Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Review on Green Synthesis of Silver Nanoparticles through Plants

Author(s): Hoor Shumail, Shah Khalid*, Izhar Ahmad, Haroon Khan, Surriya Amin and Barkat Ullah

Volume 21, Issue 6, 2021

Published on: 29 July, 2020

Page: [994 - 1007] Pages: 14

DOI: 10.2174/1871530320666200729153714

Price: $65

Abstract

Nature has the potential to reduce metal salts to their relative nanoparticles. Traditionally, physical and chemical methods were used for the synthesis of nanoparticles but due to the use of toxic chemicals, non-ecofriendly methods and other harmful effects, green chemistry approaches are now employed for synthesizing nanoparticles which are basically the most cost effective, ecofriendly and non-hazardous methods. In this review, we aimed to evaluate and study the details of various mechanisms used for green synthesis of silver nanoparticles from plants, their size, shape and potential applications. A total of 150 articles comprising both research and review articles from 2009 to 2019 were selected and studied in detail to get in-depth knowledge about the synthesis of silver nanoparticles specifically through green chemistry approaches. Silver ions and their salts are well known for their antimicrobial properties and have been used in various medical and non-medical applications since the emergence of human civilization. Miscellaneous attempts have been made to synthesize nanoparticles using plants and such nanoparticles are more efficient and beneficial in terms of their antibacterial, antifungal, antioxidant, anti-biofilm and cytotoxic activities than nanoparticles synthesized through physical and chemical processes. Silver nanoparticles have been studied as an important research area due to their specific and tunable properties and their application in the field of biomedicine such as tissue and tumor imaging and drug delivery. These nanoparticles can be further investigated to find out their antimicrobial potential in cell lines and animal models.

Keywords: Silver nanoparticles, green chemistry, green synthesis, plants, toxic chemicals, ecofriendly.

Graphical Abstract

[1]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[2]
Escárcega-González, C.E.; Garza-Cervantes, J.A.; Vázquez-Rodríguez, A.; Montelongo-Peralta, L.Z.; Treviño-González, M.T.; Díaz Barriga Castro, E.; Saucedo-Salazar, E.M.; Chávez Morales, R.M.; Regalado Soto, D.I.; Treviño González, F.M.; Carrazco Rosales, J.L.; Cruz, R.V.; Morones-Ramírez, J.R. In vivo antimicrobial activity of silver nanoparticles produced via a green chemistry synthesis using Acacia rigidula as a reducing and capping agent. Int. J. Nanomedicine, 2018, 13, 2349-2363.
[http://dx.doi.org/10.2147/IJN.S160605] [PMID: 29713166 ]
[3]
Khan, H.; Mirzaei, H.R.; Amiri, A.; Kupeli, A.E.; Halimi, S.M.A.; Mirzaei, H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin. Cancer Biol., 2021, 69, 24-42.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[4]
Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910.
[http://dx.doi.org/10.1002/jcp.26029] [PMID: 28543172]
[5]
Amin, M.; Anwar, F.; Janjua, M.R.; Iqbal, M.A.; Rashid, U. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci., 2012, 13(8), 9923-9941.
[http://dx.doi.org/10.3390/ijms13089923] [PMID: 22949839]
[6]
Khalil, M.M.H.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem., 2014, 7(6), 1131-1139.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.007]
[7]
Saravanakumar, A.; Peng, M.M.; Ganesh, M.; Jayaprakash, J.; Mohankumar, M.; Jang, H.T. Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells Nanomed. Biotechnol., 2017, 45(6), 1-7.
[http://dx.doi.org/10.1080/21691401.2016.1203795] [PMID: 27396523]
[8]
Singh, H.; Du, J.; Singh, P.; Yi, T.H. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(6), 1163-1170.
[http://dx.doi.org/10.1080/21691401.2017.1362417] [PMID: 28784039]
[9]
Rai, M.; Gade, A.; Yadav, A. Biogenic nanoparticles: an introduction to what they are, how they are synthesized and their applications. Metal nanoparticles in microbiology; Springer, 2011, pp. 1-14.
[http://dx.doi.org/10.1007/978-3-642-18312-6_1]
[10]
Vikas, S.; Krishan, K.S.; Manjit, K.S. Nanosilver: Potent antimicrobial agent and its biosynthesis. Afr. J. Biotechnol., 2014, 13(4), 546-554.
[http://dx.doi.org/10.5897/AJB2013.13147]
[11]
Swathy, B. A Review on Metallic Silver Nanoparticles. IOSR J. Pharm., 2014, 4(7), 38-44.
[12]
Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci., 2014, 9(6), 385-406.
[PMID: 26339255]
[13]
Bin Ahmad, M.; Lim, J.J.; Shameli, K.; Ibrahim, N.A.; Tay, M.Y. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 2011, 16(9), 7237-7248.
[http://dx.doi.org/10.3390/molecules16097237] [PMID: 21869751]
[14]
Malik, M.A.; Wani, M.Y.; Hashim, M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab. J. Chem., 2012, 5(4), 397-417.
[http://dx.doi.org/10.1016/j.arabjc.2010.09.027]
[15]
Bordenave, M.D.; Scarpettini, A.F.; Roldán, M.V.; Pellegri, N.; Bragas, A.V. Plasmon-induced photochemical synthesis of silver triangular prisms and pentagonal bipyramids by illumination with light emitting diodes. Mater. Chem. Phys., 2013, 139(1), 100-106.
[http://dx.doi.org/10.1016/j.matchemphys.2012.12.061]
[16]
Mustatea, G.; Calinescu, I.; Diacon, A.; Balan, L. Photoinduced synthesis of silver/polymer nanocomposites. Revista de Materiale Plastice, 2014, 51(1), 17-21.
[17]
Mănoiu, V.S.; Aloman, A. Obtaining silver nanoparticles by sonochemical methods. U.P.B. Sci. Bull., Series B, 2010, 72(2)
[18]
Yakoot, S.M.; Salem, N.A. A sonochemical-assisted simple and green synthesis of silver nanoparticles and its use in cosmetics. Int. J. Pharmacol., 2016, 12(5), 572-575.
[http://dx.doi.org/10.3923/ijp.2016.572.575]
[19]
Förster, H.; Wolfrum, C.; Peukert, W. Experimental study of metal nanoparticle synthesis by an arc evaporation/condensation process. J. Nanopart. Res., 2012, 14(7)
[http://dx.doi.org/10.1007/s11051-012-0926-1]
[20]
Ge, L.; Li, Q.; Wang, M.; Ouyang, J.; Li, X.; Xing, M.M. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine, 2014, 9, 2399-2407.
[http://dx.doi.org/10.2147/ijn.s55015] [PMID: 24876773]
[21]
Darroudi, M.; Ahmad, M.B.; Zamiri, R.; Abdullah, A.H.; Ibrahim, N.A.; Shameli, K.; Shahril, H.M. Preparation and characterization of gelatin mediated silver nanoparticles by laser ablation. J. Alloys Compd., 2011, 509(4), 1301-1304.
[http://dx.doi.org/10.1016/j.jallcom.2010.10.018]
[22]
Rhim, J.W.; Wang, L.F.; Lee, Y.; Hong, S.I. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method. Carbohydr. Polym., 2014, 103, 456-465.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.075] [PMID: 24528754]
[23]
Tsibakhashvili, N.; Kalabegishvili, T.; Gabunia, V.; Gintury, E.; Kuchava, N.; Bagdavadze, N.; Pataraya, D.; Gurielidzse, M.; Gvarjaladze, D.; Lomidze, L. Synthesis of silver nanoparticles using bacteria; Nano Studies, 2010, pp. 179-182.
[24]
Yan, A.; Liu, X.; Qiu, G.; Wu, H.; Yi, R.; Zhang, N.; Xu, J. Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd., 2008, 458(1-2), 487-491.
[http://dx.doi.org/10.1016/j.jallcom.2007.04.019]
[25]
Bai, X.; Li, L.; Liu, H.; Tan, L.; Liu, T.; Meng, X. Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl. Mater. Interfaces, 2015, 7(2), 1308-1317.
[http://dx.doi.org/10.1021/am507532p] [PMID: 25537255]
[26]
Yang, Y.; Matsubara, S.; Xiong, L.; Hayakawa, T.; Nogami, M. Solvothermal Synthesis of Multiple Shapes of Silver Nanoparticles and Their SERS Properties. J. Phys. Chem. C, 2007, 111(26), 9095-9104.
[http://dx.doi.org/10.1021/jp068859b]
[27]
Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv. Nat. Sci: Nanosci. Nanotechnol., 2011, 2(1), 015009.
[http://dx.doi.org/10.1088/2043-6262/2/1/015009]
[28]
Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett., 2016, 6(1), 21-26.
[http://dx.doi.org/10.1007/s40089-015-0163-6]
[29]
Van Dong, P.; Ha, C.H.; Kasbohm, J. Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett., 2012, 2(1), 9.
[http://dx.doi.org/10.1186/2228-5326-2-9]
[30]
Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C, 2015, 53, 286-297.
[http://dx.doi.org/10.1016/j.msec.2015.04.047] [PMID: 26042717]
[31]
Kumar, B.; Thareja, R.K. Synthesis of nanoparticles in laser ablation of aluminum in liquid. J. Appl. Phys., 2010, 108(6), 064906.
[http://dx.doi.org/10.1063/1.3486517]
[32]
Sajti, C.L.; Sattari, R.; Chichkov, B.N.; Barcikowski, S. Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J. Phys. Chem. C, 2010, 114(6), 2421-2427.
[http://dx.doi.org/10.1021/jp906960g]
[33]
Xia, D.; Wen, Y.; Ren, L.; Hu, X. Mechanisms of thermal process of zinc ultrafine powder preparation by inert gas condensation. Powder Technol., 2014, 257, 175-180.
[http://dx.doi.org/10.1016/j.powtec.2014.02.060]
[34]
Zhao, J.; Baibuz, E.; Vernieres, J.; Grammatikopoulos, P.; Jansson, V.; Nagel, M.; Steinhauer, S.; Sowwan, M.; Kuronen, A.; Nordlund, K.; Djurabekova, F. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS Nano, 2016, 10(4), 4684-4694.
[http://dx.doi.org/10.1021/acsnano.6b01024] [PMID: 26962973]
[35]
Benelmekki, M.; Vernieres, J.; Kim, J-H.; Diaz, R-E.; Grammatikopoulos, P.; Sowwan, M. On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method. Mater. Chem. Phys., 2015, 151, 275-281.
[http://dx.doi.org/10.1016/j.matchemphys.2014.11.066]
[36]
Pandey, S.; Oza, G.; Mewada, A.; Sharon, M. Green Synthesis of Highly Stable Gold Nanoparticles using Momordica charantia as Nano fabricator. Arch. Appl. Sci. Res., 2012, 4(2), 1135-1141.
[37]
Pattanayak, M.; Nayak, P. Green synthesis of gold nanoparticles using Elettaria cardamomum (ELAICHI) aqueous extract. World J. Nano Sci. Technol., 2013, 2, 01-05.
[38]
Sahayaraj, K.; Rajesh, S. Bionanoparticles: synthesis and antimicrobial applications. Science against microbial pathogens: communicating current research and technological advances, 1st ed; Formatex Research Centre: Spain, 2011.
[39]
Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O. “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants. Acta naturae., 2014, 6(1), 35-44.
[PMID: 24772325]
[40]
Mishra, V.; Sharma, R.; Jasuja, N.; Gupta, D. K. A review on green synthesis of nanoparticles and evaluation of antimicrobial activity. Int. J. Green Herb. Chem., 2014, 3(1), 081-094.
[41]
Rauwel, P.; Küünal, S.; Ferdov, S.; Rauwel, E. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/682749]
[42]
Salam, H.A.; Rajiv, P.; Kamaraj, M.; Jagadeeswaran, P.; Gunalan, S.; Sivaraj, R. Plants: green route for nanoparticle synthesis. Int. Res. J. Biol. Sci., 2012, 1(5), 85-90.
[43]
AbdulHameed Al-Samarrai, M.. Nanoparticles as Alternative to Pesticides in Management Plant Diseases A Review. Int. J. Sci. Res. Pub., 2012, 2(4)
[44]
Zargar, M.; Hamid, A.A.; Bakar, F.A.; Shamsudin, M.N.; Shameli, K.; Jahanshiri, F.; Farahani, F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules, 2011, 16(8), 6667-6676.
[http://dx.doi.org/10.3390/molecules16086667] [PMID: 25134770]
[45]
Geoprincy, G.; Srri, B.V.; Poonguzhali, U.; Gandhi, N.N.; Renganathan, S. A review on green synthesis of silver nanoparticles. Asian J. Pharm. Clin. Res., 2013, 6(1), 8-12.
[46]
Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61(3), 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[47]
Schmieder, R.; Edwards, R. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol., 2012, 7(1), 73-89.
[http://dx.doi.org/10.2217/fmb.11.135] [PMID: 22191448]
[48]
Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 2015, 10(3), 339-354.
[http://dx.doi.org/10.1016/j.nantod.2015.04.002]
[49]
Pradeepa, M.; Harini, K.; Ruckmani, K.; Geetha, N. Extracellular bio-inspired synthesis of silver nanoparticles using raspberry leaf extract against human pathogens. Int. J. Pharm. Sci. Rev. Res., 2014, 25(2), 160-165.
[50]
Roychoudhury, P.; Pal, R. Synthesis and characterization of nanosilver—a blue green approach. Indian J. Appl. Res., 2014, 4(1)
[http://dx.doi.org/10.15373/2249555X/JAN2014/17]
[51]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638.
[http://dx.doi.org/10.1039/c1gc15386b]
[52]
Kavitha, K.; Baker, S.; Rakshith, D.; Kavitha, H.; Yashwantha Rao, H.; Harini, B.; Satish, S. Plants as green source towards synthesis of nanoparticles. Int. Res. J. Biol. Sci., 2013, 2(6), 66-76.
[53]
Sajjad, S.; Leghari, S.A.K.; Ryma, N.U.A.; Farooqi, S.A. Green Synthesis of Metal‐Based Nanoparticles and Their Applications. In: Green Metal Nanoparticles; Kanchi, S.; Ahmed, S; Scrivener Publishing LLC: Beverly, 2018; pp. 23-77.
[http://dx.doi.org/10.1002/9781119418900.ch2]
[54]
Castro, G.R.; Cauerhff, A. Bionanoparticles, a green nanochemistry approach. Electron. J. Biotechnol., 2013, 16(3)
[http://dx.doi.org/10.2225/vol16-issue3-fulltext-3]
[55]
Venkatpurwar, V.; Pokharkar, V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater. Lett., 2011, 65(6), 999-1002.
[http://dx.doi.org/10.1016/j.matlet.2010.12.057]
[56]
Ghorbani, H.R.; Safekordi, A.A.; Attar, H.; Sorkhabadi, S. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Q., 2011, 25(3), 317-326.
[57]
Li, G.; He, D.; Qian, Y.; Guan, B.; Gao, S.; Cui, Y.; Yokoyama, K.; Wang, L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci., 2012, 13(1), 466-476.
[http://dx.doi.org/10.3390/ijms13010466] [PMID: 22312264]
[58]
Syed, A.; Saraswati, S.; Kundu, G.C.; Ahmad, A. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 114, 144-147.
[http://dx.doi.org/10.1016/j.saa.2013.05.030] [PMID: 23770500]
[59]
Rahi, D.K.; Parmar, A.S. Mycosynthesis of silver nanoparticles by an endophytic Penicillium species of Aloe vera root, evaluation of their antibacterial and antibiotic enhancing activity. Int. J. Nanomat. Biostruct., 2014, 4(3), 46.
[60]
Evans, M.; Markose, T. Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Synthesis, 2014, 6(5), 1718-1723.
[61]
Shahverdi, A.R.; Minaeian, S.; Shahverdi, H.R.; Jamalifar, H.; Nohi, A-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem., 2007, 42(5), 919-923.
[http://dx.doi.org/10.1016/j.procbio.2007.02.005]
[62]
Sriram, M.I.; Kalishwaralal, K.; Gurunathan, S. Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis. Methods Mol. Biol., 2012, 906, 33-43.
[http://dx.doi.org/10.1007/978-1-61779-953-2_3] [PMID: 22791422]
[63]
Kalpana, D.; Lee, Y.S. Synthesis and characterization of bactericidal silver nanoparticles using cultural filtrate of simulated microgravity grown Klebsiella pneumoniae. Enzyme Microb. Technol., 2013, 52(3), 151-156.
[http://dx.doi.org/10.1016/j.enzmictec.2012.12.006] [PMID: 23410925]
[64]
Sowmiya, K.; Prakash, J.T.J. Green-synthesis of silver nanoparticles using abies webbiana leaves and evaluation of its antibacterial activity. J. Pharmacogn. Phytochem., 2018, 7(5), 2033-2036.
[65]
Kumar Sur, U.; Ankamwar, B.; Karmakar, S.; Halder, A.; Das, P. Green synthesis of Silver nanoparticles using the plant extract of Shikakai and Reetha. Mat.Today: Proceedings, 2018, 5(1), 2321-2329.
[http://dx.doi.org/10.1016/j.matpr.2017.09.236]
[66]
Murugan, K.; Senthilkumar, B.; Senbagam, D.; Al-Sohaibani, S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomedicine, 2014, 9, 2431-2438.
[http://dx.doi.org/10.2147/ijn.s61779 ] [PMID: 24876776]
[67]
Krishnaraj, C.; Jagan, E.G.; Rajasekar, S.; Selvakumar, P.; Kalaichelvan, P.T.; Mohan, N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces, 2010, 76(1), 50-56.
[http://dx.doi.org/10.1016/j.colsurfb.2009.10.008] [PMID: 19896347]
[68]
Ahmad, N.; Sharma, S. Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus. Green Sustain. Chem., 2012, 02(04), 141-147.
[http://dx.doi.org/10.4236/gsc.2012.24020]
[69]
Kumar, B.; Smita, K.; Cumbal, L.; Debut, A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci., 2017, 24(1), 45-50.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.006] [PMID: 28053570]
[70]
Karimi Zarchi, A.A.; Mokhtari, N.; Arfan, M.; Rehman, T.; Ali, M.; Amini, M.; Faridi Majidi, R.; Shahverdi, A.R. A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract. Appl. Phys., A, 2011, 103(2), 349-353.
[http://dx.doi.org/10.1007/s00339-011-6259-6]
[71]
Vijaya, P.; SYED, A.M.; Saranya, R. Antimicrobial activity and characterization of biosynthesized silver nanoparticles from Anisochilus carnosus. Int. J. Nano dim., 2013, 3(4), 255-262.
[http://dx.doi.org/10.7508/IJND.2012.04.001]
[72]
Dehghanizade, S.; Arasteh, J.; Mirzaie, A. Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 160-168.
[http://dx.doi.org/10.1080/21691401.2017.1304402] [PMID: 28368661]
[73]
Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.A.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Mater. Lett., 2012, 76, 18-20.
[http://dx.doi.org/10.1016/j.matlet.2012.02.025]
[74]
Singh, A.; Jain, D.; Upadhyay, M.; Khandelwal, N.; Verma, H. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct., 2010, 5(2), 483-489.
[75]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[76]
Mane Gavade, S.J.; Nikam, G.H.; Dhabbe, R.S.; Sabale, S.R.; Tamhankar, B.V.; Mulik, G.N. Green synthesis of silver nanoparticles by using carambola fruit extract and their antibacterial activity. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6(4), 045015.
[http://dx.doi.org/10.1088/2043-6262/6/4/045015]
[77]
Ahmed, S. Saif Ullah; Ahmad, M. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Rad. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[78]
Nayak, D.; Ashe, S.; Rauta, P.R.; Kumari, M.; Nayak, B. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater. Sci. Eng. C, 2016, 58, 44-52.
[http://dx.doi.org/10.1016/j.msec.2015.08.022] [PMID: 26478285]
[79]
Lalitha, A.; Subbaiya, R.; Ponmurugan, P. Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int. J. Curr. Microbiol. Appl. Sci., 2013, 2(6), 228-235.
[80]
Behravan, M.; Hossein Panahi, A.; Naghizadeh, A.; Ziaee, M.; Mahdavi, R.; Mirzapour, A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol., 2019, 124, 148-154.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.101] [PMID: 30447360]
[81]
Savithramma, N.; Rao, M.L.; Rukmini, K.; Devi, P.S. Antimicrobial activity of Silver Nanoparticles synthesized by using Medicinal Plants. Int. J. Chemtech Res., 2011, 3(3), 1394-1402.
[82]
Baghizadeh, A.; Ranjbar, S.; Gupta, V.K.; Asif, M.; Pourseyedi, S.; Karimi, M.J.; Mohammadinejad, R. Green synthesis of silver nanoparticles using seed extract of Calendula officinalis in liquid phase. J. Mol. Liq., 2015, 207, 159-163.
[http://dx.doi.org/10.1016/j.molliq.2015.03.029]
[83]
Baskaralingam, V.; Sargunar, C.G.; Lin, Y.C.; Chen, J.C. Green synthesis of Silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus. Nanotechnology Development, 2012, 2(1), 3.
[http://dx.doi.org/10.4081/nd.2012.e3]
[84]
Loo, Y.Y.; Chieng, B.W.; Nishibuchi, M.; Radu, S. Synthesis of silver nanoparticles by using tea leaf extract from Camellia sinensis. Int. J. Nanomedicine, 2012, 7, 4263-4267.
[PMID: 22904632]
[85]
Shankar, T.; Karthiga, P.; Swarnalatha, K.; Rajkumar, K. Green synthesis of silver nanoparticles using Capsicum frutescence and its intensified activity against E. coli. Resource-Efficient Technologies, 2017, 3(3), 303-308.
[http://dx.doi.org/10.1016/j.reffit.2017.01.004]
[86]
Ghafoori, S.M.; Entezari, M.; Taghva, A.; Tayebi, Z. Biosynthesis and evaluation of the characteristics of silver nanoparticles using Cassia fistula fruit aqueous extract and its antibacterial activity. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8(4), 045019.
[http://dx.doi.org/10.1088/2043-6254/aa92bb]
[87]
Awwad, A.M.; Salem, N.M.; Abdeen, A.O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Industrial Chem., 2013, 4(1), 29.
[http://dx.doi.org/10.1186/2228-5547-4-29]
[88]
Erjaee, H.; Rajaian, H.; Nazifi, S. Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 8(2), 025004.
[http://dx.doi.org/10.1088/2043-6254/aa690b]
[89]
Anjum, S.; Jacob, G.; Gupta, B. Investigation of the herbal synthesis of silver nanoparticles using Cinnamon zeylanicum extract. Emergent Materials, 2019, 2(1), 113-122.
[http://dx.doi.org/10.1007/s42247-019-00023-x]
[90]
Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B Biointerfaces, 2011, 82(1), 152-159.
[http://dx.doi.org/10.1016/j.colsurfb.2010.08.036] [PMID: 20833002]
[91]
Lakshmanan, G.; Sathiyaseelan, A.; Kalaichelvan, P.T.; Murugesan, K. Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: Assessment of their antibacterial and anticancer activity. Karbala International Journal of Modern Science, 2018, 4(1), 61-68.
[http://dx.doi.org/10.1016/j.kijoms.2017.10.007]
[92]
Dhand, V.; Soumya, L.; Bharadwaj, S.; Chakra, S.; Bhatt, D.; Sreedhar, B. Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater. Sci. Eng. C, 2016, 58, 36-43.
[http://dx.doi.org/10.1016/j.msec.2015.08.018] [PMID: 26478284]
[93]
Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed., 2017, 7(3), 227-233.
[http://dx.doi.org/10.1016/j.apjtb.2016.12.014]
[94]
Priya, S.D.; Sharmila, S.; Nusrath, T. Synthesis of plant mediated silver nanoparticles and antimicrobial activity in Cucumis sativa. J. Nat. Prod. Plant Resour., 2013, 3(2), 23-30.
[95]
Jha, A.K.; Prasad, K. Green Synthesis of Silver Nanoparticles Using Cycas Leaf. Int. J. Green Nanotechnol.: Phy. Chem., 2010, 1(2), 110-P117.
[http://dx.doi.org/10.1080/19430871003684572]
[96]
Gomathi, M.; Rajkumar, P.V.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Effic. Technol., 2017, 3(3), 280-284.
[http://dx.doi.org/10.1016/j.reffit.2016.12.005]
[97]
Ghosh, S.; Patil, S.; Ahire, M.; Kitture, R.; Kale, S.; Pardesi, K.; Cameotra, S.S.; Bellare, J.; Dhavale, D.D.; Jabgunde, A.; Chopade, B.A. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomedicine, 2012, 7, 483-496.
[PMID: 22334779]
[98]
Anandan, M.; Poorani, G.; Boomi, P.; Varunkumar, K.; Anand, K.; Chuturgoon, A.A.; Saravanan, M.; Gurumallesh Prabu, H. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem., 2019, 80, 80-88.
[http://dx.doi.org/10.1016/j.procbio.2019.02.014]
[99]
Ravichandran, V.; Sumitha, S.; Vasanthi, S.; Shalini, S.; Chinni, S.B.; Gopinath, S.; Kathiresan, S.; Anbu, P. Durio zibethinus rind extract mediated green synthesis of silver nanoparticles: Characterization and biomedical applications. Pharmacogn. Mag., 2019, 15(60), 52.
[http://dx.doi.org/10.4103/pm.pm_400_18]
[100]
Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Microwave assisted green synthesis of silver nanoparticles using leaf extract of elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 795-804.
[http://dx.doi.org/10.1080/21691401.2017.1345921] [PMID: 28681662]
[101]
Awwad, A.; Salem, M.N.; O., Abdeen A., Biosynthesis Of Silver Nanoparticles Using Loquat Leaf Extract And Its antibacterial Activity. Adv. Mater. Lett., 2013, 4(5), 338-342.
[http://dx.doi.org/10.5185/amlett.2012.11453]
[102]
Rao, B.; Tang, R-C. Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Advances in Natural Sciences: Nanosci. Nanotechnol., 2017, 8(1), 015014.
[http://dx.doi.org/10.1088/2043-6254/aa5983]
[103]
Pawar, J. S.; Patil, R. H. Green synthesis of silver nanoparticles using Eulophia herbacea (Lindl.) tuber extract and evaluation of its biological and catalytic activity. SN Appl. Sci., 2019, 2(1)
[104]
Priya, M.M.; Selvi, B.K.; Paul, J. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig. J. Nanomater. Biostruct., 2011, 6(2)
[105]
Sangeetha, A.; Saraswathi, U.; Singaravelu, G. Green synthesis of silver nanoparticles using a mangrove Excoecaria agallocha. Int J. Pharm. Sci. Invent., 2014, 3, 54-57.
[106]
Shah, A.T.; Din, M.I.; Bashir, S.; Qadir, M.A.; Rashid, F. Green Synthesis and Characterization of Silver Nanoparticles Using Ferocactus echidne Extract as a Reducing Agent. Anal. Lett., 2015, 48(7), 1180-1189.
[http://dx.doi.org/10.1080/00032719.2014.974057]
[107]
Hemmati, S.; Rashtiani, A.; Zangeneh, M.M.; Mohammadi, P.; Zangeneh, A.; Veisi, H. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron, 2019, 158, 8-14.
[http://dx.doi.org/10.1016/j.poly.2018.10.049]
[108]
Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; Yang, D.C. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 108-117.
[http://dx.doi.org/10.1080/21691401.2017.1296849] [PMID: 28290213]
[109]
Philip, D. Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E, 2010, 42(5), 1417-1424.
[http://dx.doi.org/10.1016/j.physe.2009.11.081]
[110]
Balasubramanian, S.; Jeyapaul, U.; Kala, S.M.J. Antibacterial Activity of Silver Nanoparticles Using Jasminum auriculatum Stem Extract. Int. J. Nanosci., 2019, 18(01), 1850011.
[http://dx.doi.org/10.1142/S0219581X18500114]
[111]
Vijayakumar, A.S.; Jeyaraj, M.; Selvakumar, M.; Abirami, E. Pharmacological Activity Of Silver Nanoparticles, Ethanolic Extract From Justicia gendarussa (Burm) F Plant Leaves, Res. J. Life Sci. Binform. Pharm. Chem. Sci., 2019.
[http://dx.doi.org/10.26479/2019.0502.33]
[112]
Vidhu, V.K.; Aromal, S.A.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 83(1), 392-397.
[http://dx.doi.org/10.1016/j.saa.2011.08.051] [PMID: 21920808]
[113]
Ali, Z.A.; Yahya, R.; Sekaran, S.D.; Puteh, R. Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Adv. Mater. Sci. Eng., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/4102196]
[114]
Sarsar, V.; Selwal, K.K.; Selwal, M.K. Green synthesis of silver nanoparticles using leaf extract of Mangifera indica and evaluation of their antimicrobial activity. J. Microbiol. Biotech. Res., 2013, 3(5), 27-32.
[115]
Gavhane, A.J.; Padmanabhan, P.; Kamble, S.P.; Jangle, S.N. Synthesis of silver nanoparticles using extract of neem leaf and triphala and evaluation of their antimicrobial activities. Int. J. Pharma Bio Sci., 2012, 3(3), 88-100.
[116]
Mehmood, A.; Murtaza, G.; Bhatti, T.M.; Kausar, R. Phyto-mediated synthesis of silver nanoparticles from Melia azedarach L. leaf extract: characterization and antibacterial activity. Arab. J. Chem., 2017, 10, S3048-S3053.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.046]
[117]
de Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; Larrañaga, D.; Estévez, M.; Pérez, R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results in Physics, 2017, 7, 2639-2643.
[http://dx.doi.org/10.1016/j.rinp.2017.07.044]
[118]
MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces, 2011, 85(2), 360-365.
[http://dx.doi.org/10.1016/j.colsurfb.2011.03.009] [PMID: 21466948]
[119]
Moodley, J.S.; Krishna, S.B.N.; Pillay, K. Sershen; Govender, P., Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. in Nat. Sci.: Nanosci. Nanotechnol., 2018, 9(1), 015011.
[120]
Philip, D.; Unni, C.; Aromal, S.A.; Vidhu, V.K. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78(2), 899-904.
[http://dx.doi.org/10.1016/j.saa.2010.12.060] [PMID: 21215687]
[121]
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. of Rad. Res. Appl. Sci., 2015, 8(3), 265-275.
[http://dx.doi.org/10.1016/j.jrras.2015.01.007]
[122]
Muthuraman, M.S.; Nithya, S.; Vinoth Kumar, V.; Christena, L.R.; Vadivel, V.; Subramanian, N.S.; Anthony, S.P. Green synthesis of silver nanoparticles using Nardostachys jatamansi and evaluation of its anti-biofilm effect against classical colonizers. Microb. Pathog., 2019, 126, 1-5.
[http://dx.doi.org/10.1016/j.micpath.2018.10.024] [PMID: 30352266]
[123]
Rout, Y. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob., 2012, 4(6), 103-109.
[http://dx.doi.org/10.5897/JMA11.060]
[124]
Shaik, M.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.; Siddiqui, M.; Shaik, J.; Ahamed, A.; Mahmood, A.; Khan, M.; Adil, S. Plant-Extract-Assisted Green Synthesis of Silver Nanoparticles Using Origanum vulgare L. Extract and Their Microbicidal Activities. Sustainability, 2018, 10(4), 913.
[http://dx.doi.org/10.3390/su10040913]
[125]
Thomas, B.; Vithiya, B.S.M.; Prasad, T.A.A.; Mohamed, S.B.; Magdalane, C.M.; Kaviyarasu, K.; Maaza, M. Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa. J. Nanosci. Nanotechnol., 2019, 19(5), 2640-2648.
[http://dx.doi.org/10.1166/jnn.2019.16025] [PMID: 30501761]
[126]
Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci., 2016, 6(3), 399-408.
[http://dx.doi.org/10.1007/s13204-015-0449-z]
[127]
Roy, K.; Sarkar, C.; Ghosh, C. Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl. Nanosci., 2015, 5(8), 945-951.
[http://dx.doi.org/10.1007/s13204-014-0393-3]
[128]
Iravani, S.; Zolfaghari, B. Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res. Int., 2013, 2013, 639725.
[http://dx.doi.org/10.1155/2013/639725] [PMID: 24083233]
[129]
Sadeghi, B.; Rostami, A.; Momeni, S.S. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 134, 326-332.
[http://dx.doi.org/10.1016/j.saa.2014.05.078] [PMID: 25022505]
[130]
Singh, K.; Naidoo, Y.; Mocktar, C.; Baijnath, H. Biosynthesis of silver nanoparticles using Plumbago auriculata leaf and calyx extracts and evaluation of their antimicrobial activities. Adv. in Nat. Sci.: Nanosci. Nanotechnol., 2018, 9(3), 035004.
[http://dx.doi.org/10.1088/2043-6254/aad1a3]
[131]
Arya, G.; Kumari, R.M.; Gupta, N.; Kumar, A.; Chandra, R.; Nimesh, S. Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol., 2018, 46(5), 985-993.
[http://dx.doi.org/10.1080/21691401.2017.1354302] [PMID: 28720002]
[132]
Oliveira, G.Z.S.; Lopes, C.A.P.; Sousa, M.H.; Silva, L.P. Synthesis of silver nanoparticles using aqueous extracts of Pterodon emarginatus leaves collected in the summer and winter seasons. Int. Nano Lett., 2019, 9(2), 109-117.
[http://dx.doi.org/10.1007/s40089-019-0265-7]
[133]
Khan, M.; Khan, M.; Adil, S.F.; Tahir, M.N.; Tremel, W.; Alkhathlan, H.Z.; Al-Warthan, A.; Siddiqui, M.R. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int. J. Nanomed., 2013, 8, 1507-1516.
[PMID: 23620666]
[134]
Solgi, M.; Taghizadeh, M. Silver nanoparticles ecofriendly synthesis by two medicinal plants. Int. J. Nanomater. and Biostruct., 2012, 2, 60-64.
[135]
Arokiyaraj, S.; Vincent, S.; Saravanan, M.; Lee, Y.; Oh, Y.K.; Kim, K.H. Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol., 2017, 45(2), 372-379.
[http://dx.doi.org/10.3109/21691401.2016.1160403] [PMID: 27023851]
[136]
Pasupuleti, V.R.; Prasad, T.N.; Shiekh, R.A.; Balam, S.K.; Narasimhulu, G.; Reddy, C.S.; Ab Rahman, I.; Gan, S.H. Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int. J. Nanomed., 2013, 8, 3355-3364.
[http://dx.doi.org/10.2147/IJN.S49000] [PMID: 24039419]
[137]
Mani, U.; Dhanasingh, S.; Arunachalam, R.; Paul, E.; Shanmugam, P.; Rose, C.; Mandal, A.B. A simple and green method for the synthesis of silver nanoparticles using Ricinus communis leaf extract. Progress in Nanotechnol. Nanomat., 2013, 2(1), 21-25.
[138]
Ojha, S.; Sett, A.; Bora, U. Green synthesis of silver nanoparticles by Ricinus communis var. carmencita leaf extract and its antibacterial study. Adv. in Nat. Sci.: Nanosci. Nanotechnol., 2017, 8(3), 035009.
[http://dx.doi.org/10.1088/2043-6254/aa724b]
[139]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A Physicochem. Eng. Asp., 2010, 364(1-3), 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[140]
Donda, M.R.; Kudle, K.R.; Alwala, J.; Miryala, A.; Sreedhar, B.; Rudra, M.P. Synthesis of silver nanoparticles using extracts of Securinega leucopyrus and evaluation of its antibacterial activity. Int. J. Curr. Sci., 2013, 7, 1-8.
[141]
Mohasseli, T.; Pourseyedi, S.; Zolala, J. Antibacterial activity of silver nanoparticles produced in the plant sesamum indicum seed extract by the green method against bacteria staphylococcus epidermidis and salmonella Typhi. Int. Res. J. Appl. Basic Sci., 2013, 6(5), 587-591.
[142]
Idrees, M.; Batool, S.; Kalsoom, T.; Raina, S.; Sharif, H.M.A.; Yasmeen, S. Biosynthesis of silver nanoparticles using Sida acuta extract for antimicrobial actions and corrosion inhibition potential. Environ. Technol., 2019, 40(8), 1071-1078.
[http://dx.doi.org/10.1080/09593330.2018.1435738] [PMID: 29385891]
[143]
Ahmed, M.J.; Murtaza, G.; Mehmood, A.; Bhatti, T.M. Green synthesis of silver nanoparticles using leaves extract of Skimmia laureola: Characterization and antibacterial activity. Mater. Lett., 2015, 153, 10-13.
[http://dx.doi.org/10.1016/j.matlet.2015.03.143]
[144]
Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G. Herbal Plant Synthesis of Antibacterial Silver Nanoparticles by Solanum trilobatum and Its Characterization. Int. J. Metals, 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/692461]
[145]
Swarnalatha, Y.; Krishnan, D.; Rajasekar, S.V. Antibacterial activity of biogenic silver nanoparticles from Sphaeranthus amaranthoides. Int. J. Pharm. Pharm. Sci., 2013, 5(4), 594-596.
[146]
Ajitha, B.; Reddy, Y.A.K.; Lee, Y.; Kim, M.J.; Ahn, C.W. Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects. Appl. Organomet. Chem., 2019, 33(5), e4867.
[http://dx.doi.org/10.1002/aoc.4867]
[147]
Padalia, H.; Moteriya, P.; Chanda, S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem., 2015, 8(5), 732-741.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.015]
[148]
Dubey, S.P.; Lahtinen, M.; Sillanpää, M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem., 2010, 45(7), 1065-1071.
[http://dx.doi.org/10.1016/j.procbio.2010.03.024]
[149]
Kouhbanani, M.A.J.; Beheshtkhoo, N.; Fotoohiardakani, G.; Hosseini-Nave, H.; Taghizadeh, S.; Amani, A.M. Green Synthesis and Characterization of Spherical Structure Silver Nanoparticles Using Wheatgrass Extract. J. Environ. Treat. Tech., 2019, 7(1), 142-149.
[150]
Hamelian, M.; Zangeneh, M.M.; Amisama, A.; Varmira, K.; Veisi, H. Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl. Organomet. Chem., 2018, 32(9), e4458.
[http://dx.doi.org/10.1002/aoc.4458]
[151]
Gnanajobitha, G.; Paulkumar, K.; Vanaja, M.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G.; Kannan, C. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostruct. in Chem., 2013, 3(1), 67.
[http://dx.doi.org/10.1186/2193-8865-3-67]
[152]
Priyankamath, C.; Packiyam, J.E. Synthesis of silver nanoparticles from leaf extracts of Wedelia chinensis (Osbeck) Merrill and their antimicrobial activity. J. Microbio. Biotechnol. Res., 2013, 3(5), 48-53.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy