Review Article

重新利用抗癌药物治疗特发性肺纤维化和抗癌药物治疗癌症:最新进展

卷 28, 期 11, 2021

发表于: 30 July, 2020

页: [2234 - 2247] 页: 14

弟呕挨: 10.2174/0929867327999200730173748

价格: $65

摘要

特发性肺纤维化(IPF)是一种侵袭性肺部疾病,与肺癌在分子、病理生理和临床方面有共同之处,包括高死亡率。抗纤维化药物尼达尼布和吡非尼酮最近被引入临床治疗IPF。尼达尼布也被用于多种恶性肿瘤的治疗,包括非小细胞肺癌(NSCLC)联合多西他赛,而吡非尼酮在临床前研究中显示了一些抗肿瘤作用。另一方面,在过去的十年中,新的靶向药物和免疫疗法被引入到NSCLC的治疗中,其中一些在最近的研究中显示出抗纤维化的特性。这些证据基于IPF和肺癌共同的病理生理背景,使抗纤维化和抗肿瘤药物相互或联合使用治疗这些高致命性疾病成为可能。这篇综述的目的是描述当前关于抗肿瘤药物在IPF中的重新用途和抗纤维化药物在肺癌中的用途的科学图景,并确定未来的研究前景。

关键词: 特发性肺纤维化,肺纤维化,癌症,肺癌,抗纤维化药物,抗癌药物,药物再利用,尼达尼布,吡非尼酮

[1]
Fois, A.G.; Paliogiannis, P.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Carru, C.; Zinellu, A. Evaluation of oxidative stress biomarkers in idiopathic pulmonary fibrosis and therapeutic applications: a systematic review. Respir. Res., 2018, 19(1), 51.
[http://dx.doi.org/10.1186/s12931-018-0754-7] [PMID: 29587761]
[2]
Martinez, F.J.; Collard, H.R.; Pardo, A.; Raghu, G.; Richeldi, L.; Selman, M.; Swigris, J.J.; Taniguchi, H.; Wells, A.U. Idiopathic pulmonary fibrosis. Nat. Rev. Dis. Primers, 2017, 3, 17074.
[http://dx.doi.org/10.1038/nrdp.2017.74] [PMID: 29052582]
[3]
Strand, M.J.; Sprunger, D.; Cosgrove, G.P.; Fernandez-Perez, E.R.; Frankel, S.K.; Huie, T.J.; Olson, A.L.; Solomon, J.; Brown, K.K.; Swigris, J.J. Pulmonary function and survival in idiopathic vs. secondary usual interstitial pneumonia. Chest, 2014, 146(3), 775-785.
[http://dx.doi.org/10.1378/chest.13-2388] [PMID: 24700149]
[4]
Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; Johkoh, T.; Martinez, F.J.; Myers, J.; Protzko, S.L.; Richeldi, L.; Rind, D.; Selman, M.; Theodore, A.; Wells, A.U.; Hoogsteden, H.; Schünemann, H.J. American Thoracic Society; European Respiratory society; Japanese Respiratory Society; Latin American Thoracic Association. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. an update of the 2011 clinical practice guideline. Am. J. Respir. Crit. Care Med., 2015, 192(2), e3-e19.
[http://dx.doi.org/10.1164/rccm.201506-1063ST] [PMID: 26177183]
[5]
Spek, C.A.; Duitman, J. Is idiopathic pulmonary fibrosis a cancer-like disease? Transcriptome analysis to fuel the debate. ERJ Open Res., 2019, 5(1), 00157-02018.
[http://dx.doi.org/10.1183/23120541.00157-2018] [PMID: 30723726]
[6]
Colombino, M.; Paliogiannis, P.; Cossu, A.; Santeufemia, D.A.; Sini, M.C.; Casula, M.; Palomba, G.; Manca, A.; Pisano, M.; Doneddu, V.; Palmieri, G. Sardinian lung cancer (SLC) Study Group. EGFR, KRAS, BRAF, ALK, and cMET genetic alterations in 1440 Sardinian patients with lung adenocarcinoma. BMC Pulm. Med., 2019, 19(1), 209.
[http://dx.doi.org/10.1186/s12890-019-0964-x] [PMID: 31711449]
[7]
Tzouvelekis, A.; Karampitsakos, T.; Gomatou, G.; Bouros, E.; Tzilas, V.; Manali, E.; Tomos, I.; Trachalaki, A.; Kolilekas, L.; Korbila, I.; Tomos, P.; Chrysikos, S.; Gaga, M.; Daniil, Z.; Bardaka, F.; Papanikolaou, I.C.; Euthymiou, C.; Papakosta, D.; Steiropoulos, P.; Ntolios, P.; Tringidou, R.; Papiris, S.; Antoniou, K.; Bouros, D. Lung cancer in patients with idiopathic pulmonary fibrosis. A retrospective multicenter study in Greece. Pulm. Pharmacol. Ther., 2020.60101880
[http://dx.doi.org/10.1016/j.pupt.2019.101880] [PMID: 31874284]
[8]
Yoo, H.; Jeong, B.H.; Chung, M.J.; Lee, K.S.; Kwon, O.J.; Chung, M.P. Risk factors and clinical characteristics of lung cancer in idiopathic pulmonary fibrosis: a retrospective cohort study. BMC Pulm. Med., 2019, 19(1), 149.
[http://dx.doi.org/10.1186/s12890-019-0905-8] [PMID: 31412851]
[9]
Liu, Y.; Zhu, M.; Geng, J.; Ban, C.; Zhang, S.; Chen, W.; Ren, Y.; He, X.; Chen, W.; Dai, H. Incidence and radiologic-pathological features of lung cancer in idiopathic pulmonary fibrosis. Clin. Respir. J., 2018, 12(4), 1700-1705.
[http://dx.doi.org/10.1111/crj.12732] [PMID: 29094803]
[10]
Nagai, A.; Chiyotani, A.; Nakadate, T.; Konno, K. Lung cancer in patients with idiopathic pulmonary fibrosis. Tohoku J. Exp. Med., 1992, 167(3), 231-237.
[http://dx.doi.org/10.1620/tjem.167.231] [PMID: 1488744]
[11]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[12]
Jung, H.I.; Park, J.S.; Lee, M.Y.; Park, B.; Kim, H.J.; Park, S.H.; Choi, W.I.; Lee, C.W. Prevalence of lung cancer in patients with interstitial lung disease is higher than in those with chronic obstructive pulmonary disease. Medicine (Baltimore), 2018, 97(11)e0071
[http://dx.doi.org/10.1097/MD.0000000000010071] [PMID: 29538197]
[13]
Choi, W.I.; Park, S.H.; Park, B.J.; Lee, C.W. Interstitial lung disease and lung cancer Development: a 5-year nationwide population-based study. Cancer Res. Treat., 2018, 50(2), 374-381.
[http://dx.doi.org/10.4143/crt.2017.119] [PMID: 28494537]
[14]
Vancheri, C. Common pathways in idiopathic pulmonary fibrosis and cancer. Eur. Respir. Rev., 2013, 22(129), 265-272.
[http://dx.doi.org/10.1183/09059180.00003613] [PMID: 23997054]
[15]
Ulke, H.M.; Mutze, K.; Lehmann, M.; Wagner, D.E.; Heinzelmann, K.; Günther, A.; Eickelberg, O.; Königshoff, M. The oncogene ECT2 contributes to a hyperplastic, proliferative lung epithelial cell phenotype in idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol., 2019, 61(6), 713-726.
[http://dx.doi.org/10.1165/rcmb.2019-0047OC] [PMID: 31145635]
[16]
Paliogiannis, P.; Attene, F.; Cossu, A.; Defraia, E.; Porcu, G.; Carta, A.; Sotgiu, M.I.; Pazzola, A.; Cordero, L.; Capelli, F.; Fadda, G.M.; Ortu, S.; Sotgiu, G.; Palomba, G.; Sini, M.C.; Palmieri, G.; Colombino, M. Impact of tissue type and content of neoplastic cells of samples on the quality of epidermal growth factor receptor mutation analysis among patients with lung adenocarcinoma. Mol. Med. Rep., 2015, 12(1), 187-191.
[http://dx.doi.org/10.3892/mmr.2015.3347] [PMID: 25683726]
[17]
Rolfo, C.; Castiglia, M.; Perez, A.; Reclusa, P.; Pauwels, P.; Sober, L.; Passiglia, F.; Russo, A. Liquid Biopsy in Cancer Patients; Springer, 2017, pp. 103-115.
[http://dx.doi.org/10.1007/978-3-319-55661-1_12]
[18]
Putzu, C.; Cortinovis, D.L.; Colonese, F.; Canova, S.; Carru, C.; Zinellu, A.; Paliogiannis, P. Blood cell count indexes as predictors of outcomes in advanced non-small-cell lung cancer patients treated with Nivolumab. Cancer Immunol. Immunother., 2018, 67(9), 1349-1353.
[http://dx.doi.org/10.1007/s00262-018-2182-4] [PMID: 29947960]
[19]
Jain, P.; Jain, C.; Velcheti, V. Role of immune-checkpoint inhibitors in lung cancer. Ther. Adv. Respir. Dis., 2018, 121753465817750075
[http://dx.doi.org/10.1177/1753465817750075] [PMID: 29385894]
[20]
Camus, P.; Kudoh, S.; Ebina, M. Interstitial lung disease associated with drug therapy. Br. J. Cancer, 2004, 91(Suppl. 2), S18-S23.
[http://dx.doi.org/10.1038/sj.bjc.6602063] [PMID: 15340374]
[21]
Enomoto, Y.; Inui, N.; Kato, T.; Baba, T.; Karayama, M.; Nakamura, Y.; Ogura, T.; Suda, T. Low forced vital capacity predicts cytotoxic chemotherapy-associated acute exacerbation of interstitial lung disease in patients with lung cancer. Lung Cancer, 2016, 96, 63-67.
[http://dx.doi.org/10.1016/j.lungcan.2016.03.017] [PMID: 27133752]
[22]
Minegishi, Y.; Kokuho, N.; Miura, Y.; Matsumoto, M.; Miyanaga, A.; Noro, R.; Saito, Y.; Seike, M.; Kubota, K.; Azuma, A.; Kida, K.; Gemma, A. Clinical features, anti-cancer treatments and outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema. Lung Cancer, 2014, 85(2), 258-263.
[http://dx.doi.org/10.1016/j.lungcan.2014.05.016] [PMID: 24894326]
[23]
Hamada, S.; Ichiyasu, H.; Ikeda, T.; Inaba, M.; Kashiwabara, K.; Sadamatsu, T.; Sato, N.; Akaike, K.; Okabayashi, H.; Saruwatari, K.; Tomita, Y.; Saeki, S.; Hirata, N.; Yoshinaga, T.; Fujii, K. Protective effect of bevacizumab on chemotherapy-related acute exacerbation of interstitial lung disease in patients with advanced non-squamous non-small cell lung cancer. BMC Pulm. Med., 2019, 19(1), 72.
[http://dx.doi.org/10.1186/s12890-019-0838-2] [PMID: 30940113]
[24]
Budroni, M.; Cossu, A.; Paliogiannis, P.; Palmieri, G.; Attene, F.; Cesaraccio, R.; Tanda, F. Epidemiology of malignant pleural mesothelioma in the province of Sassari (Sardinia, Italy). A population-based report. Ann. Ital. Chir., 2014, 85(3), 244-248.
[PMID: 23899648]
[25]
Wang, C.; Song, X.; Li, Y.; Han, F.; Gao, S.; Wang, X.; Xie, S.; Lv, C. Low-dose paclitaxel ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway via miR-140 upregulation. PLoS One, 2013, 8(8)e70725
[http://dx.doi.org/10.1371/journal.pone.0070725] [PMID: 23967091]
[26]
Mitani, Y.; Sato, K.; Muramoto, Y.; Karakawa, T.; Kitamado, M.; Iwanaga, T.; Nabeshima, T.; Maruyama, K.; Nakagawa, K.; Ishida, K.; Sasamoto, K. Superoxide scavenging activity of pirfenidone-iron complex. Biochem. Biophys. Res. Commun., 2008, 372(1), 19-23.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.093] [PMID: 18468515]
[27]
Meyer, E.C.; Liebow, A.A. Relationship of interstitial pneumonia honeycombing and atypical epithelial proliferation to cancer of the lung. Cancer, 1965, 18(3), 322-351.
[http://dx.doi.org/10.1002/1097-0142(196503)18:3<322: AID-CNCR2820180310>3.0.CO;2-J] [PMID: 14264034]
[28]
Ballester, B.; Milara, J.; Cortijo, J. Idiopathic pulmonary fibrosis and lung cancer: mechanisms and molecular targets. Int. J. Mol. Sci., 2019, 20(3)E593
[http://dx.doi.org/10.3390/ijms20030593] [PMID: 30704051]
[29]
Akhurst, R.J.; Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov., 2012, 11(10), 790-811.
[http://dx.doi.org/10.1038/nrd3810] [PMID: 23000686]
[30]
Choi, K.; Lee, K.; Ryu, S-W. Im, M.; Kook, K.H.; Choi, C. Pirfenidone inhibits transforming growth factor-β1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Mol. Vis., 2012, 18, 1010-1020.
[PMID: 22550395]
[31]
Hisatomi, K.; Mukae, H.; Sakamoto, N.; Ishimatsu, Y.; Kakugawa, T.; Hara, S.; Fujita, H.; Nakamichi, S.; Oku, H.; Urata, Y.; Kubota, H.; Nagata, K.; Kohno, S. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulm. Med., 2012, 12, 24.
[http://dx.doi.org/10.1186/1471-2466-12-24] [PMID: 22694981]
[32]
Ballester, B.; Milara, J.; Cortijo, J. Pirfenidone anti-fibrotic effects are partially mediated by the inhibition of MUC1 bioactivation. Oncotarget, 2020, 11(15), 1306-1320.
[http://dx.doi.org/10.18632/oncotarget.27526] [PMID: 32341751]
[33]
Fois, A.G.; Posadino, A.M.; Giordo, R.; Cossu, A.; Agouni, A.; Rizk, N.M.; Pirina, P.; Carru, C.; Zinellu, A.; Pintus, G. Antioxidant activity mediates pirfenidone antifibrotic effects in human pulmonary vascular smooth muscle cells exposed to sera of idiopathic pulmonary fibrosis patients. Oxid. Med. Cell. Longev., 2018, 20182639081
[http://dx.doi.org/10.1155/2018/2639081] [PMID: 30420906]
[34]
Mediavilla-Varela, M.; Boateng, K.; Noyes, D.; Antonia, S.J. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts. BMC Cancer, 2016, 16, 176.
[http://dx.doi.org/10.1186/s12885-016-2162-z] [PMID: 26935219]
[35]
Hassoun, P.M.; Mouthon, L.; Barberà, J.A.; Eddahibi, S.; Flores, S.C.; Grimminger, F.; Jones, P.L.; Maitland, M.L.; Michelakis, E.D.; Morrell, N.W.; Newman, J.H.; Rabinovitch, M.; Schermuly, R.; Stenmark, K.R.; Voelkel, N.F.; Yuan, J.X.; Humbert, M. Inflammation, growth factors, and pulmonary vascular remodeling. J. Am. Coll. Cardiol., 2009, 54(1)(Suppl.), S10-S19.
[http://dx.doi.org/10.1016/j.jacc.2009.04.006] [PMID: 19555853]
[36]
Distler, J.H.; Distler, O. Intracellular tyrosine kinases as novel targets for anti-fibrotic therapy in systemic sclerosis. Rheumatology (Oxford), 2008, 47(Suppl. 5), v10-v11.
[http://dx.doi.org/10.1093/rheumatology/ken276] [PMID: 18784126]
[37]
Beyer, C.; Distler, J.H. Tyrosine kinase signaling in fibrotic disorders: translation of basic research to human disease. Biochim. Biophys. Acta, 2013, 1832(7), 897-904.
[http://dx.doi.org/10.1016/j.bbadis.2012.06.008] [PMID: 22728287]
[38]
Daniels, C.E.; Wilkes, M.C.; Edens, M.; Kottom, T.J.; Murphy, S.J.; Limper, A.H.; Leof, E.B. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J. Clin. Invest., 2004, 114(9), 1308-1316.
[http://dx.doi.org/10.1172/JCI200419603] [PMID: 15520863]
[39]
Aono, Y.; Nishioka, Y.; Inayama, M.; Ugai, M.; Kishi, J.; Uehara, H.; Izumi, K.; Sone, S. Imatinib as a novel antifibrotic agent in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Crit. Care Med., 2005, 171(11), 1279-1285.
[http://dx.doi.org/10.1164/rccm.200404-531OC] [PMID: 15735062]
[40]
Gordon, J.; Spiera, R. Imatinib and the treatment of fibrosis: recent trials and tribulations. Curr. Rheumatol. Rep., 2011, 13(1), 51-58.
[http://dx.doi.org/10.1007/s11926-010-0146-6] [PMID: 21086081]
[41]
Qu, Y.; Zhang, L.; Kang, Z.; Jiang, W.; Lv, C. Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway. Pulm. Pharmacol. Ther., 2015, 34, 1-7.
[http://dx.doi.org/10.1016/j.pupt.2015.07.004] [PMID: 26254990]
[42]
Huang, X.; Wang, W.; Yuan, H.; Sun, J.; Li, L.; Wu, X.; Luo, J.; Gu, Y. Sunitinib, a small-molecule kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Tohoku J. Exp. Med., 2016, 239(4), 251-261.
[http://dx.doi.org/10.1620/tjem.239.251] [PMID: 27439438]
[43]
Chen, Y.L.; Zhang, X.; Bai, J.; Gai, L.; Ye, X.L.; Zhang, L.; Xu, Q.; Zhang, Y.X.; Xu, L.; Li, H.P.; Ding, X. Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: potential roles in the inhibition of epithelial-mesenchymal transition and fibroblast activation. Cell Death Dis., 2013, 4e665
[http://dx.doi.org/10.1038/cddis.2013.154] [PMID: 23764846]
[44]
Madtes, D.K.; Busby, H.K.; Strandjord, T.P.; Clark, J.G. Expression of transforming growth factor-alpha and epidermal growth factor receptor is increased following bleomycin-induced lung injury in rats. Am. J. Respir. Cell Mol. Biol., 1994, 11(5), 540-551.
[http://dx.doi.org/10.1165/ajrcmb.11.5.7524566] [PMID: 7524566]
[45]
Korfhagen, T.R.; Swantz, R.J.; Wert, S.E.; McCarty, J.M.; Kerlakian, C.B.; Glasser, S.W.; Whitsett, J.A. Respiratory epithelial cell expression of human transforming growth factor-alpha induces lung fibrosis in transgenic mice. J. Clin. Invest., 1994, 93(4), 1691-1699.
[http://dx.doi.org/10.1172/JCI117152] [PMID: 8163670]
[46]
Min, J.H.; Lee, H.Y.; Lim, H.; Ahn, M.J.; Park, K.; Chung, M.P.; Lee, K.S. Drug-induced interstitial lung disease in tyrosine kinase inhibitor therapy for non-small cell lung cancer: a review on current insight. Cancer Chemother. Pharmacol., 2011, 68(5), 1099-1109.
[http://dx.doi.org/10.1007/s00280-011-1737-2] [PMID: 21913033]
[47]
Ikeda, S.; Yoshioka, H.; Arita, M.; Sakai, T.; Sone, N.; Nishiyama, A.; Niwa, T.; Hotta, M.; Tanaka, T.; Ishida, T. Interstitial lung disease induced by alectinib (CH5424802/RO5424802). Jpn. J. Clin. Oncol., 2015, 45(2), 221-224.
[http://dx.doi.org/10.1093/jjco/hyu183] [PMID: 25398579]
[48]
Ren, S.; Li, Y.; Li, W.; Zhao, Z.; Jin, C.; Zhang, D. Fatal asymmetric interstitial lung disease after erlotinib for lung cancer. Respiration, 2012, 84(5), 431-435.
[http://dx.doi.org/10.1159/000339508] [PMID: 22889962]
[49]
Um, S.J.; Lee, S.K.; Yang, D.K.; Son, C.; Roh, M.S.; Kim, K.N.; Lee, K.N.; Choi, P.J. Fatal interstitial lung disease after erlotinib administration in a patient with radiation fibrosis. Clin. Respir. J., 2009, 3(3), 181-184.
[http://dx.doi.org/10.1111/j.1752-699X.2008.00115.x] [PMID: 20298401]
[50]
Ando, M.; Okamoto, I.; Yamamoto, N.; Takeda, K.; Tamura, K.; Seto, T.; Ariyoshi, Y.; Fukuoka, M. Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J. Clin. Oncol., 2006, 24(16), 2549-2556.
[http://dx.doi.org/10.1200/JCO.2005.04.9866] [PMID: 16735708]
[51]
An, J.; Xue, Y.; Long, M.; Zhang, G.; Zhang, J.; Su, H. Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget, 2017, 8(24), 39230-39240.
[http://dx.doi.org/10.18632/oncotarget.16837] [PMID: 28424406]
[52]
Bai, X.Y.; Zhang, X.C.; Yang, S.Q.; An, S.J.; Chen, Z.H.; Su, J.; Xie, Z.; Gou, L.Y.; Wu, Y.L. Blockade of hedgehog signaling synergistically increases sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer cell lines. PLoS One, 2016, 11(3)e0149370
[http://dx.doi.org/10.1371/journal.pone.0149370] [PMID: 26943330]
[53]
Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol., 2017, 14(11), 655-668.
[http://dx.doi.org/10.1038/nrclinonc.2017.88] [PMID: 28653677]
[54]
Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367] [PMID: 30115704]
[55]
Geng, Y.; Liu, X.; Liang, J.; Habiel, D.M.; Kulur, V.; Coelho, A.L.; Deng, N.; Xie, T.; Wang, Y.; Liu, N.; Huang, G.; Kurkciyan, A.; Liu, Z.; Tang, J.; Hogaboam, C.M.; Jiang, D.; Noble, P.W. PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight, 2019, 4(6)125326
[http://dx.doi.org/10.1172/jci.insight.125326] [PMID: 30763282]
[56]
Duitman, J.; van den Ende, T.; Spek, C.A. Immune checkpoints as promising targets for the treatment of idiopathic pulmonary fibrosis? J. Clin. Med., 2019, 8(10)E1547
[http://dx.doi.org/10.3390/jcm8101547] [PMID: 31561518]
[57]
Celada, L.J.; Kropski, J.A.; Herazo-Maya, J.D.; Luo, W.; Creecy, A.; Abad, A.T.; Chioma, O.S.; Lee, G.; Hassell, N.E.; Shaginurova, G.I.; Wang, Y.; Johnson, J.E.; Kerrigan, A.; Mason, W.R.; Baughman, R.P.; Ayers, G.D.; Bernard, G.R.; Culver, D.A.; Montgomery, C.G.; Maher, T.M.; Molyneaux, P.L.; Noth, I.; Mutsaers, S.E.; Prele, C.M.; Peebles, R.S. Jr.; Newcomb, D.C.; Kaminski, N.; Blackwell, T.S.; Van Kaer, L.; Drake, W.P. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production. Sci. Transl. Med., 2018, 10(460)eaar8356
[http://dx.doi.org/10.1126/scitranslmed.aar8356] [PMID: 30257954]
[58]
Habiel, D.M.; Espindola, M.S.; Kitson, C.; Azzara, A.V.; Coelho, A.L.; Stripp, B.; Hogaboam, C.M. Characterization of CD28null T cells in idiopathic pulmonary fibrosis. Mucosal Immunol., 2019, 12(1), 212-222.
[http://dx.doi.org/10.1038/s41385-018-0082-8] [PMID: 30315241]
[59]
Shibaki, R.; Murakami, S.; Matsumoto, Y.; Yoshida, T.; Goto, Y.; Kanda, S.; Horinouchi, H.; Fujiwara, Y.; Yamamoto, N.; Kusumoto, M.; Yamamoto, N.; Ohe, Y. Association of immune-related pneumonitis with the presence of preexisting interstitial lung disease in patients with non-small lung cancer receiving anti-programmed cell death 1 antibody. Cancer Immunol. Immunother., 2020, 69(1), 15-22.
[http://dx.doi.org/10.1007/s00262-019-02431-8] [PMID: 31745589]
[60]
Syn, N.L.; Teng, M.W.L.; Mok, T.S.K.; Soo, R.A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol., 2017, 18(12), e731-e741.
[http://dx.doi.org/10.1016/S1470-2045(17)30607-1] [PMID: 29208439]
[61]
Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E.; Park, K.; Alexandru, A.; Lupinacci, L.; de la Mora Jimenez, E.; Sakai, H.; Albert, I.; Vergnenegre, A.; Peters, S.; Syrigos, K.; Barlesi, F.; Reck, M.; Borghaei, H.; Brahmer, J.R.; O’Byrne, K.J.; Geese, W.J.; Bhagavatheeswaran, P.; Rabindran, S.K.; Kasinathan, R.S.; Nathan, F.E.; Ramalingam, S.S. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med., 2019, 381(21), 2020-2031.
[http://dx.doi.org/10.1056/NEJMoa1910231] [PMID: 31562796]
[62]
Pinto, J.A.; Raez, L.E.; Oliveres, H.; Rolfo, C.C. Current knowledge of Ipilimumab and its use in treating non-small cell lung cancer. Expert Opin. Biol. Ther., 2019, 19(6), 509-515.
[http://dx.doi.org/10.1080/14712598.2019.1610380] [PMID: 31002006]
[63]
Selman, M.; Pardo, A.; Barrera, L.; Estrada, A.; Watson, S.R.; Wilson, K.; Aziz, N.; Kaminski, N.; Zlotnik, A. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am. J. Respir. Crit. Care Med., 2006, 173(2), 188-198.
[http://dx.doi.org/10.1164/rccm.200504-644OC] [PMID: 16166619]
[64]
Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; Gann, C.N.; Barrueco, J.; Gaschler-Markefski, B.; Novello, S. LUME-Lung 1 Study Group. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol., 2014, 15(2), 143-155.
[http://dx.doi.org/10.1016/S1470-2045(13)70586-2] [PMID: 24411639]
[65]
Quintela-Fandino, M.; Lluch, A.; Manso, L.; Calvo, I.; Cortes, J.; García-Saenz, J.A.; Gil-Gil, M.; Martinez-Jánez, N.; Gonzalez-Martin, A.; Adrover, E.; de Andres, R.; Viñas, G.; Llombart-Cussac, A.; Alba, E.; Guerra, J.; Bermejo, B.; Zamora, E.; Moreno-Anton, F.; Pernas Simon, S.; Carrato, A.; Lopez-Alonso, A.; Escudero, M.J.; Campo, R.; Carrasco, E.; Palacios, J.; Mulero, F.; Colomer, R. 18F-fluoromisonidazole PET and activity of neoadjuvant nintedanib in early HER2-negative breast cancer: a window-of-opportunity randomized trial. Clin. Cancer Res., 2017, 23(6), 1432-1441.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0738] [PMID: 27587436]
[66]
Khalique, S.; Banerjee, S. Nintedanib in ovarian cancer. Expert Opin. Investig. Drugs, 2017, 26(9), 1073-1081.
[http://dx.doi.org/10.1080/13543784.2017.1353599] [PMID: 28721753]
[67]
Kim, Y.; Lee, S.J.; Lee, J.Y.; Lee, S.H.; Sun, J.M.; Park, K.; An, H.J.; Cho, J.Y.; Kang, E.J.; Lee, H.Y.; Kim, J.; Keam, B.; Kim, H.R.; Lee, K.E.; Choi, M.Y.; Lee, K.H.; Ahn, M.J. Clinical trial of nintedanib in patients with recurrent or metastatic salivary gland cancer of the head and neck: a multicenter phase 2 study (Korean Cancer Study Group HN14-01). Cancer, 2017, 123(11), 1958-1964.
[http://dx.doi.org/10.1002/cncr.30537] [PMID: 28102887]
[68]
Okusaka, T.; Otsuka, T.; Ueno, H.; Mitsunaga, S.; Sugimoto, R.; Muro, K.; Saito, I.; Tadayasu, Y.; Inoue, K.; Loembé, A.B.; Ikeda, M. Phase I study of nintedanib in Japanese patients with advanced hepatocellular carcinoma and liver impairment. Cancer Sci., 2016, 107(12), 1791-1799.
[http://dx.doi.org/10.1111/cas.13077 ] [PMID: 27627050]
[69]
Dhillon, S. Nintedanib: a review of its use as second-line treatment in adults with advanced non-small cell lung cancer of adenocarcinoma histology. Target. Oncol., 2015, 10(2), 303-310.
[http://dx.doi.org/10.1007/s11523-015-0367-8] [PMID: 25894578]
[70]
Kutluk Cenik, B.; Ostapoff, K.T.; Gerber, D.E.; Brekken, R.A. BIBF 1120 (nintedanib), a triple angiokinase inhibitor, induces hypoxia but not EMT and blocks progression of preclinical models of lung and pancreatic cancer. Mol. Cancer Ther., 2013, 12(6), 992-1001.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0995] [PMID: 23729403]
[71]
Xiang, Q.F.; Wang, F.; Su, X.D.; Liang, Y.J.; Zheng, L.S.; Mi, Y.J.; Chen, W.Q.; Fu, L.W. Effect of BIBF 1120 on reversal of ABCB1-mediated multidrug resistance. Cell Oncol. (Dordr.), 2011, 34(1), 33-44.
[http://dx.doi.org/10.1007/s13402-010-0003-7] [PMID: 21290212]
[72]
Hanna, N.H.; Kaiser, R.; Sullivan, R.N.; Aren, O.R.; Ahn, M.J.; Tiangco, B.; Voccia, I.; Pawel, J.V.; Kovcin, V.; Agulnik, J.; Gaschler-Markefski, B.; Barrueco, J.; Sikken, P.; Schloss, C.; Kim, J.H. LUME-Lung 2 Study group. Nintedanib plus pemetrexed versus placebo plus pemetrexed in patients with relapsed or refractory, advanced non-small cell lung cancer (LUME-Lung 2): a randomized, double-blind, phase III trial. Lung Cancer, 2016, 102, 65-73.
[http://dx.doi.org/10.1016/j.lungcan.2016.10.011] [PMID: 27987591]
[73]
Pietanza, M.C.; Byers, L.A.; Minna, J.D.; Rudin, C.M. Small cell lung cancer: will recent progress lead to improved outcomes? Clin. Cancer Res., 2015, 21(10), 2244-2255.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2958] [PMID: 25979931]
[74]
Ishii, K.; Sasaki, T.; Iguchi, K.; Kato, M.; Kanda, H.; Hirokawa, Y.; Arima, K.; Watanabe, M.; Sugimura, Y. Pirfenidone, an anti-fibrotic drug, suppresses the growth of human prostate cancer cells by inducing G1 cell cycle arrest. J. Clin. Med., 2019, 8(1)E44
[http://dx.doi.org/10.3390/jcm8010044] [PMID: 30621175]
[75]
Polydorou, C.; Mpekris, F.; Papageorgis, P.; Voutouri, C.; Stylianopoulos, T. Pirfenidone normalizes the tumor microenvironment to improve chemotherapy. Oncotarget, 2017, 8(15), 24506-24517.
[http://dx.doi.org/10.18632/oncotarget.15534] [PMID: 28445938]
[76]
Takai, K.; Le, A.; Weaver, V.M.; Werb, Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget, 2016, 7(50), 82889-82901.
[http://dx.doi.org/10.18632/oncotarget.12658] [PMID: 27756881]
[77]
Fujiwara, A.; Shintani, Y.; Funaki, S.; Kawamura, T.; Kimura, T.; Minami, M.; Okumura, M. Pirfenidone plays a biphasic role in inhibition of epithelial-mesenchymal transition in non-small cell lung cancer. Lung Cancer, 2017, 106, 8-16.
[http://dx.doi.org/10.1016/j.lungcan.2017.01.006] [PMID: 28285699]
[78]
Guyard, A.; Danel, C.; Théou-Anton, N.; Debray, M.P.; Gibault, L.; Mordant, P.; Castier, Y.; Crestani, B.; Zalcman, G.; Blons, H.; Cazes, A. Morphologic and molecular study of lung cancers associated with idiopathic pulmonary fibrosis and other pulmonary fibroses. Respir. Res., 2017, 18(1), 120.
[http://dx.doi.org/10.1186/s12931-017-0605-y] [PMID: 28619094]
[79]
Han, J.Y.; Kim, H.Y.; Lim, K.Y.; Hwangbo, B.; Lee, J.S. A phase II study of nintedanib in patients with relapsed small cell lung cancer. Lung Cancer, 2016, 96, 108-112.
[http://dx.doi.org/doi.org/10.1016/j.lungcan.2016.04.002] [PMID: 27133759]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy