Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Research Article

Dietary Antioxidants Significantly Reduced Phorbol Myristate Acetate Induced Oxidative Stress of Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis

Author(s): Purbajit Chetia, Bidita Khandelwal, Pallab Kanti Haldar and Asis Bala*

Volume 17, Issue 1, 2021

Published on: 29 July, 2020

Page: [81 - 87] Pages: 7

DOI: 10.2174/1573397116999200729154954

Price: $65

Abstract

Background: Rheumatoid arthritis (RA) is an autoimmune disease responsible for maximum human morbidity in modern life, whereas oxidative stress is the ultimate potential biomarker for determining disease activity in patients with RA.

Objective: The present study scientifically validated the effectiveness of antioxidants commonly present in different food supplements to neutralize the free radicals mediated oxidative stress in isolated peripheral blood mononuclear lymphocytes (PBML) of patients with RA.

Methods: The study population included patients with Rheumatoid arthritis, RA (n =15), who fulfilled the American College of Rheumatology criteria for RA. Peripheral blood was collected, and isolated mononuclear lymphocyte cells (PBML) were pretreated with phorbol myristate acetate (PMS) and furthermore, incubated with different concentrations of Naringenin, β carotene and Nacetyl cysteine (NAC) in an ex vivo condition. The resultant cell lysate was used for further studies for the determination of other oxidative biomarkers. The increase of superoxide and nitric oxide production was observed when PBML was treated PMS.

Results: Importantly, the increased oxidative stress was effectively decreased by the selected plantderived compounds β-carotene and naringenin.

Conclusion: The study scientifically evaluated the efficacy of the molecules validated by one-way ANOVA, followed by Dunnett’s post hoc test of significance. Collectively, our results indicate that both β carotene and naringenin may be a promising non-toxic food supplement in attenuating the oxidative stress associated pathology in RA, meriting further pharmacological studies on other inflammatory cells like neutrophils.

Keywords: Rheumatoid arthritis, mononuclear lymphocytes, oxidative stress, antioxidants, naringenin, β carotene and Nacetyl cysteine (NAC).

Graphical Abstract

[1]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6: 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9 ] [PMID: 29736302]
[2]
Bala A, Mondal C, Haldar PK, Khandelwal B. Oxidative stress in inflammatory cells of patient with rheumatoid arthritis: clinical efficacy of dietary antioxidants. Inflammopharmacology 2017; 25(6): 595-607.
[http://dx.doi.org/10.1007/s10787-017-0397-1 ] [PMID: 28929423]
[3]
Kundu S, Bala A, Ghosh P, et al. Attenuation of oxidative stress by allylpyrocatechol in synovial cellular infiltrate of patients with Rheumatoid Arthritis. Free Radic Res 2011; 45(5): 518-26.
[http://dx.doi.org/10.3109/10715762.2011.555480 ] [PMID: 21284489]
[4]
Mirshafiey A, Mohsenzadegan M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran J Allergy Asthma Immunol 2008; 7(4): 195-202.
[PMID: 19052348]
[5]
Chen Z, Andreev D, Oeser K, et al. Th2 and eosinophil responses suppress inflammatory arthritis. Nat Commun 2016; 7: 11596.
[http://dx.doi.org/10.1038/ncomms11596 ] [PMID: 27273006]
[6]
Yap HY, Tee SZ, Wong MM, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells 2018; 7(10): 161.
[http://dx.doi.org/10.3390/cells7100161 ] [PMID: 30304822]
[7]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001 ] [PMID: 26281720]
[8]
Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5e47
[http://dx.doi.org/10.1017/jns.2016.41 ] [PMID: 28620474]
[9]
Kumar R, Bhan Tiku A. Naringenin suppresses chemically induced skin cancer in two-stage skin carcinogenesis mouse model. Nutr Cancer 2020; 72(6): 976-83.
[http://dx.doi.org/10.1080/01635581.2019.1656756 ] [PMID: 31474152]
[10]
Irfan AM, Ashu BT. Chemopreventive and Therapeutic Potential of “Naringenin,” a Flavanone Present in Citrus Fruits. Nutrition and Cancer 2015; 1(67): 27-42.
[http://dx.doi.org/10.1080/01635581.2015.976320.]
[11]
Maoka T. Carotenoids as natural functional pigments. J Nat Med 2020; 74(1): 1-16.
[http://dx.doi.org/10.1007/s11418-019-01364-x ] [PMID: 31588965]
[12]
Ludmila Bogacz-Radomska Joanna Harasym. β-Carotene—properties and production methods. Food Quality and Safety 2018; 2(2): 69-74.
[http://dx.doi.org/10.1093/fqsafe/fyy004]
[13]
Heard KJ. Acetylcysteine for acetaminophen poisoning. N Engl J Med 2008; 359(3): 285-92.
[http://dx.doi.org/10.1056/NEJMct0708278 ] [PMID: 18635433]
[14]
Mahmoudi GA, Astaraki P, Mohtashami AZ, Ahadi M. N-acetylcysteine overdose after acetaminophen poisoning. Int Med Case Rep J 2015; 8: 65-9.
[http://dx.doi.org/10.2147/IMCRJ.S74563 ] [PMID: 25767408]
[15]
Deng J, Liu AD, Hou GQ, et al. N-acetylcysteine decreases malignant characteristics of glioblastoma cells by inhibiting Notch2 signaling. J Exp Clin Cancer Res 2019; 38(1): 2.
[http://dx.doi.org/10.1186/s13046-018-1016-8 ] [PMID: 30606241]
[16]
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and dietary uses of N-acetylcysteine. Antioxidants 2019; 8(5): 111.
[http://dx.doi.org/10.3390/antiox8050111 ] [PMID: 31035402]
[17]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559 ] [PMID: 27136524]
[18]
Bala A, Chetia P, Dolai N, Khandelwal B, Haldar PK. Cat’s whiskers flavonoid attenuated oxidative DNA damage and acute inflammation: its importance in lymphocytes of patients with rheumatoid arthritis. Inflammopharmacology 2014; 22(1): 55-61.
[http://dx.doi.org/10.1007/s10787-013-0193-5 ] [PMID: 24127126]
[19]
Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31(3): 315-24.
[http://dx.doi.org/10.1002/art.1780310302 ] [PMID: 3358796]
[20]
Bala A, Haldar PK, Kar B, Naskar S, Mazumder UK. Carbon tetrachloride: a hepatotoxin causes oxidative stress in murine peritoneal macrophage and peripheral blood lymphocyte cells. Immunopharmacol Immunotoxicol 2012; 34(1): 157-62.
[http://dx.doi.org/10.3109/08923973.2011.590498 ] [PMID: 21721906]
[21]
Mukhopadhyay D, Das NK, Roy S, Kundu S, Barbhuiya JN, Chatterjee M. Miltefosine effectively modulates the cytokine milieu in Indian post kala-azar dermal leishmaniasis. J Infect Dis 2011; 204(9): 1427-36.
[http://dx.doi.org/10.1093/infdis/jir551 ] [PMID: 21933878]
[22]
Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 1984; 21(2): 130-2.
[PMID: 6490072]
[23]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3 ] [PMID: 36810]
[24]
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82(1): 70-7.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6 ] [PMID: 13650640]
[25]
Naskar S, Mazumder UK, Pramanik G, et al. Evaluation of antihyperglycemic activity of Cocos nucifera Linn. on streptozotocin induced type 2 diabetic rats. J Ethnopharmacol 2011; 138(3): 769-73.
[http://dx.doi.org/10.1016/j.jep.2011.10.021 ] [PMID: 22041106]
[26]
Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 2016; 15(1): 71.
[http://dx.doi.org/10.1186/s12937-016-0186-5 ] [PMID: 27456681]
[27]
Mateen S, Moin S, Khan AQ, Zafar A, Fatima N. Increased Reactive Oxygen Species Formation and Oxidative Stress in Rheumatoid Arthritis. PLoS One 2016; 11(4)e0152925
[http://dx.doi.org/10.1371/journal.pone.0152925 ] [PMID: 27043143]
[28]
Quiñonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C. Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: A systematic review. BioMed Res Int 2016; 20166097417
[http://dx.doi.org/10.1155/2016/6097417 ] [PMID: 27340664]
[29]
Forni C, Facchiano F, Bartoli M, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res Int 2019; 20198748253
[http://dx.doi.org/10.1155/2019/8748253 ] [PMID: 31080832]
[30]
Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and oxidative stress: A mutual interplay in age-related diseases. Front Pharmacol 2018; 9: 1162.
[http://dx.doi.org/10.3389/fphar.2018.01162 ] [PMID: 30405405]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy