Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Research Development, Optimization and Modifications of Anti-cancer Peptides

Author(s): Zhi-Gang Sun*, Liang-Hui Zhao, Stacy Mary Yeh, Zhi-Na Li and Xin Ming*

Volume 21, Issue 1, 2021

Published on: 29 July, 2020

Page: [58 - 68] Pages: 11

DOI: 10.2174/1389557520666200729163146

Price: $65

Abstract

Anti-cancer peptides play an important role in the area of cancer inhibition. A variety of anti- cancer peptides have emerged through the extraction and structural modification of peptides from biological tissues. This review provides the research background of anti-cancer peptides, the introduction of the mechanism of anti-cancer peptides for inhibition of cancers, the discovery and development along with optimization and modifications of these peptides in the clinical application. In conclusion, it can be said that anti-cancer peptides will play a major role in the future oncologic clinic.

Keywords: Anti-cancer peptides, modifications, mechanisms, progress, development, optimization.

Graphical Abstract

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer, 2018, 103, 356-387.
[http://dx.doi.org/10.1016/j.ejca.2018.07.005 ] [PMID: 30100160]
[2]
Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev., 2014, 23(5), 700-713.
[http://dx.doi.org/10.1158/1055-9965.EPI-13-1057 ] [PMID: 24618998]
[3]
Domper Arnal, M.J.; Ferrández Arenas, Á.; Lanas Arbeloa, Á. Esophageal cancer: Risk factors, screening and endoscopic treatment in western and eastern countries. World J. Gastroenterol., 2015, 21(26), 7933-7943.
[http://dx.doi.org/10.3748/wjg.v21.i26.7933] [PMID: 26185366]
[4]
Dong, J.; Thrift, A.P. Alcohol, smoking and risk of oesophago-gastric cancer. Best Pract. Res. Clin. Gastroenterol., 2017, 31(5), 509-517.
[http://dx.doi.org/10.1016/j.bpg.2017.09.002 PMID: 29195670]
[5]
Rezende, L.F.M.; Arnold, M.; Rabacow, F.M.; Levy, R.B.; Claro, R.M.; Giovannucci, E.; Eluf-Neto, J. The increasing burden of cancer attributable to high body mass index in Brazil. Cancer Epidemiol., 2018, 54, 63-70.
[http://dx.doi.org/10.1016/j.canep.2018.03.006 ] [PMID: 29604601]
[6]
Romero, Y.; Trapani, D.; Johnson, S.; Tittenbrun, Z.; Given, L.; Hohman, K.; Stevens, L.; Torode, J.S.; Boniol, M.; Ilbawi, A.M. National cancer control plans: A global analysis. Lancet Oncol., 2018, 19(10), e546-e555.
[http://dx.doi.org/10.1016/S1470-2045(18)30681-8 ] [PMID: 30268693]
[7]
Kansy, K.; Mueller, A.A.; Mücke, T.; Koersgen, F.; Wolff, K.D.; Zeilhofer, H-F.; Hölzle, F.; Pradel, W.; Schneider, M.; Kolk, A.; Smeets, R.; Acero, J.; Haers, P.; Ghali, G.E.; Hoffmann, J. A worldwide comparison of the management of surgical treatment of advanced oral cancer. J. Craniomaxillofac. Surg., 2018, 46(3), 511-520.
[http://dx.doi.org/10.1016/j.jcms.2017.12.031] [PMID: 29395993]
[8]
Pignon, J-P.; Arriagada, R.; Ihde, D.C.; Johnson, D.H.; Perry, M.C.; Souhami, R.L.; Brodin, O.; Joss, R.A.; Kies, M.S.; Lebeau, B. A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N. Engl. J. Med., 1992, 327(23), 1618-1624.
[http://dx.doi.org/10.1056/NEJM199212033272302 ] [PMID: 1331787]
[9]
Bonadonna, G.; Valagussa, P. Chemotherapy of breast cancer: current views and results. Int. J. Radiat. Oncol. Biol. Phy., 1983, 9(3), 279-297.
[http://dx.doi.org/10.1016/0360-3016(83)90286-9]
[10]
Rivera, D.R.; Ganz, P.A.; Weyrich, M.S.; Bandos, H.; Melnikow, J. Chemotherapy-associated peripheral neuropathy in patients with early-stage breast cancer: A systematic review. JNCI. J. Natl. Cancer Inst., 2018, 110(2), 131-140.
[http://dx.doi.org/10.1093/jnci/djx140] [PMID: 28954296]
[11]
Evans, E.; Staffurth, J. Principles of cancer treatment by radiotherapy. Surgery, 2018, 36(3), 111-116.
[http://dx.doi.org/10.1016/j.mpsur.2017.12.006]
[12]
Walter, H.S.; Ahmed, S. Targeted therapies in cancer. Surgery, 2018, 36(3), 122-127.
[http://dx.doi.org/10.1016/j.mpsur.2017.12.010]
[13]
Bernard-Marty, C.; Lebrun, F.; Awada, A.; Piccart, M.J. Monoclonal antibody-based targeted therapy in breast cancer: Current status and future directions. Drugs, 2006, 66(12), 1577-1591.
[http://dx.doi.org/10.2165/00003495-200666120-00004 ] [PMID: 16956305]
[14]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[http://dx.doi.org/10.1038/nrc2559] [PMID: 19104514]
[15]
Rosenberg, S.A.; Yang, J.C.; Restifo, N.P. Cancer immunotherapy: Moving beyond current vaccines. Nat. Med., 2004, 10(9), 909-915.
[http://dx.doi.org/10.1038/nm1100] [PMID: 15340416]
[16]
Dejea, C.M.; Fathi, P.; Craig, J.M.; Boleij, A.; Taddese, R.; Geis, A.L.; Wu, X.; DeStefano Shields, C.E.; Hechenbleikner, E.M.; Huso, D.L.; Anders, R.A.; Giardiello, F.M.; Wick, E.C.; Wang, H.; Wu, S.; Pardoll, D.M.; Housseau, F.; Sears, C.L. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 2018, 359(6375), 592-597.
[http://dx.doi.org/10.1126/science.aah3648] [PMID: 29420293]
[17]
Price, R.L.; Bugeon, L.; Mostowy, S.; Makendi, C.; Wren, B.W.; Williams, H.D.; Willcocks, S.J. In vitro and in vivo properties of the bovine antimicrobial peptide, Bactenecin 5. PLoS One, 2019, 14(1)e0210508
[http://dx.doi.org/10.1371/journal.pone.0210508] [PMID: 30625198]
[18]
Kosikowska, P.; Lesner, A. Antimicrobial peptides (AMPs) as drug candidates: A patent review (2003–2015). Expert Opin. Therapeut Pat., 2016, 26(6), 689-702.
[19]
Arshad, N.; Siow, H-L.; Ngoh, Y-Y.; Sofian, N.A.H.S.; Gan, C-Y. Enzyme and bioactive peptides—A strategy for discovery and identification of antihypertensive peptides. Enzy. Food Biotechnol; Kuddus, M., Ed.; Academic Press, 2019, pp. 343-367.
[http://dx.doi.org/10.1016/B978-0-12-813280-7.00020-7]
[20]
Wang, C.; Dong, S.; Zhang, L.; Zhao, Y.; Huang, L.; Gong, X.; Wang, H.; Shang, D. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci. Rep., 2017, 7(1), 8293.
[http://dx.doi.org/10.1038/s41598-017-08963-2] [PMID: 28811617]
[21]
Conlon, J.M.; Galadari, S.; Raza, H.; Condamine, E. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7. Chem. Biol. Drug Des., 2008, 72(1), 58-64.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00671.x ] [PMID: 18554256]
[22]
Conlon, J.M.; Demandt, A.; Nielsen, P.F.; Leprince, J.; Vaudry, H.; Woodhams, D.C. The alyteserins: two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides, 2009, 30(6), 1069-1073.
[http://dx.doi.org/10.1016/j.peptides.2009.03.004] [PMID: 19463738]
[23]
Conlon, J.M.; Mechkarska, M.; Prajeep, M.; Arafat, K.; Zaric, M.; Lukic, M.L.; Attoub, S. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids, 2013, 44(2), 715-723.
[http://dx.doi.org/10.1007/s00726-012-1395-7] [PMID: 22965637]
[24]
Attoub, S.; Arafat, H.; Mechkarska, M.; Conlon, J.M. Anti-tumor activities of the host-defense peptide hymenochirin-1B. Regul. Pept., 2013, 187(22), 51-56.
[http://dx.doi.org/10.1016/j.regpep.2013.10.006] [PMID: 24185042]
[25]
Conlon, J.M.; Woodhams, D.C.; Raza, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H.; Rollins-Smith, L.A. Peptides with differential cytolytic activity from skin secretions of the lemur leaf frog Hylomantis lemur (Hylidae: Phyllomedusinae). Toxicon, 2007, 50(4), 498-506.
[http://dx.doi.org/10.1016/j.toxicon.2007.04.017] [PMID: 17561225]
[26]
Attoub, S.; Mechkarska, M.; Sonnevend, A.; Radosavljevic, G.; Jovanovic, I.; Lukic, M.L.; Conlon, J.M. Esculentin-2CHa: A host-defense peptide with differential cytotoxicity against bacteria, erythrocytes and tumor cells. Peptides, 2013, 39, 95-102.
[http://dx.doi.org/10.1016/j.peptides.2012.11.004] [PMID: 23159562]
[27]
Wang, C.; Tian, L.L.; Li, S.; Li, H.B.; Zhou, Y.; Wang, H.; Yang, Q.Z.; Ma, L.J.; Shang, D.J. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One, 2013, 8(4)e60462
[http://dx.doi.org/10.1371/journal.pone.0060462] [PMID: 23577112]
[28]
van Zoggel, H.; Hamma-Kourbali, Y.; Galanth, C.; Ladram, A.; Nicolas, P.; Courty, J.; Amiche, M.; Delbé, J. Antitumor and angiostatic peptides from frog skin secretions. Amino Acids, 2012, 42(1), 385-395.
[http://dx.doi.org/10.1007/s00726-010-0815-9] [PMID: 21132338]
[29]
Mechkarska, M.; Attoub, S.; Sulaiman, S.; Pantic, J.; Lukic, M.L.; Conlon, J.M. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin-2Pa. Regul. Pept., 2014, 194-195, 69-76.
[http://dx.doi.org/10.1016/j.regpep.2014.11.001] [PMID: 25447194]
[30]
Fidelio, G.D.; Maggio, B.; Cumar, F.A. Interaction of myelin basic protein, melittin and bovine serum albumin with gangliosides, sulphatide and neutral glycosphingolipids in mixed monolayers. Chem. Phys. Lipids, 1984, 35(3), 231-245.
[http://dx.doi.org/10.1016/0009-3084(84)90049-5] [PMID: 6207945]
[31]
Raghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223.
[http://dx.doi.org/10.1007/s10540-006-9030-z] [PMID: 17139559]
[32]
Jamasbi, E.; Mularski, A.; Separovic, F. Model membrane and cell studies of antimicrobial activity of melittin analogues. Curr. Top. Med. Chem., 2016, 16(1), 40-45.
[http://dx.doi.org/10.2174/1568026615666150703115919 PMID: 26139117]
[33]
Cao, L.; Dai, C.; Li, Z.; Fan, Z.; Song, Y.; Wu, Y.; Cao, Z.; Li, W. Antibacterial activity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One, 2012, 7(7)e40135
[http://dx.doi.org/10.1371/journal.pone.0040135] [PMID: 22792229]
[34]
Arpornsuwan, T.; Sriwai, W.; Jaresitthikunchai, J.; Phaonakrop, N.; Sritanaudomchai, H.; Roytrakul, S. Anticancer activities of antimicrobial bmkn2 peptides against oral and colon cancer cells. Int. J. Pept. Res. Ther., 2014, 20(4), 501-509.
[http://dx.doi.org/10.1007/s10989-014-9417-9]
[35]
Hilchie, A. L.; Sharon, A. J.; Haney, E. F.; Hoskin, D. W.; Bally, M. B.; Franco, O. L.; Corcoran, J. A.; Hancock, R. E. W. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. BBA - Biomembranes, 2016, 1858(12), 3195-3204.
[36]
Ramírez-Carreto, S.; Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Corzo, G.; Possani, L.D.; Becerril, B.; Ortiz, E. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides, 2012, 34(2), 290-295.
[http://dx.doi.org/10.1016/j.peptides.2012.02.002] [PMID: 22342498]
[37]
Pedron, C.N.; Andrade, G.P.; Sato, R.H.; Torres, M.T.; Cerchiaro, G.; Ribeiro, A.O.; Oliveira, V.X., Jr Anticancer activity of VmCT1 analogs against MCF-7 cells. Chem. Biol. Drug Des., 2018, 91(2), 588-596.
[http://dx.doi.org/10.1111/cbdd.13123] [PMID: 29044929]
[38]
Khamessi, O.; Ben Mabrouk, H.; ElFessi-Magouri, R.; Kharrat, R. RK1, the first very short peptide from Buthus occitanus tunetanus inhibits tumor cell migration, proliferation and angiogenesis. Biochem. Biophys. Res. Commun., 2018, 499(1), 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.01.133] [PMID: 29366787]
[39]
Bellamy, W.; Takase, M.; Yamauchi, K.; Wakabayashi, H.; Kawase, K.; Tomita, M. Identification of the bactericidal domain of lactoferrin. Biochim. Biophys. Acta (BBA)-. Protein Structure Mol. Enzymol., 1992, 1121(1), 130-136.
[http://dx.doi.org/10.1016/0167-4838(92)90346-F]
[40]
Mader, J.S.; Richardson, A.; Salsman, J.; Top, D.; de Antueno, R.; Duncan, R.; Hoskin, D.W. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Exp. Cell Res., 2007, 313(12), 2634-2650.
[http://dx.doi.org/10.1016/j.yexcr.2007.05.015] [PMID: 17570361]
[41]
Wang, Y-K.; He, H-L.; Wang, G-F.; Wu, H.; Zhou, B-C.; Chen, X-L.; Zhang, Y-Z. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs, 2010, 8(2), 255-268.
[http://dx.doi.org/10.3390/md8020255] [PMID: 20390104]
[42]
Hsu, K-C.; Li-Chan, E.C.Y.; Jao, C-L. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chem., 2011, 126(2), 617-622.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.066]
[43]
Azevedo, R.A.; Ferreira, A.K.; Auada, A.V.V.; Pasqualoto, K.F.M.; Marques-Porto, R.; Maria, D.A.; Lebrun, I. Antitumor Effect of Cationic INKKI Peptide from Bovine β-Casein on Melanoma B16F10. J. Cancer Ther., 2012, 3(4), 237-244.
[http://dx.doi.org/10.4236/jct.2012.34034]
[44]
Kim, E.K.; Kim, Y.S.; Hwang, J.W.; Lee, J.S.; Moon, S.H.; Jeon, B.T.; Park, P.J. Purification and characterization of a novel anticancer peptide derived from Ruditapes philippinarum. Process Biochem., 2013, 48(7), 1086-1090.
[http://dx.doi.org/10.1016/j.procbio.2013.05.004]
[45]
Umayaparvathi, S.; Meenakshi, S.; Vimalraj, V.; Arumugam, M.; Sivagami, G.; Balasubramanian, T. Antioxidant activity and anticancer effect of bioactive peptide from enzymatic hydrolysate of oyster (Saccostrea cucullata). Biomed. Prevent. Nutrit., 2014, 4(3), 343-353.
[http://dx.doi.org/10.1016/j.bionut.2014.04.006]
[46]
Hung, C-C.; Yang, Y-H.; Kuo, P-F.; Hsu, K-C. Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. J. Funct. Foods, 2014, 11, 563-570.
[http://dx.doi.org/10.1016/j.jff.2014.08.015]
[47]
Song, R.; Wei, R-b.; Luo, H-y.; Yang, Z-s. Isolation and identification of an antiproliferative peptide derived from heated products of peptic hydrolysates of half-fin anchovy (Setipinna taty). J. Funct. Foods, 2014, 10, 104-111.
[http://dx.doi.org/10.1016/j.jff.2014.06.010]
[48]
Chi, C-F.; Hu, F-Y.; Wang, B.; Li, T.; Ding, G-F. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. J. Funct. Foods, 2015, 15, 301-313.
[http://dx.doi.org/10.1016/j.jff.2015.03.045]
[49]
Kang, B-R.; Kim, H.; Nam, S-H.; Yun, E-Y.; Kim, S-R.; Ahn, M-Y.; Chang, J-S.; Hwang, J-S. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep., 2012, 45(2), 85-90.
[http://dx.doi.org/10.5483/BMBRep.2012.45.2.85] [PMID: 22360885]
[50]
Lee, J.H.; Kim, I-W.; Kim, S-H.; Yun, E-Y.; Nam, S-H.; Ahn, M-Y.; Kang, D-C.; Hwang, J.S. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells. BMB Rep., 2015, 48(6), 324-329.
[http://dx.doi.org/10.5483/BMBRep.2015.48.6.073 ] [PMID: 25047444]
[51]
Pan, X.; Zhao, Y-Q.; Hu, F-Y.; Chi, C-F.; Wang, B. Anticancer activity of a hexapeptide from skate (Raja porosa) cartilage protein hydrolysate in HeLa cells. Mar. Drugs, 2016, 14(8), 153.
[http://dx.doi.org/10.3390/md14080153] [PMID: 27537897]
[52]
Xing, Z.; Yu, L.; Li, X.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci., 2016, 6(1), 53.
[http://dx.doi.org/10.1186/s13578-016-0112-8] [PMID: 27688872]
[53]
Silva, P.I., Jr; Daffre, S.; Bulet, P. Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family. J. Biol. Chem., 2000, 275(43), 33464-33470.
[http://dx.doi.org/10.1074/jbc.M001491200] [PMID: 10942757]
[54]
Troeira Henriques, S.; Lawrence, N.; Chaousis, S.; Ravipati, A.S.; Cheneval, O.; Benfield, A.H.; Elliott, A.G.; Kavanagh, A.M.; Cooper, M.A.; Chan, L.Y.; Huang, Y-H.; Craik, D.J. Redesigned Spider peptide with improved antimicrobial and anticancer properties. ACS Chem. Biol., 2017, 12(9), 2324-2334.
[http://dx.doi.org/10.1021/acschembio.7b00459 ] [PMID: 28741926]
[55]
Anunthawan, T.; Yaraksa, N.; Phosri, S.; Theansungnoen, T.; Daduang, S.; Dhiravisit, A.; Thammasirirak, S. Improving the antibacterial activity and selectivity of an ultra short peptide by hydrophobic and hydrophilic amino acid stretches. Bioorg. Med. Chem. Lett., 2013, 23(16), 4657-4662.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.005] [PMID: 23831136]
[56]
Theansungnoen, T.; Maijaroen, S.; Jangpromma, N.; Yaraksa, N.; Daduang, S.; Temsiripong, T.; Daduang, J.; Klaynongsruang, S. Cationic antimicrobial peptides derived from Crocodylus siamensis leukocyte extract, revealing anticancer activity and apoptotic induction on human cervical cancer cells. Protein J., 2016, 35(3), 202-211.
[http://dx.doi.org/10.1007/s10930-016-9662-1] [PMID: 27129462]
[57]
Maraming, P.; Maijaroen, S.; Klaynongsruang, S.; Boonsiri, P.; Daduang, S.; Chung, J.G.; Daduang, J. Antitumor ability of KT2 peptide derived from leukocyte peptide of crocodile against Human HCT116 colon cancer xenografts. In vivo, 2018, 32(5), 1137-1144.
[http://dx.doi.org/10.21873/invivo.11356] [PMID: 30150436]
[58]
Wang, W.; Rupasinghe, S.G.; Schuler, M.A.; Gonzalez de Mejia, E. Identification and characterization of topoisomerase II inhibitory peptides from soy protein hydrolysates. J. Agric. Food Chem., 2008, 56(15), 6267-6277.
[http://dx.doi.org/10.1021/jf8005195] [PMID: 18593177]
[59]
Fernández-Tomé, S.; Hernández-Ledesma, B. An update on lunasin research, a bioactive seed peptide for health promotion., 2016, 331-352.
[60]
Dia, V.P.; Mejia, E.G. Lunasin promotes apoptosis in human colon cancer cells by mitochondrial pathway activation and induction of nuclear clusterin expression. Cancer Lett., 2010, 295(1), 44-53.
[http://dx.doi.org/10.1016/j.canlet.2010.02.010] [PMID: 20206442]
[61]
Fernández-Tomé, S.; Sanchón, J.; Recio, I.; Hernández-Ledesma, B. Transepithelial transport of lunasin and derived peptides: Inhibitory effects on the gastrointestinal cancer cells viability. J. Food Compos. Anal., 2018, 68, 101-110.
[http://dx.doi.org/10.1016/j.jfca.2017.01.011]
[62]
Deng, X.; Qiu, Q.; Yang, B.; Wang, X.; Huang, W.; Qian, H. Design, synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities. Eur. J. Med. Chem., 2015, 89, 540-548.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.072] [PMID: 25462264]
[63]
Sen, Z.; Zhan, X.K.; Jing, J.; Yi, Z.; Wanqi, Z. Chemosensitizing activities of cyclotides from Clitoria ternatea in paclitaxel-resistant lung cancer cells. Oncol. Lett., 2013, 5(2), 641-644.
[http://dx.doi.org/10.3892/ol.2012.1042] [PMID: 23419988]
[64]
Luna Vital, D.A.; González de Mejía, E.; Dia, V.P.; Loarca-Piña, G. Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem., 2014, 157, 347-355.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.050 ] [PMID: 24679790]
[65]
Fan, X.; Bai, L.; Mao, X.; Zhang, X. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochem., 2017, 60, 98-107.
[http://dx.doi.org/10.1016/j.procbio.2017.05.018]
[66]
Prabhu, S.; Dennison, S.R.; Mura, M.; Lea, R.W.; Snape, T.J.; Harris, F. Cn-AMP2 from green coconut water is an anionic anticancer peptide. J. Pept. Sci., 2014, 20(12), 909-915.
[http://dx.doi.org/10.1002/psc.2684] [PMID: 25234689]
[67]
Ding, X.; Bai, D.; Qian, J. Novel cyclotides from Hedyotis biflora inhibit proliferation and migration of pancreatic cancer cell in vitro and in vivo. Med. Chem. Res., 2014, 23(3), 1406-1413.
[http://dx.doi.org/10.1007/s00044-013-0746-6]
[68]
Wang, Z.; Zhang, X. Isolation and identification of anti-proliferative peptides from Spirulina platensis using three-step hydrolysis. J. Sci. Food Agric., 2017, 97(3), 918-922.
[http://dx.doi.org/10.1002/jsfa.7815] [PMID: 27218227]
[69]
Vásquez-Villanueva, R.; Muñoz-Moreno, L.; José Carmena, M.; Luisa Marina, M.; Concepción García, M. In vitro antitumor and hypotensive activity of peptides from olive seeds. J. Funct. Foods, 2018, 42, 177-184.
[http://dx.doi.org/10.1016/j.jff.2017.12.062]
[70]
Novak, R.; Charpentier, E.; Braun, J.S.; Tuomanen, E. Signal transduction by a death signal peptide: Uncovering the mechanism of bacterial killing by penicillin. Mol. Cell, 2000, 5(1), 49-57.
[http://dx.doi.org/10.1016/S1097-2765(00)80402-5 PMID: 10678168]
[71]
Lee, D.G.; Hahm, K-S.; Park, Y.; Kim, H-Y.; Lee, W.; Lim, S-C.; Seo, Y-K.; Choi, C-H. Functional and structural characteristics of anticancer peptide Pep27 analogues. Cancer Cell Int., 2005, 5(1), 21.
[http://dx.doi.org/10.1186/1475-2867-5-21] [PMID: 16004618]
[72]
Gaglione, R.; Pirone, L.; Farina, B.; Fusco, S.; Smaldone, G.; Aulitto, M.; Dell’Olmo, E.; Roscetto, E.; Del Gatto, A.; Fattorusso, R.; Notomista, E.; Zaccaro, L.; Arciello, A.; Pedone, E.; Contursi, P. Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2155-2164.
[http://dx.doi.org/10.1016/j.bbagen.2017.06.009] [PMID: 28625421]
[73]
Ankaiah, D.; Esakkiraj, P.; Perumal, V.; Ayyanna, R.; Venkatesan, A. Probiotic characterization of Enterococcus faecium por1: Cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. J. Funct. Foods, 2017, 38, 280-292.
[http://dx.doi.org/10.1016/j.jff.2017.09.034]
[74]
De Vuyst, L.; Vandamme, E.J. Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and applications. Bacteriocins of lactic acid bacteria; Springer, 1994, pp. 151-221.
[http://dx.doi.org/10.1007/978-1-4615-2668-1_5]
[75]
Norouzi, Z.; Salimi, A.; Halabian, R.; Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog., 2018, 123, 183-189.
[http://dx.doi.org/10.1016/j.micpath.2018.07.006 ] [PMID: 30017942]
[76]
Chen, J.; Li, J.; Wu, L.; Geng, Y.; Yu, J.; Chong, C.; Wang, M.; Gao, Y.; Bai, C.; Ding, Y.; Chen, Y.; Zhang, Q. Syntheses and anti-pancreatic cancer activities of rakicidin A analogues. Eur. J. Med. Chem., 2018, 151, 601-627.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.078 ] [PMID: 29656202]
[77]
Ueyama, H.; Horibe, T.; Nakajima, O.; Ohara, K.; Kohno, M.; Kawakami, K. Semaphorin 3A lytic hybrid peptide binding to neuropilin-1 as a novel anti-cancer agent in pancreatic cancer. Biochem. Biophys. Res. Commun., 2011, 414(1), 60-66.
[http://dx.doi.org/10.1016/j.bbrc.2011.09.021] [PMID: 21945444]
[78]
Chu, H-L.; Yip, B-S.; Chen, K-H.; Yu, H-Y.; Chih, Y-H.; Cheng, H-T.; Chou, Y-T.; Cheng, J-W. Novel antimicrobial peptides with high anticancer activity and selectivity. PLoS One, 2015, 10(5)e0126390
[http://dx.doi.org/10.1371/journal.pone.0126390] [PMID: 25970292]
[79]
Benavent Acero, F.; Capobianco, C.S.; Garona, J.; Cirigliano, S.M.; Perera, Y.; Urtreger, A.J.; Perea, S.E.; Alonso, D.F.; Farina, H.G. CIGB-300, an anti-CK2 peptide, inhibits angiogenesis, tumor cell invasion and metastasis in lung cancer models. Lung Cancer, 2017, 107, 14-21.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.026] [PMID: 27319334]
[80]
Mansouri, W.; Fordyce, S.B.; Wu, M.; Jones, D.; Cohn, D.; Lin, Q.; Feustel, P.; Sharma, T.; Bennett, J.A.; Andersen, T.T. Efficacy and tolerability of AFPep, a cyclic peptide with anti-breast cancer properties. Toxicol. Appl. Pharmacol., 2018, 345, 10-18.
[http://dx.doi.org/10.1016/j.taap.2018.03.004] [PMID: 29518411]
[81]
Jagot-Lacoussiere, L.; Kotula, E.; Villoutreix, B.O.; Bruzzoni-Giovanelli, H.; Poyet, J-L. A cell-Penetrating peptide targeting AAC-11 specifically induces cancer cells death. Cancer Res., 2016, 76(18), 5479-5490.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0302 ] [PMID: 27406828]
[82]
Pasquereau-Kotula, E.; Habault, J.; Kroemer, G.; Poyet, J-L. The anticancer peptide RT53 induces immunogenic cell death. PLoS One, 2018, 13(8)e0201220
[http://dx.doi.org/10.1371/journal.pone.0201220 ] [PMID: 30080874]
[83]
Ji, Y.; Majumder, S.; Millard, M.; Borra, R.; Bi, T.; Elnagar, A.Y.; Neamati, N.; Shekhtman, A.; Camarero, J.A. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J. Am. Chem. Soc., 2013, 135(31), 11623-11633.
[http://dx.doi.org/10.1021/ja405108p] [PMID: 23848581]
[84]
Chen, C.; Chen, Y.; Yang, C.; Zeng, P.; Xu, H.; Pan, F.; Lu, J.R. High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces, 2015, 7(31), 17346-17355.
[http://dx.doi.org/10.1021/acsami.5b04547] [PMID: 26204061]
[85]
Ren, S.X.; Cheng, A.S.L.; To, K.F.; Tong, J.H.M.; Li, M.S.; Shen, J.; Wong, C.C.M.; Zhang, L.; Chan, R.L.Y.; Wang, X.J.; Ng, S.S.; Chiu, L.C.; Marquez, V.E.; Gallo, R.L.; Chan, F.K.; Yu, J.; Sung, J.J.; Wu, W.K.; Cho, C.H. Host immune defense peptide LL-37 activates caspase-independent apoptosis and suppresses colon cancer. Cancer Res., 2012, 72(24), 6512-6523.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2359 ] [PMID: 23100468]
[86]
Niemirowicz, K.; Prokop, I.; Wilczewska, A.Z.; Wnorowska, U.; Piktel, E.; Wątek, M.; Savage, P.B.; Bucki, R. Magnetic nanoparticles enhance the anticancer activity of cathelicidin LL-37 peptide against colon cancer cells. Int. J. Nanomed., 2015, 10, 3843-3853.
[http://dx.doi.org/10.2147/IJN.S76104] [PMID: 26082634]
[87]
Han, Y-Y.; Liu, H-Y.; Han, D-J.; Zong, X-C.; Zhang, S-Q.; Chen, Y-Q. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells. Biochem. Pharmacol., 2013, 86(9), 1254-1262.
[http://dx.doi.org/10.1016/j.bcp.2013.08.008] [PMID: 23962446]
[88]
Ghodsi-Moghadam, B.; Asoodeh, A. The impact of Brevinin-2R peptide on oxidative statues and antioxidant enzymes in human epithelial cell line of A549. Int. J. Pept. Res. Ther., 2019, 25, 1065-1074.
[http://dx.doi.org/10.1007/s10989-018-9754-1]
[89]
Ghavami, S.; Asoodeh, A.; Klonisch, T.; Halayko, A.J.; Kadkhoda, K.; Kroczak, T.J.; Gibson, S.B.; Booy, E.P.; Naderi-Manesh, H.; Los, M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med., 2008, 12(3), 1005-1022.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00129.x ] [PMID: 18494941]
[90]
Jamadi, R.H.; Asadi, A.; Yaghoubi, H.; Goudarzi, F. Investigation into the anticancer activity and apoptosis induction of brevinin-2R and brevinin-2R-Conjugated PLA-PEG-PLA nanoparticles and strong cell cycle arrest in AGS, HepG2 and KYSE-30 cell lines. Int. J. Pept. Res. Ther., 2019, 25, 1225-1239.
[http://dx.doi.org/10.1007/s10989-018-9772-z]
[91]
Jian, C.; Zhang, P.; Ma, J.; Jian, S.; Zhang, Q.; Liu, B.; Liang, S.; Liu, M.; Zeng, Y.; Liu, Z. The roles of fatty-acid modification in the activity of the anticancer peptide R-Lycosin-I. Mol. Pharm., 2018, 15(10), 4612-4620.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00605 ] [PMID: 30183307]
[92]
Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des., 2013, 81(1), 136-147.
[http://dx.doi.org/10.1111/cbdd.12055] [PMID: 23253135]
[93]
Barril, X. Computer-aided drug design: time to play with novel chemical matter. Expert Opin. Drug Discov., 2017, 12(10), 977-980.
[http://dx.doi.org/10.1080/17460441.2017.1362386 PMID: 28756685]
[94]
Sun, Z-G.; Yang, Y-A.; Zhang, Z-G.; Zhu, H-L. Optimization techniques for novel c-Met kinase inhibitors. Expert Opin. Drug Discov., 2019, 14(1), 59-69.
[http://dx.doi.org/10.1080/17460441.2019.1551355 PMID: 30518273]
[95]
Xu, J-F.; Wang, T-T.; Yuan, Q.; Duan, Y-T.; Xu, Y-J.; Lv, P-C.; Wang, X-M.; Yang, Y-S.; Zhu, H-L. Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg. Med. Chem., 2019, 27(8), 1509-1516.
[http://dx.doi.org/10.1016/j.bmc.2019.02.043] [PMID: 30846404]
[96]
Sun, Z-G.; Zhou, X-J.; Zhu, M-L.; Ding, W-Z.; Li, Z.; Zhu, H-L. Synthesis and biological evaluation of novel aryl-2H-pyrazole derivatives as potent non-purine xanthine oxidase inhibitors. Chem. Pharm. Bull. (Tokyo), 2015, 63(8), 603-607.
[http://dx.doi.org/10.1248/cpb.c15-00282] [PMID: 26040271]
[97]
Singh, A.; Deshpande, N.; Pramanik, N.; Jhunjhunwala, S.; Rangarajan, A.; Atreya, H.S. Optimized peptide based inhibitors targeting the dihydrofolate reductase pathway in cancer. Sci. Rep., 2018, 8(1), 3190.
[http://dx.doi.org/10.1038/s41598-018-21435-5] [PMID: 29453377]
[98]
Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Protein-peptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537.
[http://dx.doi.org/10.1016/j.drudis.2018.05.006] [PMID: 29733895]
[99]
Nakamura, H.; Fang, J.; Maeda, H. Development of next-generation macromolecular drugs based on the EPR effect: Challenges and pitfalls. Expert Opin. Drug Deliv., 2015, 12(1), 53-64.
[http://dx.doi.org/10.1517/17425247.2014.955011] [PMID: 25425260]
[100]
Sharma, P.; Kaur, H.; Kehinde, B.A.; Chhikara, N.; Sharma, D.; Panghal, A. Food-Derived anticancer peptides: A review. Int. J. Pept. Res. Ther., 2020, 1-16.
[http://dx.doi.org/10.1007/s10989-020-10063-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy