Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Extended Spectrum Beta Lactamase (ESBL), blaTEM,blaSHV and blaCTX-M, Resistance Genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria

Author(s): Ganiyat Shitta, Olufunmilola Makanjuola*, Olusolabomi Adefioye and Olugbenga Adekunle Olowe

Volume 21, Issue 4, 2021

Published on: 29 July, 2020

Page: [595 - 602] Pages: 8

DOI: 10.2174/1871526520999200729181559

Price: $65

Abstract

Background: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the blaTEM,blaSHV and blaCTX-M genes. The prevalence of ESBL producing bacteria has been on the increase globally, especially its upsurge among isolates from community-acquired infections has been observed.

Aim: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria.

Material and Methods: A cross-sectional study was carried out from August 2016 – July 2017 in Osun State, Nigeria. Three hundred and sixty Gram-negative bacteria recovered from clinical samples obtained from both community and healthcare-associated infections were tested. They included 147 Escherichia coli (40.8%), 116 Klebsiella spp (32.2%), 44 Pseudomonas aeruginosa (12.2%) and 23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR).

Results: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%).

The overall prevalence of ESBL producers was 41.4% with Klebsiella spp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs. 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the blaCTX-M gene predominating (47.0%) followed by blaTEM (30.9%) and blaSHV gene was the least, 22.1%. The blaCTX-M gene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin.

Conclusion: A high prevalence of ESBL producing gram-negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control the spread of these pathogens should be addressed.

Keywords: Escherichia coli, antibiotics resistance, multidrug resistance, nosocomial infection, Klebsiella spp, CTX-M.

Graphical Abstract

[1]
Gibold, L.; Robin, F.; Tan, R-N.; Delmas, J.; Bonnet, R. Four-year epidemiological study of extended-spectrum β-lactamase-producing Enterobacteriaceae in a French teaching hospital. Clin. Microbiol. Infect., 2014, 20(1), O20-O26.
[http://dx.doi.org/10.1111/1469-0691.12321] [PMID: 23927626]
[2]
Bradford, P.A. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev., 2001, 14(4), 933-951.
[http://dx.doi.org/10.1128/CMR.14.4.933-951.2001] [PMID: 11585791]
[3]
Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Claeys, G.; Lontie, M.; Van Meensel, B.; Herman, L.; Haesebrouck, F.; Butaye, P. Characterization of extended-spectrum β-lactamases produced by Escherichia coli isolated from hospitalized and nonhospitalized patients: emergence of CTX-M-15-producing strains causing urinary tract infections. Microb. Drug Resist., 2010, 16(2), 129-134.
[http://dx.doi.org/10.1089/mdr.2009.0132] [PMID: 20370505]
[4]
Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev., 2005, 18(4), 657-686.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[5]
Giedraitienė, A.; Vitkauskienė, A.; Ašmonienė, V.; Plančiūnienė, R.; Simonytė, S.; Pavilonis, A.; Arlet, G. CTX-M-producing Escherichia coli in Lithuania: associations between sites of infection, coresistance, and phylogenetic groups. Medicina (Kaunas), 2013, 49(9), 393-398.
[PMID: 24589574]
[6]
Ahmed, O.I.; El-Hady, S.A.; Ahmed, T.M.; Ahmed, I.Z. Detection of bla SHV and bla CTX-M genes in ESBL producing Klebsiella pneumoniae isolated from Egyptian patients with suspected nosocomial infections. Egypt. J. Med. Hum. Genet., 2013, 14(3), 277-283.
[http://dx.doi.org/10.1016/j.ejmhg.2013.05.002]
[7]
Lynch, J.P., III; Clark, N.M.; Zhanel, G.G. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum β-lactamases and carbapenemases). Expert Opin. Pharmacother., 2013, 14(2), 199-210.
[http://dx.doi.org/10.1517/14656566.2013.763030] [PMID: 23321047]
[8]
Xu, L.; Shabir, S.; Bodah, T.; McMurray, C.; Hardy, K.; Hawkey, P.; Nye, K. Regional survey of CTX-M-type extended-spectrum β-lactamases among Enterobacteriaceae reveals marked heterogeneity in the distribution of the ST131 clone. J. Antimicrob. Chemother., 2011, 66(3), 505-511.
[http://dx.doi.org/10.1093/jac/dkq482] [PMID: 21183528]
[9]
Sennati, S.; Santella, G.; Di Conza, J.; Pallecchi, L.; Pino, M.; Ghiglione, B.; Rossolini, G.M.; Radice, M.; Gutkind, G. Changing epidemiology of extended-spectrum β-lactamases in Argentina: emergence of CTX-M-15. Antimicrob. Agents Chemother., 2012, 56(11), 6003-6005.
[http://dx.doi.org/10.1128/AAC.00745-12] [PMID: 22908156]
[10]
Okeke, I.N.; Aboderin, O.A.; Byarugaba, D.K.; Ojo, K.K.; Opintan, J.A. Growing problem of multidrug-resistant enteric pathogens in Africa. Emerg. Infect. Dis., 2007, 13(11), 1640-1646.
[http://dx.doi.org/10.3201/eid1311.070674] [PMID: 18217545]
[11]
World Health Organization. Antimicrobial resistance Global Report on Surveillance., 2014.
[12]
Bernabé, K.J.; Langendorf, C.; Ford, N.; Ronat, J.B.; Murphy, R.A. Antimicrobial resistance in West Africa: a systematic review and meta-analysis. Int. J. Antimicrob. Agents, 2017, 50(5), 629-639.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.07.002] [PMID: 28705671]
[13]
Federal Ministries of Agriculture Environment and Health N. Antimicrobial Use and Resistance in Nigeria- Situation analysis and recommendation, 2017.
[14]
Okesola, A.O.; Oni, A.A. Antimicrobial Resistance Among Common Bacterial Pathogens in South Western Nigeria. J Agric Environ Sci., 2009, 5(3), 327-330.
[15]
Cowan, S. Cowan and Steel’s Manual for the Identification of Medical Bacteria.Cambridge. Cambridge University Press, 2003.
[16]
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-sixth informational supplement. CLSI document M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, 2016.
[17]
Drieux, L.; Brossier, F.; Sougakoff, W.; Jarlier, V. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin. Microbiol. Infect., 2008, 14(Suppl. 1), 90-103.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01846.x] [PMID: 18154532]
[18]
Villegas, M.V.; Kattan, J.N.; Quinteros, M.G.; Casellas, J.M. Prevalence of extended-spectrum β-lactamases in South America. Clin. Microbiol. Infect., 2008, 14(Suppl. 1), 154-158.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01869.x] [PMID: 18154539]
[19]
Abrar, S.; Hussain, S.; Khan, R.A.; Ul Ain, N.; Haider, H.; Riaz, S. Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae: first systematic meta-analysis report from Pakistan. Antimicrob. Resist. Infect. Control, 2018, 7(1), 26.
[http://dx.doi.org/10.1186/s13756-018-0309-1] [PMID: 29484173]
[20]
Chandramohan, L.; Revell, P.A. Prevalence and molecular characterization of extended-spectrum-β-lactamase-producing Enterobacteriaceae in a pediatric patient population. Antimicrob. Agents Chemother., 2012, 56(9), 4765-4770.
[http://dx.doi.org/10.1128/AAC.00666-12] [PMID: 22733062]
[21]
Sharma, M.; Pathak, S.; Srivastava, P. Prevalence and antibiogram of Extended Spectrum β-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J. Clin. Diagn. Res., 2013, 7(10), 2173-2177.
[http://dx.doi.org/10.7860/JCDR/2013/6460.3462] [PMID: 24298468]
[22]
Feizabadi, M.M.; Delfani, S.; Raji, N.; Majnooni, A.; Aligholi, M.; Shahcheraghi, F.; Parvin, M.; Yadegarinia, D. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb. Drug Resist., 2010, 16(1), 49-53.
[http://dx.doi.org/10.1089/mdr.2009.0096] [PMID: 19961397]
[23]
Yusuf, I.; Haruna, M.; Yahaya, H. Prevalence and antibiotic susceptibility of AmpC and ESBLs producing clinical isolates at a tertiary health care center in Kano, north-west Nigeria. Afr. J. Clin. Exp. Microbiol., 2013, 14(2), 109-119.
[http://dx.doi.org/10.4314/ajcem.v14i2.12]
[24]
Zahar, J.R.; Lesprit, P. Management of multidrug resistant bacterial endemic. Med. Mal. Infect., 2014, 44(9), 405-411.
[http://dx.doi.org/10.1016/j.medmal.2014.07.006] [PMID: 25169940]
[25]
Huang, S.Y.; Pan, K.Y.; Liu, X.Q.; Xie, X.Y.; Dai, X.L.; Chen, B.J.; Wu, X.Q.; Li, H.Y. Analysis of the drug-resistant characteristics of Klebsiella pneumoniae isolated from the respiratory tract and CTX-M ESBL genes. Genet. Mol. Res., 2015, 14(4), 12043-12048.
[http://dx.doi.org/10.4238/2015.October.5.17] [PMID: 26505351]
[26]
McDanel, J.; Schweizer, M.; Crabb, V.; Nelson, R.; Samore, M.; Khader, K.; Blevins, A.E.; Diekema, D.; Chiang, H.Y.; Nair, R.; Perencevich, E. Incidence of extended-spectrum β-lactamase (esbl)-producing escherichia coli and klebsiella infections in the united states: a systematic literature review. Infect. Control Hosp. Epidemiol., 2017, 38(10), 1209-1215.
[http://dx.doi.org/10.1017/ice.2017.156] [PMID: 28758612]
[27]
Oduro-Mensah, D.; Obeng-Nkrumah, N.; Bonney, E.Y.; Oduro-Mensah, E.; Twum-Danso, K.; Osei, Y.D.; Sackey, S.T. Genetic characterization of TEM-type ESBL-associated antibacterial resistance in Enterobacteriaceae in a tertiary hospital in Ghana. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 29.
[http://dx.doi.org/10.1186/s12941-016-0144-2] [PMID: 27145868]
[28]
Wollheim, C.; Guerra, I.M.F.; Conte, V.D.; Hoffman, S.P.; Schreiner, F.J.; Delamare, A.P.L.; Barth, A.L.; Echeverrigaray, S.; Costa, S.O. Nosocomial and community infections due to class A extended-spectrum β-lactamase (ESBLA)-producing Escherichia coli and Klebsiella spp. in southern Brazil. Braz. J. Infect. Dis., 2011, 15(2), 138-143.
[PMID: 21503400]
[29]
Al Mously, N.; Al Arfaj, O.; Al Fadhil, L.; Mukaddam, S. Antimicrobial susceptibility patterns of ESBL Escherichia coli isolated from community and hospital-acquired urinary tract infections. J Heal Spec., 2016, 4(2), 133.
[http://dx.doi.org/10.4103/1658-600X.179829]
[30]
Pallecchi, L.; Bartoloni, A.; Fiorelli, C.; Mantella, A.; Di Maggio, T.; Gamboa, H.; Gotuzzo, E.; Kronvall, G.; Paradisi, F.; Rossolini, G.M. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob. Agents Chemother., 2007, 51(8), 2720-2725.
[http://dx.doi.org/10.1128/AAC.00026-07] [PMID: 17548490]
[31]
Lina, T.T.; Khajanchi, B.K.; Azmi, I.J.; Islam, M.A.; Mahmood, B.; Akter, M.; Banik, A.; Alim, R.; Navarro, A.; Perez, G.; Cravioto, A.; Talukder, K.A. Phenotypic and molecular characterization of extended-spectrum beta-lactamase-producing Escherichia coli in Bangladesh. PLoS One, 2014, 9(10)e108735
[http://dx.doi.org/10.1371/journal.pone.0108735] [PMID: 25302491]
[32]
Khanna, N.; Boyes, J.; Lansdell, P.M.; Hamouda, A.; Amyes, S.G.B. Molecular epidemiology and antimicrobial resistance pattern of extended-spectrum-β-lactamase-producing Enterobacteriaceae in Glasgow, Scotland. J. Antimicrob. Chemother., 2012, 67(3), 573-577.
[http://dx.doi.org/10.1093/jac/dkr523] [PMID: 22169188]
[33]
Dias, V.C.; da Silva, V.L.; Barros, R.; Bastos, A.N.; de Andrade Bastos, L.Q.; de Andrade Bastos, V.Q.; Diniz, C.G. Phenotypic and genotypic evaluation of beta-lactamases (ESBL and KPC) among enterobacteria isolated from community-acquired monomicrobial urinary tract infections. J. Chemother., 2014, 26(6), 328-332.
[http://dx.doi.org/10.1179/1973947813Y.0000000148] [PMID: 24621159]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy