Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Potato Starch-sodium Alginate-Zr (IV) Phosphate Bio-nanocomposite Ion Exchanger: Synthesis, Characterization and Environmental Application

Author(s): Jahangir Ahmad War and Hamida- Tun-Nisa Chisti*

Volume 18, Issue 4, 2022

Published on: 29 July, 2020

Page: [456 - 465] Pages: 10

DOI: 10.2174/1573411016999200729121527

Price: $65

Abstract

Background: The introduction of inorganic fillers into the polymer matrix (with multiplicity in functionalization) augments the specific properties of such materials. One such method employed here, which is environmental friendly and facile is the sol-gel synthesis

Objective: The nanocomposite synthesized by the above-mentioned method was primarily utilized for ion-exchange applications in general and cation exchange in particular. The ZrP based nanocomposite (PS/AG/ZrP) has been examined (as a photocatalyst) for the elimination of toxic cationic dye, methylene blue (Mb) from the wastewater by the mechanism of photodegradation. This study provides the experimental evidence and discussion of the different physicochemical characteristics of the synthesized nanocomposite.

Methods: Herein, we synthesized zirconium phosphate (ZrP)-linked-potato starch/sodium alginate nanocomposite ion exchanger (PS/AG/ZrP) employing facile sol-gel method. Highly sophisticated techniques like FTIR, TGA, SEM, TEM, XRD & UV-Vis were subjected to characterize the PS/AG/ZrP nanocomposite

Results: The ion exchange (IE) results show that the nanocomposite ion exchanger (PS/AG/ZrP-6) exhibited higher IEC (2.1meq/g) and thermal stability as conferred from IEC and TGA studies. Using UV-Vis irradiation, photocatalytic results revealed that 74.5% of Mb dye was degraded by novel nanocomposite (PS/AG/ZrP) within 50 minutes

Conclusion: The results discussed reveal that the nanocomposite (PS/AG/ZrP-6) is a potential candidate for ion exchange applications vis-à-vis a photocatalyst for the remediation of wastewater as the time demands. The nanocomposite (PS/AG/ZrP-6) successfully characterized through various techniques and utilized as a potential ion exchanger and a photocatalyst for the dye degradation (MB) under UV-Vis irradiation.

Keywords: Degradation, ion exchanger, methylene blue, nanocomposite, photocatalysis, sol-gel method.

Graphical Abstract

[1]
Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett., 2018, 2018, 1-26.
[2]
Rathore, B.S.; Sharma, G.; Pathania, D.; Gupta, V.K. Synthesis, characterization and antibacterial activity of cellulose acetate-tin (IV) phosphate nanocomposite. Carbohydr. Polym., 2014, 103, 221-227.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.011] [PMID: 24528723]
[3]
Saravanan, R.; Mansoob Khan, M.; Gupta, V.K.; Mosquera, E.; Gracia, F.; Narayanan, V.; Stephen, A. ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J. Colloid Interface Sci., 2015, 452, 126-133.
[http://dx.doi.org/10.1016/j.jcis.2015.04.035] [PMID: 25935283]
[4]
Saravanan, R.; Khan, M.M.; Gupta, V.K.; Mosquera, E.; Gracia, F.; Narayanan, V.; Stephen, A. ZnO/Ag/Mn2O3 nanocomposite for Visible Light-Induced Industrial Textile Effluent Degradation, Uric Acid and Ascorbic Acid Sensing and Antimicrobial Activity. RSC Advances, 2015, 5(44), 34645-34651.
[http://dx.doi.org/10.1039/C5RA02557E]
[5]
Thakur, M.; Pathania, D.; Sharma, G.; Naushad, M.; Bhatnagar, A.; Khan, M.R. Synthesis, characterization and environmental applications of a new bio-composite Gelatin-Zr(IV). Phosphate. J. Polym. Environ., 2018, 26(4), 1415-1424.
[http://dx.doi.org/10.1007/s10924-017-1043-0]
[6]
Deng, H.; Lu, J.; Li, G.; Zhang, G.; Wang, X. Adsorption of methylene blue on adsorbent materials produced from cotton stalk. Chem. Eng. J., 2011, 172(1), 326-334.
[http://dx.doi.org/10.1016/j.cej.2011.06.013]
[7]
Kaur, K.; Jindal, R.; Tanwar, R. Chitosan-Gelatin @ Tin (IV) Tungstatophosphate nanocomposite ion exchanger: Synthesis, characterization and applications in environmental remediation. J. Polym. Environ., 2018, 2018, 1-18.
[8]
Brown, J.; Mercier, L.; Pinnavaia, T.J. Selective adsorption of Hg2+ by thiol-functionalized nanoporous silica. Chem. Commun. (Camb.), 1999, 1(1), 69-70.
[http://dx.doi.org/10.1039/a807249c]
[9]
Pathania, D.; Thakur, M.; Mishra, A.K. Alginate-Zr (IV) Phosphate nanocomposite ion exchanger: Binary separation of heavy metals, photocatalysis and antimicrobial activity. J. Alloys Compd., 2017, 701, 153-162.
[http://dx.doi.org/10.1016/j.jallcom.2017.01.112]
[10]
Rengaraj, S.; Yeon, K-H.; Kang, S-Y.; Lee, J-U.; Kim, K-W.; Moon, S-H. Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J. Hazard. Mater., 2002, 92(2), 185-198.
[http://dx.doi.org/10.1016/S0304-3894(02)00018-3 PMID: 11992702]
[11]
Sharma, G.; Pathania, D.; Naushad, M. Preparation, characterization, and ion exchange behavior of nanocomposite polyaniline Zirconium(IV) Selenotungstophosphate for the separation of toxic metal ions. Ionics (Kiel), 2015, 21(4), 1045-1055.
[http://dx.doi.org/10.1007/s11581-014-1269-y]
[12]
Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K. Metal ion adsorption to complexes of humic acid and metal oxides: deviations from the additivity rule. Environ. Sci. Technol., 1999, 33(21), 3892-3897.
[http://dx.doi.org/10.1021/es990260k]
[13]
Pathania, D.; Sharma, G.; Thakur, R. Pectin @ Zirconium (IV) Silicophosphate nanocomposite ion exchanger: Photo Catalysis, heavy metal separation and antibacterial activity. Chem. Eng. J., 2015, 267, 235-244.
[http://dx.doi.org/10.1016/j.cej.2015.01.004]
[14]
AL-Othman Z. A.; Naushad, M.; Inamuddin. Organic-Inorganic type composite cation exchanger Poly-o-Toluidine Zr(IV) Tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem. Eng. J., 2011, 172(1), 369-375.
[http://dx.doi.org/10.1016/j.cej.2011.06.018]
[15]
Rangreez, T.A. Inamuddin; Naushad, M.; Ali, H. Synthesis and Characterisation of Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: Analytical application in the selective separation of lead metal ions. Int. J. Environ. Anal. Chem., 2015, 95(6), 556-568.
[http://dx.doi.org/10.1080/03067319.2015.1036863]
[16]
Soldatov, V.S.; Shunkevich, A.A.; Sergeev, G.I. Synthesis. Structure and properties of new fibrous ion exchangers. react. Polym. Ion Exch. Sorbents, 1988, 7(2-3), 159-172.
[http://dx.doi.org/10.1016/0167-6989(88)90136-5]
[17]
Al-Othman, Z.A. Inamuddin; Naushad, M. Determination of ion-exchange kinetic parameters for the Poly-o-Methoxyaniline Zr(IV) molybdate composite cation-exchanger. Chem. Eng. J., 2011, 166(2), 639-645.
[http://dx.doi.org/10.1016/j.cej.2010.11.036]
[18]
Islam, M.; Patel, R. Polyacrylamide thorium (IV) phosphate as an important lead selective fibrous ion exchanger: Synthesis, characterization and removal study. J. Hazard. Mater., 2008, 156(1-3), 509-520.
[http://dx.doi.org/10.1016/j.jhazmat.2007.12.046] [PMID: 18242841]
[19]
Nabi, S.A.; Naushad, M. Synthesis, characterization and analytical applications of a new composite cation exchanger cellulose Acetate-Zr(IV) Molybdophosphate. Colloids Surf. A Physicochem. Eng. Asp., 2008, 316(1-3), 217-225.
[http://dx.doi.org/10.1016/j.colsurfa.2007.09.005]
[20]
Siddiqui, W.A.; Khan, S.A. Inamuddin. Synthesis, characterization and ion-exchange properties of a new and novel ‘organic-inorganic’ hybrid cation-exchanger: Poly(Methyl Methacrylate) Zr(IV) phosphate. Colloids Surf. A Physicochem. Eng. Asp., 2007, 295(1-3), 193-199.
[http://dx.doi.org/10.1016/j.colsurfa.2006.08.053]
[21]
Alby, D.; Charnay, C.; Heran, M.; Prelot, B.; Zajac, J. Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: Synthesis and shaping, sorption capacity, mechanisms, and selectivity-A review. J. Hazard. Mater., 2018, 344, 511-530.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.047] [PMID: 29100131]
[22]
Naushad, M. A New Generation Material Graphene: Applications in Water Technology; Springer: The Netherlands, 2018.
[23]
Gupta, V.K.; Jain, R.; Varshney, S.; Saini, V.K. Removal of Reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques. J. Colloid Interface Sci., 2007, 307(2), 326-332.
[http://dx.doi.org/10.1016/j.jcis.2006.12.003] [PMID: 17196604]
[24]
Inamuddin; Rangreez, T. A.; Naushad, M.; Al-Ahmad, A. Synthesis and Characterisation of Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchanger: Analytical application as lead ion selective membrane electrode. Int. J. Environ. Anal. Chem., 2015, 95(4), 312-323.
[http://dx.doi.org/10.1080/03067319.2015.1016016]
[25]
Naushad, M. A new ion-selective electrode based on aluminium tungstate for Fe(III) determination in rock sample, pharmaceutical sample and water sample. Bull. Mater. Sci., 2008, 31(7), 957-965.
[http://dx.doi.org/10.1007/s12034-008-0151-9]
[26]
Kumar, A.; Guo, C.; Sharma, G.; Pathania, D.; Naushad, M.; Kalia, S.; Dhiman, P. Magnetically recoverable ZrO2/Fe3 O4/Chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(vi) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Advances, 2016, 6(16), 13251-13263.
[http://dx.doi.org/10.1039/C5RA23372K]
[27]
Naushad, M.; Ahamad, T.; Sharma, G.; Al-Muhtaseb, A.H.; Albadarin, A.B.; Alam, M.M. ALOthman, Z. A.; Alshehri, S. M.; Ghfar, A. A. Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+metal Ion. Chem. Eng. J., 2016, 300, 306-316.
[http://dx.doi.org/10.1016/j.cej.2016.04.084]
[28]
Pathania, D.; Gupta, D.; Kothiyal, N.C.; Sharma, G.; Eldesoky, G.E.; Naushad, M. Preparation of a novel chitosan-g-poly(acrylamide)/Zn nanocomposite hydrogel and its applications for controlled drug delivery of ofloxacin. Int. J. Biol. Macromol., 2016, 84, 340-348.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.041] [PMID: 26708432]
[29]
Pathania, D.; Sharma, G.; Naushad, M.; Kumar, A. Synthesis and characterization of a new nanocomposite cation exchanger polyacrylamide Ce(IV) Silicophosphate: Photocatalytic and antimicrobial applications. J. Ind. Eng. Chem., 2014, 20(5), 3596-3603.
[http://dx.doi.org/10.1016/j.jiec.2013.12.054]
[30]
AL-Othman Z. A.; Naushad, M.; Inamuddin. Organic-Inorganic type composite cation exchanger Poly-o-Toluidine Zr(IV) Tungstate: Preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem. Eng. J., 2011, 172(1), 369-375.
[http://dx.doi.org/10.1016/j.cej.2011.06.018]
[31]
Nabi, S.A.; Shahadat, M.; Bushra, R.; Shalla, A.H.; Ahmed, F. Development of composite ion-exchange adsorbent for pollutants removal from environmental wastes. Chem. Eng. J., 2010, 165(2), 405-412.
[http://dx.doi.org/10.1016/j.cej.2010.08.068]
[32]
Siddiqi, Z.M.; Pathania, D. Titanium(IV) tungstosilicate and titanium(IV) tungstophosphate: two new inorganic ion exchangers. J. Chromatogr. A, 2003, 987(1-2), 147-158.
[http://dx.doi.org/10.1016/S0021-9673(02)01659-X PMID: 12613807]
[33]
Pathania, D.; Thakur, M.; Sharma, A.; Agarwal, S.; Gupta, V.K. Synthesis of Lactic Acid-Zr(IV) Phosphate Nanocomposite Ion Exchanger for Green Remediation. Ionics (Kiel), 2017, 23(3), 699-706.
[http://dx.doi.org/10.1007/s11581-016-1858-z]
[34]
Gulnaz, O.; Kaya, A.; Matyar, F.; Arikan, B. Sorption of basic dyes from aqueous solution by activated sludge. J. Hazard. Mater., 2004, 108(3), 183-188.
[http://dx.doi.org/10.1016/j.jhazmat.2004.02.012] [PMID: 15120871]
[35]
Pathania, D.; Sharma, G.; Naushad, M.; Priya, V. A Biopolymer-Based Hybrid Cation Exchanger Pectin Cerium(IV) Iodate: Synthesis, Characterization, and Analytical Applications; Desalin; Water Treat, 2014, pp. 1-8.
[36]
Wesslén, K.B.; Wesslén, B. Synthesis of amphiphilic amylose and starch derivatives. Carbohydr. Polym., 2002, 47(4), 303-311.
[http://dx.doi.org/10.1016/S0144-8617(01)00196-5]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy