Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Antimicrobial Properties of Actively Purified Secondary Metabolites Isolated from Different Marine Organisms

Author(s): Nilushi I. Bamunuarachchi, Fazlurrahman Khan and Young-Mog Kim*

Volume 22, Issue 7, 2021

Published on: 30 July, 2020

Page: [920 - 944] Pages: 25

DOI: 10.2174/1389201021666200730144536

Price: $65

Abstract

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. The emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms are considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly.

Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays.

Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds.

Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.

Keywords: Antimicrobial, marine organism, pathogens, purified products, secondary metabolites, purification techniques.

Graphical Abstract

[1]
Davidson, B.S. New dimensions in natural products research: Cultured marine microorganisms. Curr. Opin. Biotechnol., 1995, 6(3), 284-291.
[http://dx.doi.org/10.1016/0958-1669(95)80049-2]
[2]
Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct., 2002, 31(1), 275-302.
[http://dx.doi.org/10.1146/annurev.biophys.31.101101.140927] [PMID: 11988471]
[3]
Rinehart, K.L. Antiviral Agents from Novel Marine and Terrestrial Sources. Innovations in Antiviral Development and the Detection of Virus Infections; Block, T.M.; Jungkind, D.; Crowell, R.L.; Denison, M.; Walsh, L.R., Eds.; Springer, US: Boston, MA, 1992, pp. 41-60.
[http://dx.doi.org/10.1007/978-1-4615-3462-4_4]
[4]
Rinehart, K.L. Biologically active marine natural products. Pure Appl. Chem., 1989, 61(3), 525-528.
[http://dx.doi.org/10.1351/pac198961030525]
[5]
Raimundo, I.; Silva, S.G.; Costa, R. Keller- Costa T. Bioactive secondary metabolites from octocoral- associated microbes- new chances for blue growth. Mar. Drugs, 2018, 16(12), 485.
[http://dx.doi.org/10.3390/md16120485]
[6]
Haug, T.; Kjuul, A.K.; Styrvold, O.B.; Sandsdalen, E.; Olsen, A-M.; Stensvag, K. Antibacterial activity in Strongylocentrotus droebachiensis (Echinoidea), Cucumaria frondosa (Holothuroidea), and Asterias rubens (Asteroidea). J. Invertebr. Pathol., 2002, 81(2), 94-102.
[http://dx.doi.org/10.1016/S0022-2011(02)00153-2] [PMID: 12445793]
[7]
Casas, S.M. ComesaAña, P.; Cao, A.; Villalba, A. Comparison of antibacterial activity in the hemolymph of marine bivalves from Galicia (NW Spain). J. Invertebr. Pathol., 2011, 106(2), 343-345.
[http://dx.doi.org/10.1016/j.jip.2010.11.007] [PMID: 21134379]
[8]
Proksch, P.; Edrada, R.A.; Ebel, R. Drugs from the seas - current status and microbiological implications. Appl. Microbiol. Biotechnol., 2002, 59(2-3), 125-134.
[http://dx.doi.org/10.1007/s00253-002-1006-8] [PMID: 12111137]
[9]
Rinehart, K.L.; Gloer, J.B.; Cook, J.C.; Mizsak, S.A.; Scahill, T.A. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J. Am. Chem. Soc., 1981, 103(7), 1857-1859.
[http://dx.doi.org/10.1021/ja00397a055]
[10]
Andersson, L.; Bohlin, L.; Iorizzi, M.; Riccio, R.; Minale, L.; Moreno, W. Biological activity of saponins and saponin-like compounds from starfish and brittle-stars. Toxicon, 1989, 27(2), 179-188.
[http://dx.doi.org/10.1016/0041-0101(89)90131-1] [PMID: 2718189]
[11]
Iorizzi, M.; Bryan, P.; McClintock, J.; Minale, L.; Palagiano, E.; Maurelli, S.; Riccio, R.; Zollo, F. Chemical and biological investigation of the polar constituents of the starfish Luidia clathrata, collected in the Gulf of Mexico. J. Nat. Prod., 1995, 58(5), 653-671.
[http://dx.doi.org/10.1021/np50119a003] [PMID: 7623045]
[12]
Canicatti, C.; Roch, P. Studies on Holothuria polii (Echinodermata) antibacterial proteins. I. Evidence for and activity of a coelomocyte lysozyme. Experientia, 1989, 45(8), 756-759.
[http://dx.doi.org/10.1007/BF01974579]
[13]
Stabili, L.; Pagliara, P. Antibacterial protection in Marthasterias glacialis eggs: Characterization of lysozyme-like activity. Comp. Biochem. Physiol. B, 1994, 109(4), 709-713.
[http://dx.doi.org/10.1016/0305-0491(94)90134-1]
[14]
Leonard, L.A.; Strandberg, J.D.; Winkelstein, J.A. Complement-like activity in the sea star, Asterias forbesi. Dev. Comp. Immunol., 1990, 14(1), 19-30.
[http://dx.doi.org/10.1016/0145-305X(90)90004-X] [PMID: 2338154]
[15]
Beauregard, K.A.; Truong, N.T.; Zhang, H.; Lin, W.; Beck, G. The detection and isolation of a novel antimicrobial peptide from the echinoderm, Cucumaria frondosa. Adv. Exp. Med. Biol., 2001, 484, 55-62.
[http://dx.doi.org/10.1007/978-1-4615-1291-2_5] [PMID: 11419006]
[16]
Abubakar, L. A.; Mwangi, C. M.; Uku, J. U.; Ndirangu, S. N. Antimicrobial activity of various extracts of the sea urchin Tripneustes gratilla (Echinoidea). Afr. J. Pharm. Pharmacop., 2012, 1(1)
[17]
Sengupta, S.; Chattopadhyay, M.K.; Grossart, H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol., 2013, 4, 47-47.
[http://dx.doi.org/10.3389/fmicb.2013.00047] [PMID: 23487476]
[18]
Abood, E.A.; Wazaify, M. Abuse and misuse of prescription and nonprescription drugs from community pharmacies in aden city-yemen. Subst. Use Misuse, 2016, 51(7), 942-947.
[http://dx.doi.org/10.3109/10826084.2016.1155619] [PMID: 27100671]
[19]
Rasamiravaka, T.; Labtani, Q.; Duez, P.; El Jaziri, M. The formation of biofilms by Pseudomonas aeruginosa: A review of the natural and synthetic compounds interfering with control mechanisms. BioMed Res. Int., 2015, 2015, 759348-759348.
[http://dx.doi.org/10.1155/2015/759348] [PMID: 25866808]
[20]
Khalil, M.A.E.F.; Ibrahim Sonbol, F.; Mohamed, A.F.B.; Ali, S.S. Comparative study of virulence factors among ESIýL-producing and nonproducing Pseudomonas aeruginosa clinical isolates. Turk. J. Med. Sci., 2015, 45(1), 60-69.
[http://dx.doi.org/10.3906/sag-1311-102] [PMID: 25790531]
[21]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[22]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[23]
Kim, S-K.; Himaya, S.W.A. Medicinal effects of phlorotannins from marine brown algae. Adv. Food Nutr. Res., 2011, 64, 97-109.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00008-9] [PMID: 22054941]
[24]
Apostolidis, E.; Lee, C.M. Brown seaweed-derived phenolic phytochemicals and their biological activities for functional food ingredients with focus on Ascophyllum nodosum. Handbook of marine macroalgae: Biotechnol; Appl. Phycol., 2012, pp. 356-370.
[25]
Eom, S.-H.; Lee, D.-S.; Kang, Y.M.; Son, K.-T.; Jeon, Y.-J.; Kim, Y.-M. Application of yeast Candida utilis to ferment Eisenia bicyclis for enhanced antibacterial effect. Appl. Biochem., 2013, 171(3), 569-582.
[http://dx.doi.org/10.1007/s12010-013-0288-x]
[26]
Eom, S.-H.; Lee, D.-S.; Jung, Y.-J.; Park, J.-H.; Choi, J.-I.; Yim, M.-J.; Jeon, J.-M.; Kim, H.-W.; Son, K.-T.; Je, J.-Y.; Lee, M.-S.; Kim, Y.-M. The mechanism of antibacterial activity of phlorofucofuroeckol-A against methicillin-resistant Staphylococcus aureus. Appl. Microbiol. Biotechnol., 2014, 98(23), 9795-9804.
[http://dx.doi.org/10.1007/s00253-014-6041-8] [PMID: 25267155]
[27]
Bhatnagar, I.; Kim, S-K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs, 2010, 8(10), 2673-2701.
[http://dx.doi.org/10.3390/md8102673] [PMID: 21116414]
[28]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9, 777.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[29]
Demain, A.L. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol., 1999, 52(4), 455-463.
[http://dx.doi.org/10.1007/s002530051546] [PMID: 10570792]
[30]
Pietra, F. Secondary metabolites from marine microorganisms: Bacteria, protozoa, algae and fungi. Achievements and prospects. Nat. Prod. Rep., 1997, 14(5), 453-464.
[http://dx.doi.org/10.1039/np9971400453] [PMID: 9364777]
[31]
Darabpour, E.; Roayaei Ardakani, M.; Motamedi, H.; Ronagh, M.T.; Najafzadeh, H. Purification and optimization of production conditions of a marine-derived antibiotic and ultra-structural study on the effect of this antibiotic against MRSA. Eur. Rev. Med. Pharmacol. Sci., 2012, 16(2), 157-165.
[PMID: 22428466]
[32]
Andryukov, B.; Mikhailov, V.; Besednova, N. The biotechnological potential of secondary metabolites from marine bacteria. J. Mar. Sci. Eng., 2019, 7(6), 176.
[http://dx.doi.org/10.3390/jmse7060176]
[33]
Schinke, C.; Martins, T.; Queiroz, S.C.N.; Melo, I.S.; Reyes, F.G.R. Antibacterial compounds from marine bacteria, 2010-2015. J. Nat. Prod., 2017, 80(4), 1215-1228.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00235] [PMID: 28362500]
[34]
PA. (c)rez, M.J.; FalquA(c), E.; DomA-nguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 2016, 14(3), 52.
[http://dx.doi.org/10.3390/md14030052] [PMID: 27005637]
[35]
Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs, 2016, 14(4), E81.
[http://dx.doi.org/10.3390/md14040081] [PMID: 27110798]
[36]
Stincone, P.; Brandelli, A. Marine bacteria as source of antimicrobial compounds. Crit. Rev. Biotechnol., 2020, 40(3), 306-319.
[http://dx.doi.org/10.1080/07388551.2019.1710457] [PMID: 31992085]
[37]
Hughes, C.C.; Fenical, W. Antibacterials from the sea. Chemistry, 2010, 16(42), 12512-12525.
[http://dx.doi.org/10.1002/chem.201001279] [PMID: 20845412]
[38]
Nalini, S.; Sandy Richard, D.; Mohammed Riyaz, S.U.; Kavitha, G.; Inbakandan, D. Antibacterial macro molecules from marine organisms. Int. J. Biol. Macromol., 2018, 115, 696-710.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.110] [PMID: 29702164]
[39]
Perez, M.J.; Falque, E.; Dominguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs, 2016, 14(3), 52.
[http://dx.doi.org/10.3390/md14030052]
[40]
Bar-On, Y.M.; Milo, R. The biomass composition of the oceans: A blueprint of our blue planet. Cell, 2019, 179(7), 1451-1454.
[http://dx.doi.org/10.1016/j.cell.2019.11.018] [PMID: 31835026]
[41]
Madigan, M.T.; Martinko, J.M.; Parker, J. Microbial growth; BBOM, 2003, pp. 137-166.
[42]
Jensen, P.R.; Fenical, W. The relative abundance and seawater requirements of gram-positive bacteria in near-shore tropical marine samples. Microb. Ecol., 1995, 29(3), 249-257.
[http://dx.doi.org/10.1007/BF00164888] [PMID: 24185344]
[43]
Yang, L.; Tan, R-x.; Wang, Q.; Huang, W-y.; Yin, Y-x. Antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett., 2002, 43, 6545-6548.
[http://dx.doi.org/10.1016/S0040-4039(02)01458-2]
[44]
Raja, A.; Prabakarana, P. Actinomycetes and drug-an overview. Amer. J. Drug Discov. Develop., 2011, 1, 75-84.
[http://dx.doi.org/10.3923/ajdd.2011.75.84]
[45]
Baltz, R.H. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol., 2008, 8(5), 557-563.
[http://dx.doi.org/10.1016/j.coph.2008.04.008] [PMID: 18524678]
[46]
Weyland, H. Actinomycetes in north sea and atlantic ocean sediments. Nature, 1969, 223(5208), 858-858.
[http://dx.doi.org/10.1038/223858a0] [PMID: 5799036]
[47]
Pathom-Aree, W.; Stach, J.E.M.; Ward, A.C.; Horikoshi, K.; Bull, A.T.; Goodfellow, M. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles, 2006, 10(3), 181-189.
[http://dx.doi.org/10.1007/s00792-005-0482-z] [PMID: 16538400]
[48]
Dharmaraj, S. Marine Streptomyces as a novel source of bioactive substances; World J. Microb. Biot., 2010, p. 26.
[49]
Fenical, W.; Jensen, P.R. Developing a new resource for drug discovery: Marine actinomycete bacteria. Nat. Chem. Biol., 2006, 2(12), 666-673.
[http://dx.doi.org/10.1038/nchembio841] [PMID: 17108984]
[50]
Lee, D-S.; Eom, S-H.; Jeong, S-Y.; Shin, H.J.; Je, J-Y.; Lee, E-W.; Chung, Y-H.; Kim, Y-M.; Kang, C-K.; Lee, M-S. Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) substance from the marine bacterium Pseudomonas sp. UJ-6. Environ. Toxicol. Pharmacol., 2013, 35(2), 171-177.
[http://dx.doi.org/10.1016/j.etap.2012.11.011] [PMID: 23434522]
[51]
El-Gendy, M.M.A.; Shaaban, M.; Shaaban, K.A.; El-Bondkly, A.M.; Laatsch, H. Essramycin: A first triazolopyrimidine antibiotic isolated from nature. J. Antibiot. (Tokyo), 2008, 61(3), 149-157.
[http://dx.doi.org/10.1038/ja.2008.124] [PMID: 18503193]
[52]
Gorajana, A.; Venkatesan, M.; Vinjamuri, S.; Kurada, B.V.V.S.N.; Peela, S.; Jangam, P.; Poluri, E.; Zeeck, A. Resistoflavine, cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN1/7. Microbiol. Res., 2007, 162(4), 322-327.
[http://dx.doi.org/10.1016/j.micres.2006.01.012] [PMID: 16580188]
[53]
McArthur, K.A.; Mitchell, S.S.; Tsueng, G.; Rheingold, A.; White, D.J.; Grodberg, J.; Lam, K.S.; Potts, B.C.M.; Lynamicins, A-E. Lynamicins A-E, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod., 2008, 71(10), 1732-1737.
[http://dx.doi.org/10.1021/np800286d] [PMID: 18842058]
[54]
Macherla, V.R.; Liu, J.; Sunga, M.; White, D.J.; Grodberg, J.; Teisan, S.; Lam, K.S.; Potts, B.C.M.; Lipoxazolidinones, A. B, and C: Antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J. Natl. Prod., 2007, 70(9), 1454-1457.
[55]
Gustafson, D.I. Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem., 1989, 8(4), 339-357.
[http://dx.doi.org/10.1002/etc.5620080411]
[56]
Xue, C.; Tian, L.; Xu, M.; Deng, Z.; Lin, W. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus. J. Antibiot. (Tokyo), 2008, 61(11), 668-674.
[http://dx.doi.org/10.1038/ja.2008.94] [PMID: 19168981]
[57]
Gustafson, K.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc., 1989, 111(19), 7519-7524.
[http://dx.doi.org/10.1021/ja00201a036]
[58]
Nagao, T.; Adachi, K.; Sakai, M.; Nishijima, M.; Sano, H. Novel macrolactins as antibiotic lactones from a marine bacterium. J. Antibiot. (Tokyo), 2001, 54(4), 333-339.
[http://dx.doi.org/10.7164/antibiotics.54.333] [PMID: 11426657]
[59]
Zheng, C-J.; Lee, S.; Lee, C-H.; Kim, W-G.; Macrolactins, O-R. Macrolactins O-R, glycosylated 24-membered lactones from Bacillus sp. AH159-1. J. Nat. Prod., 2007, 70(10), 1632-1635.
[http://dx.doi.org/10.1021/np0701327] [PMID: 17887720]
[60]
Gao, C-H.; Tian, X-P.; Qi, S-H.; Luo, X-M.; Wang, P.; Zhang, S. Antibacterial and antilarval compounds from marine gorgonian-associated bacterium Bacillus amyloliquefaciens SCSIO 00856. J. Antibiot. (Tokyo), 2010, 63(4), 191-193.
[http://dx.doi.org/10.1038/ja.2010.7] [PMID: 20150929]
[61]
Mondol, M.A.M.; Kim, J.H.; Lee, H-S.; Lee, Y-J.; Shin, H.J.; Macrolactin, W. Macrolactin W, a new antibacterial macrolide from a marine Bacillus sp. Bioorg. Med. Chem. Lett., 2011, 21(12), 3832-3835.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.050] [PMID: 21570834]
[62]
Kamei, Y.; Isnansetyo, A. Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. Int. J. Antimicrob. Agents, 2003, 21(1), 71-74.
[http://dx.doi.org/10.1016/S0924-8579(02)00251-0] [PMID: 12507841]
[63]
Nicolaou, K.C.; Lim, Y.H.; Becker, J. Total synthesis and absolute configuration of the bisanthraquinone antibiotic BE-43472B. Angew. Chem. Int. Ed. Engl., 2009, 48(19), 3444-3448.
[http://dx.doi.org/10.1002/anie.200900058] [PMID: 19235819]
[64]
Duarte, K.; Rocha-Santos, T.A.P.; Freitas, A.C.; Duarte, A.C. Analytical techniques for discovery of bioactive compounds from marine fungi. TrAC-Trend. Anal. Chem., 2012, 34, 97-110.
[http://dx.doi.org/10.1016/j.trac.2011.10.014]
[65]
Xiong, H.; Qi, S.; Xu, Y.; Miao, L.; Qian, P-Y. Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. TrAC-Trend. Anal. Chem., 2009, 2, 264-270.
[http://dx.doi.org/10.1016/j.jher.2008.12.002]
[66]
Daferner, M. Anke, T.; Sterner, O., Zopfiellamides A and B, Antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron, 2002, 58(39), 7781-7784.
[67]
Chinworrungsee, M. Kittakoop, P.; Isaka, M.; Chanphen, R.; Tanticharoen, M.; Thebtaranonth, Y., Halorosellins A and B, unique isocoumarin glucosides from the marine fungus Halorosellinia oceanica. J. Chem. Soc., Perkin Trans. 1, 2002, (22), 2473-2476.
[http://dx.doi.org/10.1039/b207887m]
[68]
Hughes, C.C.; Prieto-Davo, A.; Jensen, P.R.; Fenical, W. The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org. Lett., 2008, 10(4), 629-631.
[http://dx.doi.org/10.1021/ol702952n] [PMID: 18205372]
[69]
Zhang, D.; Yang, X.; Kang, J.S.; Choi, H.D.; Son, B.W. Chlorohydroaspyrones A and B, antibacterial aspyrone derivatives from the marine-derived fungus Exophiala sp. J. Nat. Prod., 2008, 71(8), 1458-1460.
[http://dx.doi.org/10.1021/np800107c] [PMID: 18661951]
[70]
Nguyen, H.P.; Zhang, D.; Lee, U.; Kang, J.S.; Choi, H.D.; Son, B.W.; Dehydroxychlorofusarielin, B. Dehydroxychlorofusarielin B, an antibacterial polyoxygenated decalin derivative from the marine-derived fungus Aspergillus sp. J. Nat. Prod., 2007, 70(7), 1188-1190.
[http://dx.doi.org/10.1021/np060552g] [PMID: 17564467]
[71]
Yang, R.Y.; Li, C.Y.; Lin, Y.C.; Peng, G.T.; She, Z.G.; Zhou, S.N. Lactones from a brown alga endophytic fungus (No. ZZF36) from the South China Sea and their antimicrobial activities. Bioorg. Med. Chem. Lett., 2006, 16(16), 4205-4208.
[http://dx.doi.org/10.1016/j.bmcl.2006.05.081] [PMID: 16781152]
[72]
Li, Y.; Sun, K-L.; Wang, Y.; Fu, P.; Liu, P-P.; Wang, C.; Zhu, W-M. A cytotoxic pyrrolidinoindoline diketopiperazine dimer from the algal fungus Eurotium herbariorum HT-2. Chin. Chem. Lett., 2013, 24(12), 1049-1052.
[http://dx.doi.org/10.1016/j.cclet.2013.07.028]
[73]
Skariyachan, S.; Acharya, A.B.; Subramaniyan, S.; Babu, S.; Kulkarni, S.; Narayanappa, R. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: An in vitro and in silico investigation. J. Biomol. Struct. Dyn., 2016, 34(9), 1865-1883.
[http://dx.doi.org/10.1080/07391102.2015.1094412] [PMID: 26577929]
[74]
Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev., 2007, 71(2), 295-347.
[http://dx.doi.org/10.1128/MMBR.00040-06] [PMID: 17554047]
[75]
Komaki, H.; Ichikawa, N.; Oguchi, A.; Hanamaki, T.; Fujita, N. Genome-wide survey of polyketide synthase and nonribosomal peptide synthetase gene clusters in Streptomyces turgidiscabies NBRC 16081. J. Gen. Appl. Microbiol., 2012, 58(5), 363-372.
[http://dx.doi.org/10.2323/jgam.58.363] [PMID: 23149681]
[76]
Zhang, D.; Sun, W.; Feng, G.; Zhang, F.; Anbuchezhian, R.; Li, Z.; Jiang, Q. Phylogenetic diversity of sulphate-reducing Desulfovibrio associated with three South China Sea sponges. Lett. Appl. Microbiol., 2015, 60(5), 504-512.
[http://dx.doi.org/10.1111/lam.12400] [PMID: 25661682]
[77]
Badr, J.M.; Shaala, L.A.; Abou-Shoer, M.I.; Tawfik, M.K.; Habib, A-A.M. Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. J. Nat. Prod., 2008, 71(8), 1472-1474.
[http://dx.doi.org/10.1021/np8002113] [PMID: 18598078]
[78]
Takada, N.; Watanabe, R.; Suenaga, K.; Yamada, K.; Ueda, K.; Kita, M.; Uemura, D. Zamamistatin, a significant antibacterial bromotyrosine derivative, from the Okinawan sponge Pseudoceratina purpurea. Tetrahedron Lett., 2001, 42(31), 5265-5267.
[http://dx.doi.org/10.1016/S0040-4039(01)00993-5]
[79]
Akihiro, Y.; Hitomi, K.; Kaori, Y.; Seketsu, F.; Chiyuki, K.; Kazunaga, Y.; Makoto, K.; Gui-Yang-Sheng, W.; Yasuyuki, F.; Daisuke, U. Development of chemical substances regulating biofilm formation. B Chem. Soc. Jap., 1997, 70(12), 3061-3069.
[http://dx.doi.org/10.1246/bcsj.70.3061]
[80]
Grossart, H.P. Ecological consequences of bacterioplankton lifestyles: Changes in concepts are needed. Environ. Microbiol. Rep., 2010, 2(6), 706-714.
[http://dx.doi.org/10.1111/j.1758-2229.2010.00179.x] [PMID: 23766274]
[81]
Hasan, M.; Chakrabarti, R. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: A review; Inrae Cirad Afz, 2009.
[82]
Mitra, A. Handbook of Marine Macroalgae Biotechnology and Applied Phycology Handbook of Marine Macroalgae Handbook of Marine Macroalgae Biotechnology and Applied Phycology; , 2013.
[83]
Chapman, V.J.; Chapman, D.J. Seaweed as Animal Fodder, Manure and for Energy.Seaweeds and their Uses; Chapman, V.J.; Chapman, D.J., Eds.; Springer Netherlands: Dordrecht, 1980, pp. 30-61.
[http://dx.doi.org/10.1007/978-94-009-5806-7_2]
[84]
Jebakumar, S.; Velayudhan, S.S. Purification of bioactive natural product against human microbial pathogens from marine sea weed Dictyota acutiloba J. Ag. World J. Microbiol. Biotechnol., 2008, 24, 1747-1752.
[http://dx.doi.org/10.1007/s11274-008-9668-8]
[85]
Iliopoulou, D.; Vagias, C.; Harvala, C.; Roussis, V.C (15) Acetogenins from the red alga Laurencia obtusa. Phytochemistry, 2002, 59(1), 111-116.
[http://dx.doi.org/10.1016/S0031-9422(01)00407-1] [PMID: 11754953]
[86]
Metzger, P.; Rager, M.N.; Largeau, C. Botryolins A and B, two tetramethylsqualene triethers from the green microalga Botryococcus braunii. Phytochemistry, 2002, 59(8), 839-843.
[http://dx.doi.org/10.1016/S0031-9422(02)00005-5] [PMID: 11937163]
[87]
Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem., 2007, 103(3), 891-899.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.041] [PMID: 26065750]
[88]
Rajauria, G.; Gupta, S.; Abu-Ghannam, N.; Jaiswal, A. The antioxidant capacity and polyphenol content of brown seaweeds after heat processing. 2010.Poster presented at the 2nd International Chester Food Science and Technology Conference, Chester, UK, 22nd - 24th March 2010
[http://dx.doi.org/10.21427/6t5n-js66]
[89]
Rajauria, G.; Abu-Ghannam, N. Isolation and Partial Characterization of Bioactive Fucoxanthin from Himanthalia elongata Brown Seaweed: A TLC-Based Approach. Int. J. Anal. Chem., 2013, 2013, 802573-802573.
[http://dx.doi.org/10.1155/2013/802573] [PMID: 23762062]
[90]
Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem., 2013, 61(20), 4667-4675.
[http://dx.doi.org/10.1021/jf400819p.]
[91]
Rajauria, G.; Jaiswal, A.K.; Abu-Gannam, N.; Gupta, S. Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of ireland. J. Food Biochem., 2013, 37(3), 322-335.
[http://dx.doi.org/10.1111/j.1745-4514.2012.00663.x]
[92]
Okada, Y.; Ishimaru, A.; Suzuki, R.; Okuyama, T. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications. J. Nat. Prod., 2004, 67(1), 103-105.
[http://dx.doi.org/10.1021/np030323j] [PMID: 14738398]
[93]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2015, 32(2), 116-211.
[http://dx.doi.org/10.1039/C4NP00144C] [PMID: 25620233]
[94]
Mayer, A.M.S. RodrA-guez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009-2011: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs, 2013, 11(7), 2510-2573.
[http://dx.doi.org/10.3390/md11072510] [PMID: 23880931]
[95]
Introduction of Marine Algae ExtractsIn Marine Algae Extracts; 1-14.
[96]
Ara, J.; Sultana, V.; Qasim, R.; Ehteshamul-Haque, S.; Ahmad, V.U. Biological activity of Spatoglossum asperum: A brown alga. Phytother. Res., 2005, 19(7), 618-623.
[http://dx.doi.org/10.1002/ptr.1699] [PMID: 16161033]
[97]
Devi, K.P.; Suganthy, N.; Kesika, P.; Pandian, S.K. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med., 2008, 8(1), 38.
[http://dx.doi.org/10.1186/1472-6882-8-38] [PMID: 18613983]
[98]
Cordeiro, R.A.; Gomes, V.M.; Carvalho, A.F.U.; Melo, V.M.M. Effect of proteins from the red seaweed Hypnea musciformis (Wulfen) Lamouroux on the growth of human pathogen yeasts. Braz. Arch. Biol. Technol., 2006, 49(6), 915-921.
[http://dx.doi.org/10.1590/S1516-89132006000700008]
[99]
Watson, S.B.; Cruz-Rivera, E. Algal chemical ecology: An introduction to the special issue. Phycologia, 2003, 42(4), 319-323.
[http://dx.doi.org/10.2216/i0031-8884-42-4-319.1]
[100]
Paul, V.J.; Puglisi, M.P. Chemical mediation of interactions among marine organisms. Nat. Prod. Rep., 2004, 21(1), 189-209.
[http://dx.doi.org/10.1039/b302334f] [PMID: 15039843]
[101]
Weinberger, F.; Friedlander, M. Response of Gracilaria conferta (Rhodophyta) to oligoagars results in defense against agar-degrading epiphytes. J. Phycol., 2000, 36(6), 1079-1086.
[http://dx.doi.org/10.1046/j.1529-8817.2000.00003.x]
[102]
Hierholtzer, A.; Chatellard, L.; Kierans, M.; Akunna, J.C.; Collier, P.J. The impact and mode of action of phenolic compounds extracted from brown seaweed on mixed anaerobic microbial cultures. J. Appl. Microbiol., 2013, 114(4), 964-973.
[http://dx.doi.org/10.1111/jam.12114] [PMID: 23279323]
[103]
Balamurugan, M.; Selvam, G.; Selvam, T.; Thinakaran, K.; Kathiresan, S. Biochemical Study and GC-MS Analysis of Hypnea musciformis (Wulf.) Lamouroux. American-Eurasian J. Sustain Agr., 2013, 8, 117-123.
[104]
TA1/4ney KŽñzŽñlkaya, I.; Unal, D.; Sukatar, A.; Cadirci, B. Antimicrobial activities of the extracts of marine algae from the Coast of Urla (izmir, Turkey). Turk. J. Biol., 2006, 30, 171-175.
[105]
Moorthi, P.V.; Balasubramanian, C. Antimicrobial properties of marine seaweed, Sargassum muticum against human pathogens. J. Coast. Life Med., 2015, 3, 122-125.
[106]
Jha, B.; Kavita, K.; Westphal, J.; Hartmann, A.; Schmitt-Kopplin, P. Quorum sensing inhibition by Asparagopsis taxiformis, a marine macro alga: Separation of the compound that interrupts bacterial communication. Mar. Drugs, 2013, 11(1), 253-265.
[http://dx.doi.org/10.3390/md11010253] [PMID: 23344114]
[107]
Heo, S-J.; Kim, J-P.; Jung, W-K.; Lee, N-H.; Kang, H-S.; Jun, E-M.; Park, S-H.; Kang, S-M.; Lee, Y-J.; Park, P-J.; Jeon, Y-J. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae. J. Microbiol. Biotechnol., 2008, 18(4), 676-681.
[PMID: 18467860]
[108]
Wei, Y.; Liu, Q.; Xu, C.; Yu, J.; Zhao, L.; Guo, Q. Damage to the membrane permeability and cell death of Vibrio parahaemolyticus caused by phlorotannins with low molecular weight from Sargassum thunbergii. J. Aquat. Food Prod. Technol., 2016, 25(3), 323-333.
[http://dx.doi.org/10.1080/10498850.2013.851757]
[109]
Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother., 2002, 50(6), 889-893.
[http://dx.doi.org/10.1093/jac/dkf222] [PMID: 12461009]
[110]
Choi, J-G.; Kang, O-H.; Brice, O-O.; Lee, Y-S.; Chae, H-S.; Oh, Y-C.; Sohn, D-H.; Park, H.; Choi, H-G.; Kim, S-G.; Shin, D-W.; Kwon, D-Y. Antibacterial activity of Ecklonia cava against methicillin-resistant Staphylococcus aureus and Salmonella spp. Food-Borne Pathog. Dis., 2010, 7(4), 435-441.
[http://dx.doi.org/10.1089/fpd.2009.0434] [PMID: 20001325]
[111]
Lee, D-S.; Kang, M-S.; Hwang, H-J.; Eom, S-H.; Yang, J-Y.; Lee, M-S.; Lee, W-J.; Jeon, Y-J.; Choi, J-S.; Kim, Y-M. Synergistic effect between dieckol from Ecklonia stolonifera and Iý-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioproc. E, 2008, 13(6), 758-764.
[http://dx.doi.org/10.1007/s12257-008-0162-9]
[112]
Manivasagan, P.; Oh, J. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int. J. Biol. Macromol., 2016, 82, 315-327.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.10.081] [PMID: 26523336]
[113]
Amorim, R.N.S.; Rodrigues, J.A.G.; Holanda, M.L. QuinderA(c), A.L.G.; Paula, R.C.M.d.; Melo, V.M.M.; Benevides, N.M.B. Antimicrobial effect of a crude sulfated polysaccharide from the red seaweed Gracilaria ornata. Braz. Arch. Biol. Technol., 2012, 55, 171-181.
[http://dx.doi.org/10.1590/S1516-89132012000200001]
[114]
Nishino, T.; Aizu, Y.; Nagumo, T. The influence of sulfate content and molecular weight of a fucan sulfate from the brown seaweed Ecklonia kurome on its antithrombin activity. Thromb. Res., 1991, 64(6), 723-731.
[http://dx.doi.org/10.1016/0049-3848(91)90072-5] [PMID: 1798961]
[115]
Farias, W.R.; Valente, A.P.; Pereira, M.S. MourAœo, P.A. Structure and anticoagulant activity of sulfated galactans. Isolation of a unique sulfated galactan from the red algae Botryocladia occidentalis and comparison of its anticoagulant action with that of sulfated galactans from invertebrates. J. Biol. Chem., 2000, 275(38), 29299-29307.
[http://dx.doi.org/10.1074/jbc.M002422200] [PMID: 10882718]
[116]
Duarte, M.E.; Cauduro, J.P.; Noseda, D.G.; Noseda, M.D. GonAalves, A.G.; Pujol, C.A.; Damonte, E.B.; Cerezo, A.S. The structure of the agaran sulfate from Acanthophora spicifera (Rhodomelaceae, Ceramiales) and its antiviral activity. Relation between structure and antiviral activity in agarans. Carbohydr. Res., 2004, 339(2), 335-347.
[http://dx.doi.org/10.1016/j.carres.2003.09.028] [PMID: 14698892]
[117]
Ghosh, P.; Adhikari, U.; Ghosal, P.K.; Pujol, C.A.; Carlucci, M.J.; Damonte, E.B.; Ray, B. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry, 2004, 65(23), 3151-3157.
[http://dx.doi.org/10.1016/j.phytochem.2004.07.025] [PMID: 15541745]
[118]
Zhou, G.; Sun, Y.; Xin, H.; Zhang, Y.; Li, Z.; Xu, Z. In vivo antitumor and immunomodulation activities of different molecular weight lambda-carrageenans from Chondrus ocellatus. Pharmacol. Res., 2004, 50(1), 47-53.
[http://dx.doi.org/10.1016/j.phrs.2003.12.002] [PMID: 15082028]
[119]
Pereira, M.G.; Benevides, N.M.B.; Melo, M.R.S.; Valente, A.P.; Melo, F.R. MourAœo, P.A.S. Structure and anticoagulant activity of a sulfated galactan from the red alga, Gelidium crinale. Is there a specific structural requirement for the anticoagulant action? Carbohydr. Res., 2005, 340(12), 2015-2023.
[http://dx.doi.org/10.1016/j.carres.2005.05.018] [PMID: 16023626]
[120]
Fonseca, R.J.C.; Oliveira, S-N.M.C.G.; Melo, F.R.; Pereira, M.G.; Benevides, N.M.B. MourAœo, P.A.S. Slight differences in sulfation of algal galactans account for differences in their anticoagulant and venous antithrombotic activities. Thromb. Haemost., 2008, 99(3), 539-545.
[http://dx.doi.org/10.1160/TH07-10-0603] [PMID: 18327402]
[121]
Zhang, H-J.; Mao, W-J.; Fang, F.; Li, H-Y.; Sun, H-H.; Chen, Y.; Qi, X-H. Chemical characteristics and anticoagulant activities of a sulfated polysaccharide and its fragments from Monostroma latissimum. Carbohydr. Polym., 2008, 71(3), 428-434.
[http://dx.doi.org/10.1016/j.carbpol.2007.06.012]
[122]
Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacologial, cosmaceutical and nutraceutical potential. Molecules, 2016, 21(5), 551.
[http://dx.doi.org/10.3390/molecules21050551.]
[123]
Silva, F.R.F.; Dore, C.M.P.G.; Marques, C.T.; Nascimento, M.S.; Benevides, N.M.B.; Rocha, H.A.O.; Chavante, S.F.; Leite, E.L. Anticoagulant activity, paw edema and pleurisy induced carrageenan: Action of major types of commercial carrageenans. Carbohydr. Polym., 2010, 79(1), 26-33.
[http://dx.doi.org/10.1016/j.carbpol.2009.07.010]
[124]
Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery application. Mar. Drugs, 2016, 14(3), 42.
[http://dx.doi.org/10.3390/md14030042.]
[125]
Marinho-Soriano, E.; Fonseca, P.C.; Carneiro, M.A.A.; Moreira, W.S.C. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour. Technol., 2006, 97(18), 2402-2406.
[http://dx.doi.org/10.1016/j.biortech.2005.10.014] [PMID: 16311028]
[126]
Pandian, V.; Vaseela, N.; Thirumaran, G. Potential antibacterial and antioxidant properties of a sulfated polysaccharide from the brown marine algae Sargassum swartzii. Chin. J. Nat. Med., 2012, 10, 421-428.
[127]
Thangapandi, M.; Kumar, T. Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int. Curr. Pharm. J., 2013, 2(10)
[128]
Fan, X.; Bai, L.; Zhu, L.; Yang, L.; Zhang, X. Marine algae-derived bioactive peptides for human nutrition and health. J. Agric. Food Chem., 2014, 62(38), 9211-9222.
[http://dx.doi.org/10.1021/jf502420h] [PMID: 25179496]
[129]
Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol., 2011, 29(9), 464-472.
[http://dx.doi.org/10.1016/j.tibtech.2011.05.001] [PMID: 21680034]
[130]
Holanda, M.L.; Melo, V.M.; Silva, L.M.C.M.; Amorim, R.C.N.; Pereira, M.G.; Benevides, N.M.B. Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz. J. Med. Biol. Res., 2005, 38(12), 1769-1773.
[http://dx.doi.org/10.1590/S0100-879X2005001200005] [PMID: 16302091]
[131]
Strathmann, M.; Wingender, J.; Flemming, H-C. Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa. J. Microbiol. Methods, 2002, 50(3), 237-248.
[http://dx.doi.org/10.1016/S0167-7012(02)00032-5] [PMID: 12031574]
[132]
Manefield, M.; Welch, M.; Givskov, M.; Salmond, G.P.; Kjelleberg, S. Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol. Lett., 2001, 205(1), 131-138.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10936.x] [PMID: 11728727]
[133]
Hentzer, M.; Wu, H.; Andersen, J.B.; Riedel, K.; Rasmussen, T.B.; Bagge, N.; Kumar, N.; Schembri, M.A.; Song, Z.; Kristoffersen, P.; Manefield, M.; Costerton, J.W.; Molin, S.; Eberl, L.; Steinberg, P.; Kjelleberg, S. HA,iby, N.; Givskov, M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J., 2003, 22(15), 3803-3815.
[http://dx.doi.org/10.1093/emboj/cdg366] [PMID: 12881415]
[134]
Pradhan, J.; Das, S.; Das, B.K. Antibacterial activity of freshwater microalgae: A review. Afr. J. Pharm. Pharmacol., 2014, 8, 809-818.
[http://dx.doi.org/10.5897/AJPP2013.0002]
[135]
Zheng, C.J.; Yoo, J.S.; Lee, T.G.; Cho, H.Y.; Kim, Y.H.; Kim, W.G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett., 2005, 579(23), 5157-5162.
[http://dx.doi.org/10.1016/j.febslet.2005.08.028] [PMID: 16146629]
[136]
Susilowati, R.; Sabdono, A.; Widowati, I. Isolation and characterization of bacteria associated with brown algae Sargassum spp. from Panjang Island and their antibacterial activities. Procedia Environ. Sci., 2015, 23, 240-246.
[http://dx.doi.org/10.1016/j.proenv.2015.01.036]
[137]
Stabili, L.; Acquaviva, M.I.; Angil, A", F.; Cavallo, R.A.; Cecere, E.; Del Coco, L.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Petrocelli, A. Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar. Drugs, 2019, 17(6), 313.
[http://dx.doi.org/10.3390/md17060313] [PMID: 31142027]
[138]
Stapleton, P.D.; Shah, S.; Hamilton-Miller, J.M.; Hara, Y.; Nagaoka, Y.; Kumagai, A.; Uesato, S.; Taylor, P.W. Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins. Int. J. Antimicrob. Agents, 2004, 24(4), 374-380.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.03.024] [PMID: 15380264]
[139]
Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull., 2006, 29(11), 2226-2235.
[http://dx.doi.org/10.1248/bpb.29.2226] [PMID: 17077519]
[140]
Cushnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107.
[http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014] [PMID: 21514796]
[141]
Rattaya, S.; Benjakul, S.; Prodpran, T. Extraction, antioxidative, and antimicrobial activities of brown seaweed extracts, Turbinaria ornata and Sargassum polycystum, grown in Thailand. Int. Aquatic Research, 2015, 7(1), 1-16.
[http://dx.doi.org/10.1007/s40071-014-0085-3]
[142]
Xu, N.; Fan, X.; Yan, X.; Li, X.; Niu, R.; Tseng, C.K. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry, 2003, 62(8), 1221-1224.
[http://dx.doi.org/10.1016/S0031-9422(03)00004-9] [PMID: 12648540]
[142]
Secondary metabolites from marine organisms. In Ciba Foundation Symposium 171 ‐ Secondary Metabolites: their Function and Evolution, , 236-254.
[144]
Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2018, 35(1), 8-53.
[http://dx.doi.org/10.1039/C7NP00052A] [PMID: 29335692]
[145]
Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel), 2017, 6(4), 42.
[http://dx.doi.org/10.3390/plants6040042] [PMID: 28937585]
[146]
Aneiros, A.; Garateix, A. Bioactive peptides from marine sources: Pharmacological properties and isolation procedures. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 803(1), 41-53.
[http://dx.doi.org/10.1016/j.jchromb.2003.11.005] [PMID: 15025997]
[147]
Sterner, O. Isolation of microbial natural products. Methods Mol. Biol., 2012, 864, 393-413.
[http://dx.doi.org/10.1007/978-1-61779-624-1_15] [PMID: 22367905]
[148]
Shao, C.; Wang, C.; Zheng, C.; She, Z.; Gu, Y.; Lin, Y. A new anthraquinone derivative from the marine endophytic fungus Fusarium sp. (No. b77). Nat. Prod. Res., 2010, 24(1), 81-85.
[http://dx.doi.org/10.1080/14786410902836701] [PMID: 20013477]
[149]
Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg. Med. Chem. Lett., 2011, 21(10), 2894-2897.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.076] [PMID: 21489788]
[150]
Coskun, O. Separation techniques: Chromatography. North. Clin. Istanb., 2016, 3(2), 156-160.
[PMID: 28058406]
[151]
Misra, N. N.; Rai, D.; Hossain, M. Analytical techniques for bioactives from seaweed., 2015, 1-17.
[http://dx.doi.org/10.1016/B978-0-12-418697-2.00010-6]
[152]
Arfan, M.; Shaaban, K.A. SchA1/4ffler, A.; Laatsch, H. Furanone derivatives from terrestrial Streptomyces spp. Nat. Prod. Commun., 2012, 7(9), 1199-1202.
[http://dx.doi.org/10.1177/1934578X1200700925] [PMID: 23074908]
[153]
Shushni, M.A.; Mentel, R.; Lindequist, U.; Jansen, R.; Balticols, A-F. Balticols A-F, new naphthalenone derivatives with antiviral activity, from an ascomycetous fungus. Chem. Biodivers., 2009, 6(2), 127-137.
[http://dx.doi.org/10.1002/cbdv.200800150] [PMID: 19235155]
[154]
Do, T.K.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Secondary metabolites isolation in natural products chemistry: Comparison of two semipreparative chromatographic techniques (high pressure liquid chromatography and high performance thin-layer chromatography). J. Chromatogr. A, 2014, 1325, 256-260.
[http://dx.doi.org/10.1016/j.chroma.2013.11.046] [PMID: 24377738]
[155]
Lee, S.U.; Asami, Y.; Lee, D.; Jang, J.H.; Ahn, J.S.; Oh, H. Protuboxepins A and B and protubonines A and B from the marine-derived fungus Aspergillus sp. SF-5044. J. Nat. Prod., 2011, 74(5), 1284-1287.
[http://dx.doi.org/10.1021/np100880b] [PMID: 21366228]
[156]
Ebada, S.S.; Edrada, R.A.; Lin, W.; Proksch, P. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat. Protoc., 2008, 3(12), 1820-1831.
[http://dx.doi.org/10.1038/nprot.2008.182] [PMID: 18989260]
[157]
Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolic acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal., 2017, 7(6), 349-364.
[http://dx.doi.org/10.1016/j.jpha.2017.06.005] [PMID: 29404060]
[158]
Li, D-H.; Zhu, T-J.; Liu, H-B.; Fang, Y-C.; Gu, Q-Q.; Zhu, W-M. Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch. Pharm. Res., 2006, 29(8), 624-626.
[http://dx.doi.org/10.1007/BF02968245] [PMID: 16964756]
[159]
Lang, G.; Mayhudin, N.A.; Mitova, M.I.; Sun, L.; van der Sar, S.; Blunt, J.W.; Cole, A.L.J.; Ellis, G.; Laatsch, H.; Munro, M.H.G. Evolving trends in the dereplication of natural product extracts: New methodology for rapid, small-scale investigation of natural product extracts. J. Nat. Prod., 2008, 71(9), 1595-1599.
[http://dx.doi.org/10.1021/np8002222] [PMID: 18710284]
[160]
Kwong, T.F.N.; Miao, L.; Li, X.; Qian, P.Y. Novel antifouling and antimicrobial compound from a marine-derived fungus Ampelomyces sp. Mar. Biotechnol. (NY), 2006, 8(6), 634-640.
[http://dx.doi.org/10.1007/s10126-005-6146-2] [PMID: 16924374]
[161]
Yin, Q.; Liang, J.; Zhang, W.; Zhang, L.; Hu, Z-L.; Zhang, Y.; Xu, Y. Butenolide, a marine-derived broad-spectrum antibiofilm agent against both gram-positive and gram-negative pathogenic bacteria. Mar. Biotechnol. (NY), 2019, 21(1), 88-98.
[http://dx.doi.org/10.1007/s10126-018-9861-1] [PMID: 30612218]
[162]
Rodrigues, D.; Alves, C.; Horta, A.; Pinteus, S.; Silva, J.; Culioli, G.; Thomas, O.P.; Pedrosa, R. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar. Drugs, 2015, 13(2), 713-726.
[http://dx.doi.org/10.3390/md13020713] [PMID: 25629386]
[163]
Sun, P.; Maloney, K.N.; Nam, S-J.; Haste, N.M.; Raju, R.; Aalbersberg, W.; Jensen, P.R.; Nizet, V.; Hensler, M.E.; Fenical, W.; Fijimycins, A-C. Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp. Bioorg. Med. Chem., 2011, 19(22), 6557-6562.
[http://dx.doi.org/10.1016/j.bmc.2011.06.053] [PMID: 21745747]
[164]
Isnansetyo, A.; Kamei, Y. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica O-BC30T. Int. J. Antimicrob. Agents, 2009, 34(2), 131-135.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.02.009] [PMID: 19329285]
[165]
Kim, M-Y.; Sohn, J.H.; Ahn, J.S.; Oh, H. Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016. J. Nat. Prod., 2009, 72(11), 2065-2068.
[http://dx.doi.org/10.1021/np900464p] [PMID: 19943624]
[166]
Zilla, M.K.; Qadri, M.; Pathania, A.S.; Strobel, G.A.; Nalli, Y.; Kumar, S.; Guru, S.K.; Bhushan, S.; Singh, S.K.; Vishwakarma, R.A.; Riyaz-Ul-Hassan, S.; Ali, A. Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry, 2013, 95, 291-297.
[http://dx.doi.org/10.1016/j.phytochem.2013.06.021] [PMID: 23870821]
[167]
Pierre, G.; Sopena, V.; Juin, C.; Mastouri, A.; Graber, M.; Maugard, T. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea against Staphylococcus aureus. Biotechnol. Bioproc. E., 2011, 16(5), 937-945.
[http://dx.doi.org/10.1007/s12257-011-0224-2]
[168]
Singh, M.P.; Kong, F.; Janso, J.E.; Arias, D.A.; Suarez, P.A.; Bernan, V.S.; Petersen, P.J.; Weiss, W.J.; Carter, G.; Greenstein, M. Novel alpha-pyrones produced by a marine Pseudomonas sp. F92S91: Taxonomy and biological activities. J. Antibiot. (Tokyo), 2003, 56(12), 1033-1044.
[http://dx.doi.org/10.7164/antibiotics.56.1033] [PMID: 15015731]
[169]
Kwon, H.C.; Kauffman, C.A.; Jensen, P.R.; Fenical, W.; Marinomycins, A.D. Marinomycins A-D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus omarinispora. J. Am. Chem. Soc., 2006, 128(5), 1622-1632.
[http://dx.doi.org/10.1021/ja0558948] [PMID: 16448135]
[170]
Zhang, W.; Liu, Z.; Li, S.; Lu, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Zhu, Y.; Zhang, G.; Zhang, W.; Liu, J.; Zhang, C. Fluostatins I-K from the South China Sea-derived Micromonospora rosaria SCSIO N160. J. Nat. Prod., 2012, 75(11), 1937-1943.
[http://dx.doi.org/10.1021/np300505y] [PMID: 23136829]
[171]
Namikoshi, M.; Negishi, R.; Nagai, H.; Dmitrenok, A.; Kobayashi, H. Three new chlorine containing antibiotics from a marine-derived fungus Aspergillus ostianus collected in Pohnpei. J. Antibiot. (Tokyo), 2003, 56(9), 755-761.
[http://dx.doi.org/10.7164/antibiotics.56.755] [PMID: 14632284]
[172]
Beaulieu, L.; Bondu, S.; Doiron, K.; Rioux, L-E.; Turgeon, S.L. Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J. Funct. Foods, 2015, 17, 685-697.
[http://dx.doi.org/10.1016/j.jff.2015.06.026]
[173]
Raju, R.; Piggott, A.M.; Khalil, Z.; Bernhardt, P.V.; Capon, R.J.; Heronamycin, A. a new benzothiazine ansamycin from an Australian marine-derived Streptomyces sp. Tetrahedron Lett., 2012, 53(9), 1063-1065.
[http://dx.doi.org/10.1016/j.tetlet.2011.12.064]
[174]
Schumacher, R. Harrigan, B.; Davidson, B., Kahakamides A and B, New neosidomycin metabolites from a marine-derived actinomycete. Tetrahedron Lett., 2001, 42, 5133-5135.
[http://dx.doi.org/10.1016/S0040-4039(01)00979-0]
[175]
Li, X.; Kim, S-K.; Nam, K.W.; Kang, J.S.; Choi, H.D.; Son, B.W. A new antibacterial dioxopiperazine alkaloid related to gliotoxin from a marine isolate of the fungus Pseudallescheria. J. Antibiot. (Tokyo), 2006, 59(4), 248-250.
[http://dx.doi.org/10.1038/ja.2006.35] [PMID: 16830893]
[176]
Bansemir, A.; Just, N.; Michalik, M.; Lindequist, U.; Lalk, M. Extracts and sesquiterpene derivatives from the red alga Laurencia chondrioides with antibacterial activity against fish and human pathogenic bacteria. Chem. Biodivers., 2004, 1(3), 463-467.
[http://dx.doi.org/10.1002/cbdv.200490039] [PMID: 17191860]
[177]
In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae, 2014, 29(1), 47-55.
[http://dx.doi.org/10.4490/algae.2014.29.1.047]
[178]
Chakraborty, K.; Lipton, A.; Raj, R.P.; Vijayan, K. Antibacterial labdane diterpenoids of Ulva fasciata Delile from southwestern coast of the Indian Peninsula. Food Chem., 2010, 119(4), 1399-1408.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy