocompatible nanoprobe based on lipoproteins for breast cancer cell imaging. Nanomed. J., 2020, 7(1), 73-79.
[http://dx.doi.org/10.22038/nmj.2020.07.09]]
[2]
Chen, J.; Zhang, T.H.; Hua, W.K. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloid Surf. A-Physicochem. Eng. Asp., 2020, 585, 124048.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124048]
[3]
Pohanka, M. Quantum dots in the therapy: current trends and perspectives. Mini Rev. Med. Chem., 2017, 17(8), 650-656.
[http://dx.doi.org/10.2174/1389557517666170120153342] [PMID: 28117021]
[4]
Pohanka, M. Copper and copper nanoparticles toxicity and their impact on basic functions in the body. Bratisl. Lek Listy, 2019, 120(6), 397-409.
[http://dx.doi.org/10.4149/BLL_2019_065] [PMID: 31223019]
[5]
Garcia-Vera, V.E.; Tenza-Abril, A.J.; Solak, A.M.; Lanzon, M. Calcium hydroxide nanoparticles coatings applied on cultural heritage materials: their influence on physical characteristics of earthen plasters. Appl. Surf. Sci., 2020, 504, 144195.
[http://dx.doi.org/10.1016/j.apsusc.2019.144195]
[6]
Wei, X.X.; Liu, Y.H.; Zhao, D.J.; Mao, X.W.; Jiang, W.Y.; Ge, S.S. Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders. J. Magn. Magn. Mater., 2020, 493, 165664.
[http://dx.doi.org/10.1016/j.jmmm.2019.165664]
[7]
Hu, Y.; Huang, C.; Jiang, S.; Qin, Y.; Chen, H.C. Hierarchi-cal nickel-cobalt selenide nanoparticles/nanosheets as ad-vanced electroactive battery materials for hybrid superca-pacitors. J. Colloid Interface Sci., 2020, 558, 291-300.
[http://dx.doi.org/10.1016/j.jcis.2019.09.115] [PMID: 31604157]
[8]
Qiao, J.; Zhang, X.; Xu, D.M.; Kong, L.X.; Lv, L.F.; Yang, F.; Wang, F.L.; Liu, W.; Liu, J.R. Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J., 2020, 380, 122591.
[http://dx.doi.org/10.1016/j.cej.2019.122591]
[9]
Li, M.; Wang, J.Y.; Chen, Q.Q.; Lin, L.H.; Radjenovic, P.; Zhang, H.; Luo, S.Y.; Tian, Z.Q.; Li, J.F. Background-free quantitative surface enhanced raman spectroscopy analysis using core-shell nanoparticles with an inherent internal standard. Anal. Chem., 2019, 91(23), 15025-15031.
[http://dx.doi.org/10.1021/acs.analchem.9b03703] [PMID: 31682106]
[10]
Elancheziyan, M.; Senthilkumar, S. Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl. Surf. Sci., 2019, 495, 143540.
[http://dx.doi.org/10.1016/j.apsusc.2019.143540]
[11]
Pohanka, M. Magnetic particles in electrochemical analyses. Int. J. Electrochem. Sci., 2018, 13(12), 12000-12009.
[http://dx.doi.org/10.20964/2018.12.259]
[12]
Liu, J.; Su, G.D.; Wang, Z. Synthesis of magnetic Ni 0.3 Mg 0.3 Zn 0.4 Fe2O4 nanoparticles and their adsorption performances of congo red. J. Nanosci. Nanotechnol., 2020, 20(5), 2878-2886.
[http://dx.doi.org/10.1166/jnn.2020.17470] [PMID: 31635624]
[13]
Yu, T.L.; Halouane, F.; Mathias, D.; Barras, A.; Wang, Z.W.; Lv, A.Q.; Lu, S.X.; Xu, W.G.; Meziane, D.; Tiercelin, N.; Szunerits, S.; Boukherroub, R. Preparation of magnetic, superhydrophobic/superoleophilic polyurethane sponge: separation of oil/water mixture and demulsification. Chem. Eng. J., 2020, 384, 123339.
[http://dx.doi.org/10.1016/j.cej.2019.123339]
[14]
Xiong, Y.; Huang, X.; Lu, B.; Wu, B.; Lu, L.; Liu, J.; Peng, K. Acceleration of floc-water separation and floc reduction with magnetic nanoparticles during demulsification of complex waste cutting emulsions. J. Environ. Sci. (China), 2020, 89, 80-89.
[http://dx.doi.org/10.1016/j.jes.2019.10.011] [PMID: 31892403]
[15]
Shariati-Rad, M.; Haghparast, N. Synthesis of a novel magnetic nanocomposite and its application to the efficient preconcentration and determination of malachite green in fish samples using response surface methodology. Anal. Bioanal. Chem. Res., 2020, 7(1), 131-150.
[http://dx.doi.org/10.22036/ABCR.2019.154958.1271]
[16]
Zhang, J.; Huang, L.L.; Zheng, J.; Xu, J.L.; Asiri, A.M.; Marwani, H.D.; Zhang, M. SiO2-assisted synthesis of Fe3O4@SiO2@C-Ni nanochains for effective catalysis and protein adsorption. J. Magn. Magn. Mater., 2020, 497, 166011.
[http://dx.doi.org/10.1016/j.jmmm.2019.166011]
[17]
Hernández, P.; Lucero-Acuña, A.; Moreno-Cortez, I.E.; Esquivel, R.; Álvarez-Ramos, E. Thermo-magnetic properties of Fe3O4@Poly(N-Isopropylacrylamide) core-shell nanoparticles and their cytotoxic effects on HeLa and MDA-MB-231 cell lines. J. Nanosci. Nanotechnol., 2020, 20(4), 2063-2071.
[http://dx.doi.org/10.1166/jnn.2020.17324] [PMID: 31492213]
[18]
Feng, X.Q.; Xu, W.; Zhang, C.; Tan, S.; Zhang, J.; Zhang, P.; Zhang, Y. Facile synthesis of yolk-shell structured Fe3O4@C-Au nanoparticles for thermotherapic application. Mater. Lett., 2020, 258, 126809.
[http://dx.doi.org/10.1016/j.matlet.2019.126809]
[19]
Fotukian, S.M.; Barati, A.; Soleymani, M.; Alizadeh, M. Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd., 2020, 816, 152548.
[http://dx.doi.org/10.1016/j.jallcom.2019.152548]
[20]
Radu, T.; Petran, A.; Olteanu, D.; Baldea, I.; Potara, M.; Turcu, R. Evaluation of physico-chemical properties and biocompatibility of new surface functionalized Fe3O4 clusters of nanoparticles. Appl. Surf. Sci., 2020, 501, 144267.
[http://dx.doi.org/10.1016/j.apsusc.2019.144267]
[21]
Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap., 2015, 69(1), 4-16.
[http://dx.doi.org/10.2478/s11696-014-0542-x]
[22]
Pohanka, M. The piezoelectric biosensors: principles and applications, a review. Int. J. Electrochem. Sci., 2017, 12, 496-506.
[http://dx.doi.org/10.20964/2017.01.44]
[23]
Pohanka, M. Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials (Basel), 2018, 11(3), 448.
[http://dx.doi.org/10.3390/ma11030448] [PMID: 29562700]
[24]
Pohanka, M. Biosensors and bioassays based on lipases, principles and applications, a review. Molecules, 2019, 24(3), E616.
[http://dx.doi.org/10.3390/molecules24030616] [PMID: 30744203]
[25]
Hao, R.; Xing, R.; Xu, Z.; Hou, Y.; Gao, S.; Sun, S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater., 2010, 22(25), 2729-2742.
[http://dx.doi.org/10.1002/adma.201000260] [PMID: 20473985]
[26]
Park, S.; Cho, B.B.; Anusha, J.R.; Jung, S.; Justin Raj, C.; Kim, B.C.; Yu, K.H. Synthesis of 64Cu-radiolabeled folate-conjugated iron oxide nanoparticles for cancer diagnosis. J. Nanosci. Nanotechnol., 2020, 20(4), 2040-2044.
[http://dx.doi.org/10.1166/jnn.2020.17205] [PMID: 31492210]
[27]
Tomke, P.D.; Rathod, V.K. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan -AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int. J. Biol. Macromol., 2020, 149(19), 989-999.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.183] [PMID: 31972199]
[28]
Cao, W.; Xia, S.; Jiang, X.; Appold, M.; Opel, M.; Plank, M.; Schaffrinna, R.; Kreuzer, L.P.; Yin, S.; Gallei, M.; Schwartzkopf, M.; Roth, S.V.; Müller-Buschbaum, P. Self-assembly of large magnetic nanoparticles in ultrahigh molecular weight linear diblock copolymer films. ACS Appl. Mater. Interfaces, 2020, 12(6), 7557-7564.
[http://dx.doi.org/10.1021/acsami.9b20905] [PMID: 31967448]
[29]
Barcaro, G.; Monti, S. Modeling generation and growth of iron oxide nanoparticles from representative precursors through ReaxFF molecular dynamics. Nanoscale, 2020, 12(5), 3103-3111.
[http://dx.doi.org/10.1039/C9NR09381H] [PMID: 31965131]
[30]
Sayadi, M.H.; Mansouri, B.; Shahri, E.; Tyler, C.R.; Shekari, H.; Kharkan, J. Exposure effects of iron oxide nanoparticles and iron salts in blackfish (Capoeta fusca): acute toxicity, bioaccumulation, depuration, and tissue histopathology. Chemosphere, 2020, 247, 125900.
[http://dx.doi.org/10.1016/j.chemosphere.2020.125900] [PMID: 31951957]
[31]
Seifi, M.M.; Iranmanesh, E.; Asadollahi, M.A.; Arpanaei, A. Biotransformation of benzaldehyde into Lphenylacetylcarbinol using magnetic nanoparticles-coated yeast cells. Biotechnol. Lett., 2020, 16(10), 020-02798.
[http://dx.doi.org/10.1007/s10529-020-02798-0] [PMID: 31950407]
[32]
Ebrahiminezhad, A.; Taghizadeh, S.M.; Ghasemi, Y.; Berenjian, A. Immobilization of cells by magnetic nanoparticles. Methods Mol. Biol., 2020, 2100, 427-435.
[http://dx.doi.org/10.1007/978-1-0716-0215-7_29] [PMID: 31939141]
[33]
Muniz-Miranda, M.; Muniz-Miranda, F.; Giorgetti, E. Spectroscopic and microscopic analyses of Fe3O4/Au nanoparticles obtained by laser ablation in water. Nanomaterials (Basel), 2020, 10(1), E132.
[http://dx.doi.org/10.3390/nano10010132] [PMID: 31936852]
[34]
Ingle, A.P.; Philippini, R.R.; Rai, M.; Silvério da Silva, S. Catalytic hydrolysis of cellobiose using different acid-functionalised Fe3O4 magnetic nanoparticles. IET Nanobiotechnol., 2020, 14(1), 40-46.
[http://dx.doi.org/10.1049/iet-nbt.2019.0181] [PMID: 31935676]
[35]
Askaripour, H.; Vossoughi, M.; Khajeh, K.; Alemzadeh, I. Examination of chondroitinase ABC I immobilization onto dextran-coated Fe3O4 nanoparticles and its in vitro release. J. Biotechnol., 2020, 309, 131-141.
[http://dx.doi.org/10.1016/j.jbiotec.2019.12.020] [PMID: 31935418]
[36]
Wu, S.; Gu, L.; Qin, J.; Zhang, L.; Sun, F.; Liu, Z.; Wang, Y.; Shi, D. Rapid label-free isolation of circulating tumor cells from patients’ peripheral blood using electrically charged Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces, 2020, 12(4), 4193-4203.
[http://dx.doi.org/10.1021/acsami.9b16385] [PMID: 31935069]
[37]
Liu, J.; Wang, Z.; Wang, Y. A novel type of magnetic Fe2O3/Fe3O4 heterogeneous microparticles prepared via the ethanol-water reflux and rapid combustion process. J. Nanosci. Nanotechnol., 2020, 20(5), 2998-3003.
[http://dx.doi.org/10.1166/jnn.2020.17439] [PMID: 31635639]
[38]
Li, S.S.; Wang, Z. Adsorption performance of reactive red 2BF onto magnetic NiFe2O4 nanoparticles prepared via the coprecipitation process. J. Nanosci. Nanotechnol., 2020, 20(5), 2832-2839.
[http://dx.doi.org/10.1166/jnn.2020.17434] [PMID: 31635619]
[39]
Ma, X.R.; Dang, R.; Liu, J.Y.; Yang, F.; Li, H.G.; Zhang, Y.X.; Luo, J. Facile synthesis and characterization of spinel NiFe2O4 nanoparticles and studies of their photocatalytic activity for oxidation of alcohols. Sci. Adv. Mater., 2020, 12(3), 357-365.
[http://dx.doi.org/10.1166/sam.2020.3549]
[40]
Singh Yadav, R.; Kuřitka, I.; Vilcakova, J.; Jamatia, T.; Machovsky, M.; Skoda, D.; Urbánek, P.; Masař, M.; Urbánek, M.; Kalina, L.; Havlica, J. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem., 2020, 61, 104839.
[http://dx.doi.org/10.1016/j.ultsonch.2019.104839] [PMID: 31683238]
[41]
Zhang, W.; Sun, A.M.; Zhao, X.Q.; Pan, X.G.; Han, Y.Q.; Suo, N.Z.X.; Yu, L.C.; Zuo, Z. Structural and magnetic properties of Ni-Cu-Co ferrites prepared from sol-gel auto combustion method with different complexing agents. J. Alloys Compd., 2020, 816, 152501.
[http://dx.doi.org/10.1016/j.jallcom.2019.152501]
[42]
Elhamali, S.M.; Ibrahim, N.B.; Radiman, S. Oxygen vacancy-dependent microstructural, optical and magnetic properties of sol-gel Tb0.2 Er1 Y2.8 Fe5 O12 films. J. Magn. Magn. Mater., 2020, 497, 166048.
[http://dx.doi.org/10.1016/j.jmmm.2019.166048]
[43]
Pena-Garcia, R.; Guerra, Y.; Milani, R.; Oliveira, D.M.; Rodrigues, A.R.; Padron-Hernandez, E. The role of Y on the structural, magnetic and optical properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. J. Magn. Magn. Mater., 2020, 498, 166085.
[http://dx.doi.org/10.1016/j.jmmm.2019.166085]
[44]
Ansari, M.; Bigham, A.; Ahangar, H.A. Super-paramagnetic nanostructured Cu Zn Mg mixed spinel ferrite for bone tissue regeneration. Mater. Sci. Eng. C, 2019, 105, 110084.
[http://dx.doi.org/10.1016/j.msec.2019.110084] [PMID: 31546418]
[45]
Mohanty, P.; Venter, A.M.; Sheppard, C.J.; Prinsloo, A.R.E. Structure and magnetic phase transitions in (Ni1-xCox)Cr2O4 spinel nanoparticles. J. Magn. Magn. Mater., 2020, 498, 166217.
[http://dx.doi.org/10.1016/j.jmmm.2019.166217]
[46]
Shogh, S.; Eshraghi, M. The effect of particle size on the structural, magnetic and electrical properties of La0.9Ba0.1MNO3 manganite samples. Phase Transit., 2019, 92(11), 949-959.
[http://dx.doi.org/10.1080/01411594.2019.1678036]
[47]
Ma, F.; Zhao, H.J. Optical, magnetic, ferroelectric properties and photocatalytic activity of Bi2Fe4O9 nanoparticles through a hydrothermal assisted sol-gel method. Russ. J. Phys. Chem. A, 2019, 93(10), 2079-2086.
[http://dx.doi.org/10.1134/S0036024419100169]
[48]
Pedro, L.; Harmer, Q.; Mayes, E.; Shields, J.D. impact of locally administered carboxydextran-coated super-paramagnetic iron nanoparticles on cellular immune function. Small, 2019, 15(20), e1900224.
[http://dx.doi.org/10.1002/smll.201900224] [PMID: 30985079]
[49]
Victory, M.; Pant, R.P.; Phanjoubam, S. Synthesis and characterization of oleic acid coated Fe-Mn ferrite based ferrofluid. Mater. Chem. Phys., 2020, 240, 122210.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122210]
[50]
Zhou, J.; Wu, W.; Caruntu, D.; Yu, M.H.; Martin, A.; Chen, J.F.; O’Connor, C.J.; Zhou, W.L. Synthesis of porous magnetic hollow silica nanospheres for nanomedicine application. J. Phys. Chem. C, 2007, 111(47), 17473-17477.
[http://dx.doi.org/10.1021/jp074123i]
[51]
Podrouzkova, H.; Feitova, V.; Panovsky, R.; Meluzin, J.; Orban, M. Superparamagnetic iron oxide-enhanced magnetic resonance for imaging cardiac inflammation. A minireview. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2015, 159(3), 378-381.
[http://dx.doi.org/10.5507/bp.2014.030] [PMID: 24993740]
[52]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[53]
Wu, L.C.; Zhang, Y.; Steinberg, G.; Qu, H.; Huang, S.; Cheng, M.; Bliss, T.; Du, F.; Rao, J.; Song, G.; Pisani, L.; Doyle, T.; Conolly, S.; Krishnan, K.; Grant, G.; Wintermark, M. A review of magnetic particle imaging and perspectives on neuroimaging. AJNR Am. J. Neuroradiol., 2019, 40(2), 206-212.
[http://dx.doi.org/10.3174/ajnr.A5896] [PMID: 30655254]
[54]
Bulte, J.W.M. Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv. Drug Deliv. Rev., 2019, 138, 293-301.
[http://dx.doi.org/10.1016/j.addr.2018.12.007] [PMID: 30552918]
[55]
Ruffert, C. Magnetic bead-magic bullet. Micromachines (Basel), 2016, 7(2), E21.
[http://dx.doi.org/10.3390/mi7020021] [PMID: 30407394]
[56]
Ehresmann, A.; Koch, I.; Holzinger, D. Manipulation of superparamagnetic beads on patterned exchange-bias layer systems for biosensing applications. Sensors (Basel), 2015, 15(11), 28854-28888.
[http://dx.doi.org/10.3390/s151128854] [PMID: 26580625]
[57]
Alam, S.R.; Stirrat, C.; Richards, J.; Mirsadraee, S.; Semple, S.I.; Tse, G.; Henriksen, P.; Newby, D.E. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J. Cardiovasc. Magn. Reson., 2015, 17(83), 015-0183.
[http://dx.doi.org/10.1186/s12968-015-0183-4] [PMID: 26381872]
[58]
Panagiotopoulos, N.; Duschka, R.L.; Ahlborg, M.; Bringout, G.; Debbeler, C.; Graeser, M.; Kaethner, C.; Lüdtke-Buzug, K.; Medimagh, H.; Stelzner, J.; Buzug, T.M.; Barkhausen, J.; Vogt, F.M.; Haegele, J. Magnetic particle imaging: current developments and future directions. Int. J. Nanomedicine, 2015, 10, 3097-3114.
[http://dx.doi.org/10.2147/IJN.S70488] [PMID: 25960650]
[59]
Suwa, M.; Watarai, H. Magnetoanalysis of micro/nanoparticles: a review. Anal. Chim. Acta, 2011, 690(2), 137-147.
[http://dx.doi.org/10.1016/j.aca.2011.02.019] [PMID: 21435469]
[60]
Timonen, J.V.I.; Grzybowski, B.A. Tweezing of magnetic and non-magnetic objects with magnetic fields. Adv. Mater., 2017, 29(18), 15.
[http://dx.doi.org/10.1002/adma.201603516] [PMID: 28198579]
[61]
Colombo, S.; Lebedev, V.; Tonyushkin, A.; Pengue, S.; Weis, A. Imaging Magnetic nanoparticle distributions by atomic magnetometry-based susceptometry. IEEE Trans. Med. Imaging, 2019, 26(10), 2937670.
[http://dx.doi.org/10.1109/TMI.2019.2937670] [PMID: 31478841]
[62]
Iranmanesh, M. Hulliger, J. Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry. Chem. Soc. Rev., 2017, 46(19), 5925-5934.
[http://dx.doi.org/10.1039/C7CS00230K] [PMID: 28730213]
[63]
Grützkau, A.; Radbruch, A. Small but mighty: how the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A, 2010, 77(7), 643-647.
[http://dx.doi.org/10.1002/cyto.a.20918] [PMID: 20583279]
[64]
Norina, S.B.; Park, S.H.; Kim, J.; Cho, S.; Shalygin, A.N.; Soh, K.S. Image analysis of bioparticles accumulation and diamagnetic alignment in high-gradient magnetic field. J. Biomed. Opt., 2005, 10(5), 051702.
[http://dx.doi.org/10.1117/1.2070127] [PMID: 16292954]
[65]
Hardwick, R.A.; Kulcinski, D.; Mansour, V.; Ishizawa, L.; Law, P.; Gee, A.P. Design of large-scale separation systems for positive and negative immunomagnetic selection of cells using superparamagnetic microspheres. J. Hematother., 1992, 1(4), 379-386.
[http://dx.doi.org/10.1089/scd.1.1992.1.379] [PMID: 1345680]
[66]
Kemshead, J.T.; Ugelstad, J. Magnetic separation techniques: their application to medicine. Mol. Cell. Biochem., 1985, 67(1), 11-18.
[http://dx.doi.org/10.1007/BF00220980] [PMID: 3894931]
[67]
Buzug, T.M.; Bringout, G.; Erbe, M.; Gräfe, K.; Graeser, M.; Grüttner, M.; Halkola, A.; Sattel, T.F.; Tenner, W.; Wojtczyk, H.; Haegele, J.; Vogt, F.M.; Barkhausen, J.; Lüdtke-Buzug, K. Magnetic particle imaging: introduction to imaging and hardware realization. Z. Med. Phys., 2012, 22(4), 323-334.
[http://dx.doi.org/10.1016/j.zemedi.2012.07.004] [PMID: 22909418]
[68]
Bagheri, H.; Hayden, M.E. Resolution enhancement in magnetic particle imaging via phase-weighting. J. Magn. Magn. Mater., 2020, 498, 166021.
[http://dx.doi.org/10.1016/j.jmmm.2019.166021]
[69]
Zelepukin, I.V.; Nikitin, M.P.; Nechaev, A.V.; Zvyagin, A.V.; Nikitin, P.I.; Deyev, S.M. Near infrared luminescent-magnetic nanoparticles for bimodal imaging in vivo. International Conference Laser Optics, New York2016.
[70]
Griese, F.; Knopp, T.; Gruettner, C.; Thieben, F.; Muller, K.; Loges, S.; Ludewig, P.; Gdaniec, N. Simultaneous magnetic particle imaging and navigation of large superparamagnetic nanoparticles in bifurcation flow experiments. J. Magn. Magn. Mater., 2020, 498, 166206.
[http://dx.doi.org/10.1016/j.jmmm.2019.166206]
[71]
Polikarpov, M.A.; Ustinin, M.N.; Rykunov, S.D.; Yurenya, A.Y.; Naurzakov, S.P.; Grebenkin, A.P.; Panchenko, V.Y. 3D imaging of magnetic particles using the 7-channel magnetoencephalography device without pre-magnetization or displacement of the sample. J. Magn. Magn. Mater., 2017, 427, 139-143.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.055]
[72]
Vogel, P.; Markert, J.; Rückert, M.A.; Herz, S.; Keßler, B.; Dremel, K.; Althoff, D.; Weber, M.; Buzug, T.M.; Bley, T.A.; Kullmann, W.H.; Hanke, R.; Zabler, S.; Behr, V.C. Magnetic particle imaging meets computed tomography: first simultaneous imaging. Sci. Rep., 2019, 9(1), 12627.
[http://dx.doi.org/10.1038/s41598-019-48960-1] [PMID: 31477758]
[73]
Talebloo, N.; Gudi, M.; Robertson, N.; Wang, P. Magnetic particle imaging: current applications in biomedical research. J. Magn. Reson. Imaging, 2020, 51(6), 1659-1668.
[http://dx.doi.org/10.1002/jmri.26875] [PMID: 31332868]
[74]
Illert, P.; Wangler, B.; Wangler, C.; Zollner, F.; Uhrig, T.; Litau, S.; Pretze, M.; Roder, T. Functionalizable composite nanoparticles as a dual magnetic resonance imaging/computed tomography contrast agent for medical imaging. J. Appl. Polym. Sci., 2019, 136(19), 47571.
[http://dx.doi.org/10.1002/app.47571]
[75]
Hu, J.; Gorsak, T.; Rodriguez, E.M.; Calle, D.; Munoz-Ortiz, T.; Jaque, D.; Fernandez, N.; Cusso, L.; Rivero, F.; Torres, R.A.; Sole, J.G.; Mertelj, A.; Makovec, D.; Desco, M.; Lisjak, D.; Alfonso, F.; Sanz-Rodriguez, F.; Ortgies, D.H. Magnetic nanoplatelets for high contrast cardiovascular imaging by magnetically modulated optical coherence tomography. Chem. Photo. Chem., 2019, 3(7), 529-539.
[http://dx.doi.org/10.1002/cptc.201900071]
[76]
Xu, J.; Jiao, J.Q.; Li, Q.; Li, S.D. Ultralow detection limit of giant magnetoresistance biosensor using Fe3O4-graphene composite nanoparticle label. Chin. Phys. B, 2017, 26(1)
[http://dx.doi.org/10.1088/1674-1056/26/1/010701]
[77]
Liang, Y.C.; Chang, L.; Qiu, W.; Kolhatkar, A.G.; Vu, B.; Kourentzi, K.; Lee, T.R.; Zu, Y.; Willson, R.; Litvinov, D. Ultrasensitive magnetic nanoparticle detector for biosensor applications. Sensors (Basel), 2017, 17(6), E1296.
[http://dx.doi.org/10.3390/s17061296] [PMID: 28587265]
[78]
Pohanka, M. Construction of a QCM biosensor for free hemoglobin assay. Int. J. Electrochem. Sci., 2019, 14(6), 5237-5246.
[http://dx.doi.org/10.20964/2019.06.48]
[79]
Pohanka, M. Piezoelectric biosensor for the determination of tumor necrosis factor alpha. Talanta, 2018, 178, 970-973.
[http://dx.doi.org/10.1016/j.talanta.2017.10.031] [PMID: 29136925]
[80]
Fujiwara, M.; Chie, K.; Sawai, J.; Shimizu, D.; Tanimoto, Y. On the movement of paramagnetic ions in an inhomogeneous magnetic field. J. Phys. Chem. B, 2004, 108(11), 3531-3534.
[http://dx.doi.org/10.1021/jp0303523]
[81]
Liu, J.; Xia, T.; Wang, S.; Yang, G.; Dong, B.; Wang, C.; Ma, Q.; Sun, Y.; Wang, R. Oriented-assembly of hollow FePt nanochains with tunable catalytic and magnetic properties. Nanoscale, 2016, 8(22), 11432-11440.
[http://dx.doi.org/10.1039/C6NR00883F] [PMID: 26971675]
[82]
Shen, B.; Sun, S. Chemical synthesis of magnetic nanoparticles for permanent magnet applications. Chemistry, 2020, 26(30), 6757-6766.
[http://dx.doi.org/10.1002/chem.201902916] [PMID: 31529572]
[83]
Pamme, N. Magnetism and microfluidics. Lab Chip, 2006, 6(1), 24-38.
[http://dx.doi.org/10.1039/B513005K] [PMID: 16372066]
[84]
Hernández-Neuta, I.; Pereiro, I.; Ahlford, A.; Ferraro, D.; Zhang, Q.; Viovy, J.L.; Descroix, S.; Nilsson, M. Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosens. Bioelectron., 2018, 102, 531-539.
[http://dx.doi.org/10.1016/j.bios.2017.11.064] [PMID: 29216580]
[85]
van Reenen, A.; de Jong, A.M.; den Toonder, J.M.; Prins, M.W. Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review. Lab Chip, 2014, 14(12), 1966-1986.
[http://dx.doi.org/10.1039/C3LC51454D] [PMID: 24806093]
[86]
Weddemann, A.; Albon, C.; Auge, A.; Wittbracht, F.; Hedwig, P.; Akemeier, D.; Rott, K.; Meissner, D.; Jutzi, P.; Hütten, A. How to design magneto-based total analysis systems for biomedical applications. Biosens. Bioelectron., 2010, 26(4), 1152-1163.
[http://dx.doi.org/10.1016/j.bios.2010.06.031] [PMID: 20638263]
[87]
Moerland, C.P.; van IJzendoorn, L.J.; Prins, M.W.J. Rotating magnetic particles for lab-on-chip applications - a comprehensive review. Lab Chip, 2019, 19(6), 919-933.
[http://dx.doi.org/10.1039/C8LC01323C] [PMID: 30785138]
[88]
Ranzoni, A.; Janssen, X.J.; Ovsyanko, M.; van IJzendoorn, L.J.; Prins, M.W. Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications. Lab Chip, 2010, 10(2), 179-188.
[http://dx.doi.org/10.1039/B909998K] [PMID: 20066245]
[89]
Arlt, C.R.; Tschope, A.; Franzreb, M. Size fractionation of magnetic nanoparticles by magnetic chromatography. J. Magn. Magn. Mater., 2020, 497, 165967.
[http://dx.doi.org/10.1016/j.jmmm.2019.165967]
[90]
Xuan, X. Recent advances in continuous-flow particle manipulations using magnetic fluids. Micromachines (Basel), 2019, 10(11), E744.
[http://dx.doi.org/10.3390/mi10110744] [PMID: 31683660]
[91]
Shyam, S.; Mehta, B.; Mondal, P.K.; Wongwises, S. Investigation into the thermo-hydrodynamics of ferrofluid flow under the influence of constant and alternating magnetic field by InfraRed Thermography. Int. J. Heat Mass Transf., 2019, 135, 1233-1247.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.02.050]
[92]
Jalili, B.; Sadighi, S.; Jalili, P.; Ganji, D.D. Characteristics of ferrofluid flow over a stretching sheet with suction and injection. Case Stud. Therm. Eng., 2019, 14, 100470.
[http://dx.doi.org/10.1016/j.csite.2019.100470]
[93]
Yadav, P.K.; Jaiswal, S.; Puchakatla, J.Y. Micropolar fluid flow through the membrane composed of impermeable cylindrical particles coated by porous layer under the effect of magnetic field. Math. Methods Appl. Sci., 2020, 43(4), 1925-1937.
[http://dx.doi.org/10.1002/mma.6016]
[94]
Castillo-Torres, K.Y.; McLamore, E.S.; Arnold, D.P. A high-throughput microfluidic magnetic separation (µFMS) platform for water quality monitoring. Micromachines (Basel), 2019, 11(1), E16.
[http://dx.doi.org/10.3390/mi11010016] [PMID: 31877902]
[95]
Mahmoud, M.; Laufer, S.; Deigner, H.P. Visual aptamer-based capillary assay for ethanolamine using magnetic particles and strand displacement. Mikrochim. Acta, 2019, 186(11), 690.
[http://dx.doi.org/10.1007/s00604-019-3795-9] [PMID: 31595372]
[96]
Xu, H.; Liao, C.; Zuo, P.; Liu, Z.; Ye, B.C. Magnetic-based microfluidic device for on-chip isolation and detection of tumor-derived exosomes. Anal. Chem., 2018, 90(22), 13451-13458.
[http://dx.doi.org/10.1021/acs.analchem.8b03272] [PMID: 30234974]
[97]
Bechstein, D.J.; Lee, J.R.; Ooi, C.C.; Gani, A.W.; Kim, K.; Wilson, R.J.; Wang, S.X. High performance wash-free magnetic bioassays through microfluidically enhanced particle specificity. Sci. Rep., 2015, 5(11693), 11693.
[http://dx.doi.org/10.1038/srep11693] [PMID: 26123868]
[98]
Kwon, K.; Gwak, H.; Hyun, K.A.; Kwak, B.S.; Jung, H.I. High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sens. Actuator B-Chem., 2019, 294, 62-68.
[http://dx.doi.org/10.1016/j.snb.2019.05.007]
[99]
Blomgren, J.; Ahrentorp, F.; Ilver, D.; Jonasson, C.; Sepehri, S.; Kalaboukhov, A.; Winkler, D.; Zardán Gómez de la Torre, T.; Strømme, M.; Johansson, C. Development of a sensitive induction-based magnetic nanoparticle biodetection method. Nanomaterials (Basel), 2018, 8(11), E887.
[http://dx.doi.org/10.3390/nano8110887] [PMID: 30388776]
[100]
Doswald, S.; Stark, W.J.; Beck-Schimmer, B. Biochemical functionality of magnetic particles as nanosensors: how far away are we to implement them into clinical practice? J. Nanobiotechnology, 2019, 17(1), 73.
[http://dx.doi.org/10.1186/s12951-019-0506-y] [PMID: 31151445]
[101]
Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC. Trends Analyt. Chem., 2018, 106, 213-224.
[http://dx.doi.org/10.1016/j.trac.2018.07.010]
[102]
Krishnan, S.; Goud, K.Y. Magnetic particle bioconjugates: a versatile sensor approach. Magnetochemistry, 2019, 5(4), 64.
[http://dx.doi.org/10.3390/magnetochemistry5040064]
[103]
Zhu, F.; Li, D.; Ding, Q.F.; Lei, C.; Ren, L.Z.; Ding, X.G. Sun, X. 2D magnetic MoS2-Fe3O4 hybrid nanostructures for ultrasensitive exosome detection in GMR sensor. Biosens. Bioelectron., 2020, 147, 111787.
[http://dx.doi.org/10.1016/j.bios.2019.111787] [PMID: 31655381]
[104]
Galkin, O.Y.; Besarab, O.B.; Pysmenna, M.O.; Gorshunov, Y.V.; Dugan, O.M. Modern magnetic immunoassay: biophysical and biochemical aspects. Regul. Mech. Biosyst., 2018, 9(1), 47-55.
[http://dx.doi.org/10.15421/021806]
[105]
Bertok, T.; Lorencova, L.; Hroncekova, S.; Gajdosova, V.; Jane, E.; Hires, M.; Kasak, P.; Kaman, O.; Sokol, R.; Bella, V.; Eckstein, A.A.; Mosnacek, J.; Vikartovska, A.; Tkac, J. Advanced impedimetric biosensor configuration and assay protocol for glycoprofiling of a prostate oncomarker using Au nanoshells with a magnetic core. Biosens. Bioelectron., 2019, 131, 24-29.
[http://dx.doi.org/10.1016/j.bios.2019.01.052] [PMID: 30798249]
[106]
Chen, L.; Liu, M.; Tang, Y.; Chen, C.; Wang, X.; Hu, Z. Preparation and properties of a low fouling magnetic nanoparticle and its application to the HPV genotypes assay in whole serum. ACS Appl. Mater. Interfaces, 2019, 11(20), 18637-18644.
[http://dx.doi.org/10.1021/acsami.9b04147] [PMID: 31026394]
[107]
Valera, E.; García-Febrero, R.; Elliott, C.T.; Sánchez-Baeza, F.; Marco, M.P. Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal. Bioanal. Chem., 2019, 411(9), 1915-1926.
[http://dx.doi.org/10.1007/s00216-018-1538-0] [PMID: 30610251]
[108]
Gao, M.L.; He, F.; Yin, B.C.; Ye, B.C. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly. Analyst (Lond.), 2019, 144(6), 1995-2002.
[http://dx.doi.org/10.1039/C8AN02383B] [PMID: 30698587]
[109]
Uliana, C.V.; de Oliveira, T.R.; Cominetti, M.R.; Faria, R.C. Label-free evaluation of small-molecule-protein interaction using magnetic capture and electrochemical detection. Anal. Bioanal. Chem., 2019, 411(10), 2111-2119.
[http://dx.doi.org/10.1007/s00216-019-01636-1] [PMID: 30739194]
[110]
Kostelnik, A.; Kopel, P.; Cegan, A.; Pohanka, M. Construction of an acetylcholinesterase sensor based on synthesized paramagnetic nanoparticles, a simple tool for neurotoxic compounds assay. Sensors (Basel), 2017, 17(4), E676.
[http://dx.doi.org/10.3390/s17040676] [PMID: 28338634]
[111]
Martinkova, P.; Kostelnik, A.; Pohanka, M. Nanomaterials as pseudocatalyst replacing enzymes in construction of electrochemiccal non-enzymatic sensor intended for healthcare: a review. Anal. Lett., 2019, 52(9), 1396-1417.
[http://dx.doi.org/10.1080/00032719.2018.1542434]
[112]
Martinkova, P.; Pohanka, M. Determination of peroxidase-like activity of magnetic particles: basic platforms for peroxidase biosensors. Int. J. Electrochem. Sci., 2015, 10(9), 7033-7048.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy